Package 'BayesfMRI'

December 18, 2023

Type Package

Title Spatial Bayesian Methods for Task Functional MRI Studies

Version 0.3.11

Maintainer Amanda Mejia <mandy.mejia@gmail.com>

Description Performs a spatial Bayesian general linear model (GLM) for task functional magnetic resonance imaging (fMRI) data on the cortical surface. Additional models include group analysis and inference to detect thresholded areas of activation. Includes direct support for the 'CIFTI' neuroimaging file format. For more information see A. F. Mejia, Y. R. Yue, D. Bolin, F. Lindgren, M. A. Lindquist (2020) <doi:10.1080/01621459.2019.1611582> and D. Spencer, Y. R. Yue, D. Bolin, S. Ryan, A. F. Mejia (2022) <doi:10.1016/j.neuroimage.2022.118908>.

Depends R (>= 3.6.0)

License GPL-3

Additional_repositories https://inla.r-inla-download.org/R/testing

Encoding UTF-8

- **Imports** ciftiTools (>= 0.8.0), excursions, foreach, fMRItools, MASS, Matrix, matrixStats, methods, Rcpp, stats, sp, utils
- Suggests covr, abind, dplyr, geometry, ggplot2, grDevices, INLA (>= 0.0-1468840039), knitr, MatrixModels, parallel, purrr, rdist, rmarkdown, SQUAREM, testthat (>= 3.0.0)

RoxygenNote 7.2.3

URL https://github.com/mandymejia/BayesfMRI

BugReports https://github.com/mandymejia/BayesfMRI/issues

LinkingTo RcppEigen, Rcpp

NeedsCompilation yes

Author Amanda Mejia [aut, cre], Daniel Spencer [aut] (<https://orcid.org/0000-0002-9705-3605>), Damon Pham [ctb] (<https://orcid.org/0000-0001-7563-4727>), David Bolin [ctb], Sarah Ryan [ctb], Yu (Ryan) Yue [ctb]

Repository CRAN

Date/Publication 2023-12-18 08:50:21 UTC

R topics documented:

.findTheta
.getSqrtInvCpp
.initialKP
.logDetQt
act_prevalance
aic_Param
ar_order_Param
ar_smooth_Param
BayesGLM 7
BayesGLM2
BayesGLM_cifti 12
Bayes_Param 16
cderiv
combine_sessions_Param
contrasts_Param
emTol_Param
EM_Param
faces_Param
HRF
id_activations
INLA_Description
is.BfMRI.sess
make_HRFs
make_mask 22
make_mesh
mask_Param_vertices
max.threads_Param
mesh_Param_either
mesh_Param_inla
num.threads_Param
plot.act_BayesGLM_cifti
plot.BayesGLM2_cifti
plot.BayesGLM_cifti 26
plot.prev_BayesGLM_cifti
pw_estimate
pw_smooth
return_INLA_Param
scale_BOLD_Param
scale_design_Param
seed_Param

.findTheta

session_names_Param	30
summary.act_BayesGLM	31
summary.act_BayesGLM_cifti	31
summary.BayesGLM	32
summary.BayesGLM2	33
summary.BayesGLM2_cifti	34
summary.BayesGLM_cifti	34
summary.prev_BayesGLM	35
summary.prev_BayesGLM_cifti	36
task_names_Param	36
trim_INLA_Param	37
verbose_Param	37
vertex_areas	37
vertices_Param	38
	39

Index

```
.findTheta
```

Perform the EM algorithm of the Bayesian GLM fitting

Description

Perform the EM algorithm of the Bayesian GLM fitting

Usage

.findTheta(theta, spde, y, X, QK, Psi, A, Ns, tol, verbose = FALSE)

Arguments

theta	the vector of initial values for theta
spde	a list containing the sparse matrix elements Cmat, Gmat, and GtCinvG
У	the vector of response values
Х	the sparse matrix of the data values
QK	a sparse matrix of the prior precision found using the initial values of the hyper- parameters
Psi	a sparse matrix representation of the basis function mapping the data locations to the mesh vertices
A	a precomputed matrix crossprod(X%*%Psi)
Ns	the number of columns for the random matrix used in the Hutchinson estimator
tol	a value for the tolerance used for a stopping rule (compared to the squared norm of the differences between theta(s) and theta($s-1$))
verbose	(logical) Should intermediate output be displayed?

3

.getSqrtInvCpp

Description

Get the prewhitening matrix for a single data location

Usage

.getSqrtInvCpp(AR_coeffs, nTime, avg_var)

Arguments

AR_coeffs	a length-p vector where p is the AR order
nTime	(integer) the length of the time series that is being prewhitened
avg_var	a scalar value of the residual variances of the AR model

.initialKP	Find the initial values of kappa2 and phi
------------	---

Description

Find the initial values of kappa2 and phi

Usage

.initialKP(theta, spde, w, n_sess, tol, verbose)

theta	a vector of length two containing the range and scale parameters kappa2 and phi, in that order
spde	a list containing the sparse matrix elements Cmat, Gmat, and GtCinvG
W	the beta_hat estimates for a single task
n_sess	the number of sessions
tol	the stopping rule tolerance
verbose	(logical) Should intermediate output be displayed?

.logDetQt

Description

Find the log of the determinant of Q_tilde

Usage

```
.logDetQt(kappa2, in_list, n_sess)
```

Arguments

kappa2	a scalar
in_list	a list with elements Cmat, Gmat, and GtCinvG
n_sess	the integer number of sessions

|--|--|--|--|

Description

Activations prevalence.

Usage

```
act_prevalance(act_list)
```

Arguments

act_list	List of activations from id_activations.	All should	have the	same	sessions,
	fields, and brainstructures.				

Value

A list containing the prevalances of activation, as a proportion of the results from act_list.

aic_Param	aic
Description aic	
Arguments	
aic	Use the AIC to select AR model order between 0 and ar_order? Default: FALSE.
ar_order_Param	ar_order
Description	
ar_order	
Arguments	
ar_order	(numeric) Controls prewhitening. If greater than zero, this should be a number indicating the order of the autoregressive model to use for prewhitening. If zero, do not prewhiten. Default: 6. For multi-session models, note that a single AR model is used; the parameters are estimated by averaging the estimates from each session.
ar_smooth_Param	ar_smooth
Description	
or smooth	
ar_smooth	
Arguments	
ar_smooth	(numeric) FWHM parameter for smoothing the AR model coefficient estimates for prewhitening. Remember that $\sigma = \frac{FWHM}{2*sqrt(2*log(2))}$. Set to 0 or NULL to not do any smoothing. Default: 5.

BayesGLM

Description

Performs spatial Bayesian GLM for fMRI task activation

Usage

```
BayesGLM(
 data,
  vertices = NULL,
  faces = NULL,
 mesh = NULL,
 mask = NULL,
  task_names = NULL,
  session_names = NULL,
  combine_sessions = TRUE,
  scale_BOLD = c("auto", "mean", "sd", "none"),
  scale_design = TRUE,
 Bayes = TRUE,
  ar_order = 6,
  ar_smooth = 5,
 aic = FALSE,
  num.threads = 4,
  return_INLA = c("trimmed", "full", "minimal"),
  verbose = 1,
 meanTol = 1e-06,
  varTol = 1e-06
)
```

data	A list of sessions in the "BfMRI.sess" object format. Each session is a list with elements "BOLD", "design", and optionally "nuisance". Each element should be a numeric matrix with T rows. The name of each element in data is the name of that session. See ?is.BfMRI.sess for details.
	Note that the argument session_names can be used instead of providing the session names as the names of the elements in data.
vertices, faces	
	If Bayes, the geometry data can be provided with either both the vertices and faces arguments, or with the mesh argument.
	vertices is a $V \times 3$ matrix, where each row contains the Euclidean coordinates at which a given vertex in the mesh is located. V is the number of vertices in the mesh.
	faces is a $F \times 3$ matrix, where each row contains the vertex indices for a given triangular face in the mesh. F is the number of faces in the mesh.

If Bayes, the geometry data can be provided with either both the vertices and faces arguments, or with the mesh argument.
mesh is an "inla.mesh" object. This can be created for surface data using make_mesh.
(Optional) A length V logical vector indicating the vertices to include.
(Optional) Names of tasks represented in design matrix.
(Optional, and only relevant for multi-session modeling) Names of each session. Default: NULL. In BayesGLM this argument will overwrite the names of the list entries in data, if both exist.
S
If multiple sessions are provided, should their data be combined and analyzed as a single session?
If TRUE (default), the multiple sessions will be concatenated along time after scaling and nuisance regression, but before prewhitening. If FALSE, each session will be analyzed separately, except that a single estimate of the AR model coefficients for prewhitening is used, estimated across all sessions.
Option for scaling the BOLD response.
"auto" (default) will use "mean" scaling except if demeaned data is detected (if any mean is less than one), in which case "sd" scaling will be used instead.
"mean" scaling will scale the data to percent local signal change.
"sd" scaling will scale the data by local standard deviation.
"none" will only center the data, not scale it.
Scale the design matrix by dividing each column by its maximum and then sub- tracting the mean? Default: TRUE. If FALSE, the design matrix is centered but not scaled.
If TRUE (default), will fit a spatial Bayesian GLM in addition to the classical GLM. (The classical GLM is always returned.)
(numeric) Controls prewhitening. If greater than zero, this should be a number indicating the order of the autoregressive model to use for prewhitening. If zero, do not prewhiten. Default: 6. For multi-session models, note that a single AR model is used; the parameters are estimated by averaging the estimates from each session.
(numeric) FWHM parameter for smoothing the AR model coefficient estimates for prewhitening. Remember that $\sigma = \frac{FWHM}{2*sqrt(2*log(2))}$. Set to 0 or NULL to not do any smoothing. Default: 5.
Use the AIC to select AR model order between 0 and ar_order? Default: FALSE.
The maximum number of threads to use for parallel computations: prewhitening parameter estimation, and the inla-program model estimation. Default: 4. Note that parallel prewhitening requires the parallel package.
Return the INLA model object? (It can be large.) Use "trimmed" (default) to return only the more relevant results, which is enough for both id_activations and BayesGLM2, "minimal" to return just enough for BayesGLM2 but not id_activations, or "full" to return the full output of inla.

BayesGLM

verbose Should updates be printed? Use 1 (default) for occasional updates, 2 for occasional updates as well as running INLA in verbose mode (if applicable), or 0 for no updates.

meanTol, varTol

Tolerance for mean and variance of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for both.

Value

A "BayesGLM" object: a list with elements

INLA_model_obj The full result of the call to INLA::inla.

task_estimates The task coefficients for the Bayesian model.

- **result_classical** Results from the classical model: task estimates, task standard error estimates, residuals, degrees of freedom, and the mask.
- **mesh** The model mesh including only the locations analyzed, i.e. within mask, without missing values, and meeting meanTol and varTol.

mesh_orig The original mesh provided.

mask A mask of mesh_orig indicating the locations inside mesh.

design The design matrix, after centering and scaling, but before any nuisance regression or prewhitening.

task_names The names of the tasks.

session_names The names of the sessions.

hyperpar_posteriors Hyperparameter posterior densities.

theta_estimates Theta estimates from the Bayesian model.

posterior_Sig_inv For joint group modeling.

mu_theta For joint group modeling.

Q_theta For joint group modeling.

- **y** For joint group modeling: The BOLD data after any centering, scaling, nuisance regression, or prewhitening.
- X For joint group modeling: The design matrix after any centering, scaling, nuisance regression, or prewhitening.
- prewhiten_info Vectors of values across locations: phi (AR coefficients averaged across sessions), sigma_sq (residual variance averaged across sessions), and AIC (the maximum across sessions).

call match.call() for this function call.

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

BayesGLM2

Description

Performs group-level Bayesian GLM estimation and inference using the joint approach described in Mejia et al. (2020).

Usage

```
BayesGLM2(
  results,
  contrasts = NULL,
  quantiles = NULL,
  excursion_type = NULL,
  contrast_names = NULL,
  gamma = 0,
  alpha = 0.05,
  nsamp_theta = 50,
  nsamp_beta = 100,
  num_cores = NULL,
  verbose = 1
)
BayesGLM_group(
  results,
  contrasts = NULL,
  quantiles = NULL,
  excursion_type = NULL,
  gamma = 0,
  alpha = 0.05,
  nsamp_theta = 50,
  nsamp_beta = 100,
  num_cores = NULL,
  verbose = 1
)
```

results	Either (1) a length N list of "BayesGLM" objects, or (2) a length N character vector of files storing "BayesGLM" objects saved with saveRDS.
contrasts	(Optional) A list of contrast vectors that specify the group-level summaries of interest. If NULL, use contrasts that compute the average of each field (task HRF) across subjects and sessions.
	Each contrast vector is length $K * S * N$ vector specifying a group-level summary of interest, where K is the number of fields (task HRFs), S is the number of

	sessions, and N is the number of subjects. For a single subject-session the contrast for the first field would be:
	contrast1 <- c(1, rep(0, K-1))
	and so the full contrast vector representing the group average across sessions and subjects for the first task would be:
	<pre>rep(rep(contrast1, S), N) /S /N.</pre>
	To obtain the group average for the first task, for just the first sessions from each subject:
	rep(c(contrast1, rep(0, K*(S-1))), N) /N.
	To obtain the mean difference between the first and second sessions, for the first task:
	<pre>rep(c(contrast1, -contrast1, rep(0, K-2)), N) /N.</pre>
	To obtain the mean across sessions of the first task, just for the first subject:
	c(rep(contrast1, S-1), rep(0, K*S*(N-1)) /S.
quantiles	(Optional) Vector of posterior quantiles to return in addition to the posterior mean.
excursion_type	(For inference only) The type of excursion function for the contrast (">", "<", "!="), or a vector thereof (each element corresponding to one contrast). If NULL, no inference performed.
contrast_names	(Optional) Names of contrasts.
gamma	(For inference only) Activation threshold for the excursion set, or a vector thereof (each element corresponding to one contrast). Default: 0.
alpha	(For inference only) Significance level for activation for the excursion set, or a vector thereof (each element corresponding to one contrast). Default: .05.
nsamp_theta	Number of theta values to sample from posterior. Default: 50.
nsamp_beta	Number of beta vectors to sample conditional on each theta value sampled. Default: 100.
num_cores	The number of cores to use for sampling betas in parallel. If NULL (default), do not run in parallel.
verbose	Should updates be printed? Use 1 (default) for occasional updates, 2 for occasional updates as well as running INLA in verbose mode (if applicable), or 0 for no updates.

Value

A list containing the estimates, PPMs and areas of activation for each contrast.

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

BayesGLM_cifti BayesGLM for CIFTI

Description

Performs spatial Bayesian GLM on the cortical surface for fMRI task activation

Usage

```
BayesGLM_cifti(
  cifti_fname,
  surfL_fname = NULL,
  surfR_fname = NULL,
  brainstructures = c("left", "right"),
 design = NULL,
 onsets = NULL,
 TR = NULL,
 nuisance = NULL,
  dHRF = c(0, 1, 2),
  dHRF_as = c("auto", "nuisance", "task"),
 hpf = NULL,
 DCT = if (is.null(hpf)) {
     4
} else {
     NULL
},
 resamp_res = 10000,
 task_names = NULL,
  session_names = NULL,
 combine_sessions = TRUE,
  scale_BOLD = c("auto", "mean", "sd", "none"),
  scale_design = TRUE,
 Bayes = TRUE,
  ar_order = 6,
  ar_smooth = 5,
 aic = FALSE,
  num.threads = 4,
  return_INLA = c("trimmed", "full", "minimal"),
 verbose = 1,
 meanTol = 1e-06,
  varTol = 1e-06
)
```

Arguments

cifti_fname fMRI timeseries data in CIFTI format ("*.dtseries.nii"). For single-session analysis this can be a file path to a CIFTI file or a "xifti" object from the ciftiTools package. For multi-session analysis this can be a vector of file paths or a list of "xifti" objects.

- surfL_fname Left cortex surface geometry in GIFTI format ("*.surf.gii"). This can be a file
 path to a GIFTI file or a "surf" object from the ciftiTools package. This
 argument is only used if brainstructures includes "left" and Bayes==TRUE.
 If it's not provided, the HCP group-average inflated surface included in the
 ciftiTools package will be used.
- surfR_fname Right cortex surface geometry in GIFTI format ("*.surf.gii"). This can be a file path to a GIFTI file or a "surf" object from the ciftiTools package. This argument is only used if brainstructures includes "right" and Bayes==TRUE. If it's not provided, the HCP group-average inflated surface included in the ciftiTools package will be used.

brainstructures

Character vector indicating which brain structure(s) to analyze: "left" (left cortical surface) and/or "right" (right cortical surface). Default: c("left", "right") (both hemispheres). Note that the subcortical models have not yet been implemented.

design, onsets, TR

Either provide design directly, or provide both onsets and TR from which the design matrix or matrices will be constructed.

design is a $T \times K$ task design matrix. Each column represents the expected BOLD response due to each task, a convolution of the hemodynamic response function (HRF) and the task stimulus. Note that the scale of the regressors will affect the scale and interpretation of the beta coefficients, so imposing a proper scale is recommended; see the scale_design argument, which by default is TRUE. Task names should be the column names, if not provided by the task_names argument. For multi-session modeling, this argument should be a list of such matrices. To model HRF derivatives, calculate the derivatives of the task columns beforehand (see the helper function cderiv which computes the discrete central derivative) and either add them to design to model them as tasks, or nuisance to model them as nuisance signals; it's recommended to then drop the first and last timepoints because the discrete central derivative doesn't exist at the time series boundaries. Do note that INLA computation times increase greatly if the design matrix has more than five columns, so it might be required to add these derivatives to nuisance rather than design.

onsets is an *L*-length list in which the name of each element is the name of the corresponding task, and the value of each element is a matrix of onsets (first column) and durations (second column) for each stimuli (each row) of the corresponding task. The units of both columns is seconds. For multi-session modeling, this argument should be a list of such lists. To model HRF derivatives, use the arguments dHRF and dHRF_as. If dHRF==0 or dHRF_as=="nuisance", the to-tal number of columns in the design matrix, K, will equal L. If dHRF_as=="task", K will equal L times dHRF+1.

TR is the temporal resolution of the data, in seconds.

nuisance (Optional) A $T \times J$ matrix of nuisance signals. These are regressed from the fMRI data and the design matrix prior to the GLM computation. For multisession modeling, this argument should be a list of such matrices.

dHRF, dHRF_as	Only applicable if onsets and TR are provided. These arguments enable the modeling of HRF derivatives
	Set dHRF to 1 to model the temporal derivatives of each task, 2 to add the second derivatives too, or θ to not model the derivatives. Default: 1
	If dHRF > 0, dHRF_as controls whether the derivatives are modeled as "nuisance" signals to regress out, "tasks", or "auto" (default) to treat them as tasks unless the total number of columns in the design matrix would exceed five.
hpf,DCT	Add DCT bases to nuisance to apply a temporal high-pass filter to the data? Only one of these arguments should be provided. hpf should be the filter fre- quency; if it is provided, TR must be provided too. The number of DCT bases to include will be computed to yield a filter with as close a frequency to hpf as possible. Alternatively, DCT can be provided to directly specify the number of DCT bases to include.
	Default: DCT=4. For typical TR, four DCT bases amounts to a lower frequency cutoff than the approximately .01 Hz used in most studies. We selected this default to err on the side of retaining more low-frequency information, but we recommend setting these arguments to values most appropriate for the data analysis at hand.
	Using at least two DCT bases is as sufficient as using linear and quadratic drift terms in the design matrix. So if DCT detrending is being used, there is no need to add linear and quadratic drift terms to nuisance.
resamp_res	The number of vertices to which each cortical surface should be resampled, or NULL to not resample. For computational feasibility, a value of 10000 or lower is recommended.
task_names	(Optional) Names of tasks represented in design matrix.
session_names	(Optional, and only relevant for multi-session modeling) Names of each session. Default: NULL. In BayesGLM this argument will overwrite the names of the list entries in data, if both exist.
combine_session	ns
	If multiple sessions are provided, should their data be combined and analyzed as a single session?
	If TRUE (default), the multiple sessions will be concatenated along time after scaling and nuisance regression, but before prewhitening. If FALSE, each session will be analyzed separately, except that a single estimate of the AR model coefficients for prewhitening is used, estimated across all sessions.
scale_BOLD	Option for scaling the BOLD response. "auto" (default) will use "mean" scaling except if demeaned data is detected (if any mean is less than one), in which case "sd" scaling will be used instead.
	"mean" scaling will scale the data to percent local signal change.
	"sd" scaling will scale the data by local standard deviation.
	"none" will only center the data, not scale it.
scale_design	Scale the design matrix by dividing each column by its maximum and then sub- tracting the mean? Default: TRUE. If FALSE, the design matrix is centered but not scaled.
Bayes	If TRUE (default), will fit a spatial Bayesian GLM in addition to the classical GLM. (The classical GLM is always returned.)

ar_order	(numeric) Controls prewhitening. If greater than zero, this should be a number indicating the order of the autoregressive model to use for prewhitening. If zero, do not prewhiten. Default: 6. For multi-session models, note that a single AR model is used; the parameters are estimated by averaging the estimates from each session.
ar_smooth	(numeric) FWHM parameter for smoothing the AR model coefficient estimates for prewhitening. Remember that $\sigma = \frac{FWHM}{2*sqrt(2*log(2))}$. Set to 0 or NULL to not do any smoothing. Default: 5.
aic	Use the AIC to select AR model order between 0 and ar_order? Default: FALSE.
num.threads	The maximum number of threads to use for parallel computations: prewhitening parameter estimation, and the inla-program model estimation. Default: 4. Note that parallel prewhitening requires the parallel package.
return_INLA	Return the INLA model object? (It can be large.) Use "trimmed" (default) to return only the more relevant results, which is enough for both id_activations and BayesGLM2, "minimal" to return just enough for BayesGLM2 but not id_activations, or "full" to return the full output of inla.
verbose	Should updates be printed? Use 1 (default) for occasional updates, 2 for occasional updates as well as running INLA in verbose mode (if applicable), or 0 for no updates.
meanTol, varTol	
	Tolerance for mean and variance of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for both.

Value

An object of class "BayesGLM_cifti": a list with elements

betas_Bayesian The task coefficients for the Bayesian model.

betas_classical The task coefficients for the classical model.

- **GLMs_Bayesian** The entire list of GLM results, except for parameters estimated for the classical model.
- GLMs_classical Parameters estimated for the classical model from the GLM.

session_names The names of the sessions.

- **n_sess_orig** The number of sessions (before averaging, if applicable).
- **task_names** The task part of the design matrix, after centering and scaling, but before any nuisance regression or prewhitening.

INLA latent fields limit

INLA computation times increase greatly when the number of columns in the design matrix exceeds five. So if there are more than five tasks, or three or more tasks each with its temporal derivative being modeled as a task, BayesGLM will raise a warning. In cases like the latter, we recommend modeling the temporal derivatives as nuisance signals using the nuisance argument, rather than modeling them as tasks.

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first down-load and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench .

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

Bayes_Param	Bayes
Description	
Bayes	
Arguments	
Bayes	If TRUE (default), will fit a spatial Bayesian GLM in addition to the classical GLM. (The classical GLM is always returned.)
cderiv	Central derivative

Description

Take the central derivative of numeric vectors by averaging the forward and backward differences.

Usage

cderiv(x)

Arguments

Х

A numeric matrix, or a vector which will be converted to a single-column matrix.

Value

A matrix or vector the same dimensions as x, with the derivative taken for each column of x. The first and last rows may need to be deleted, depending on the application.

Examples

x <- cderiv(seq(5))
stopifnot(all(x == c(.5, 1, 1, 1, .5)))</pre>

combine_sessions_Param

combine_sessions

Description

combine_sessions

Arguments

combine_sessions

If multiple sessions are provided, should their data be combined and analyzed as a single session?

If TRUE (default), the multiple sessions will be concatenated along time after scaling and nuisance regression, but before prewhitening. If FALSE, each session will be analyzed separately, except that a single estimate of the AR model coefficients for prewhitening is used, estimated across all sessions.

contrasts_Param	contrasts
Description	
contrasts	
Arguments	
contrasts	List of contrast vectors to be passed to inla::inla.
emTol_Param	emTol
Description	
emTol	
Arguments	
emTol	The stopping tolerance for the EM algorithm. Default: 1e-3.

EM_Param	EM
Description	
EM	
Arguments	
EM	(logical) Should the EM implementation of the Bayesian GLM be used? Default: FALSE. This method is still in development.
faces_Param	faces
Description	
faces	
Arguments	
faces	An $F \times 3$ matrix, where each row contains the vertex indices for a given triangular face in the mesh. F is the number of faces in the mesh.
HRF	Canonical (double-gamma) HRF

Description

Calculate the HRF from a time vector and parameters. Optionally compute the first or second derivative of the HRF instead.

Usage

```
HRF(t, deriv = 0, a1 = 6, b1 = 0.9, a2 = 12, b2 = 0.9, c = 0.35)
```

t	time vector
deriv	$\boldsymbol{\vartheta}$ (default) for the HRF, 1 for the first derivative of the HRF, or 2 for the second derivative of the HRF.
a1	delay of response. Default: 6
b1	response dispersion. Default: 0.9
a2	delay of undershoot. Default: 12
b2	dispersion of undershoot. Default: 0.9
С	scale of undershoot. Default: 0.35

id_activations

Value

HRF vector (or dHRF, or d2HRF) corresponding to time

Examples

downsample <- 100
HRF(seq(0, 30, by=1/downsample))</pre>

id_activations Identify task activations

Description

Identify areas of activation for each task from the result of BayesGLM or BayesGLM_cifti.

Usage

```
id_activations(
   model_obj,
   tasks = NULL,
   sessions = NULL,
   method = c("Bayesian", "classical"),
   alpha = 0.05,
   gamma = NULL,
   correction = c("FWER", "FDR", "none"),
   verbose = 1
)
```

model_obj	Result of BayesGLM or BayesGLM_cifti model call, of class "BayesGLM" or "BayesGLM_cifti".
tasks	The task(s) to identify activations for. Give either the name(s) as a character vector, or the numerical indices. If NULL (default), analyze all tasks.
sessions	The session(s) to identify activations for. Give either the name(s) as a character vector, or the numerical indices. If NULL (default), analyze the first session.
	Currently, if multiple sessions are provided, activations are identified separately for each session. (Information is not combined between the different sessions.)
method	"Bayesian" (default) or "classical". If model_obj does not have Bayesian results because Bayes was set to FALSE, only the "classical" method can be used.
alpha	Significance level. Default: 0.05.
gamma	Activation threshold, for example 1 for 1\ change if scale_BOLD=="mean" dur- ing model estimation. Setting a gamma is required for the Bayesian method; NULL (default) will use a gamma of zero for the classical method.

correction	For the classical method only: Type of multiple comparisons correction: "FWER"
	(Bonferroni correction, the default), "FDR" (Benjamini Hochberg), or "none".
verbose	Should updates be printed? Use 1 (default) for occasional updates, 2 for occa-
	sional updates as well as running INLA in verbose mode (if applicable), or 0 for
	no updates.

Value

An "act_BayesGLM" or "act_BayesGLM_cifti" object, a list which indicates the activated locations along with related information.

INLA_Description INLA

Description

INLA

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

is.BfMRI.sess Validate a "BfMRI.sess" object.

Description

Check if object is valid for a "BfMRI.sess" object.

Usage

is.BfMRI.sess(x)

Arguments

```
Х
```

The putative "BfMRI.sess" object.

Details

A "BfMRI.sess" object is a list of length S, where S is the number of sessions in the analysis. Each list entry corresponds to a separate session, and should itself be a list with these named fields:

BOLD a $T \times V$ BOLD matrix. Rows are time points; columns are data locations (vertices/voxels). **design** a $T \times K$ matrix containing the K task regressors. See make_HRFs. **nuisance** an optional argument. $T \times J$ matrix containing the L nuisance regressors.

husance an optional argument. 1×5 matrix containing the *D* husance regressors.

In addition, all sessions must have the same number of data locations, V, and tasks, K.

make_HRFs

Value

Logical. Is x a valid "BfMRI.sess" object?

Examples

```
nT <- 180
nV <- 700
BOLD1 <- matrix(rnorm(nT*nV), nrow=nT)
BOLD2 <- matrix(rnorm(nT*nV), nrow=nT)
onsets1 <- list(taskA=cbind(c(2,17,23),4)) # one task, 3 four sec-long stimuli
onsets2 <- list(taskA=cbind(c(1,18,25),4))
TR <- .72 # .72 seconds per volume, or (1/.72) Hz
duration <- nT # session is 180 volumes long (180*.72 seconds long)
design1 <- make_HRFs(onsets1, TR, duration)$design
design2 <- make_HRFs(onsets2, TR, duration)$design
x <- list(
sessionOne = list(BOLD=BOLD1, design=design1),
sessionTwo = list(BOLD=BOLD2, design=design2)
)
stopifnot(is.BfMRI.sess(x))
```

make_HRFs

Make HRFs

Description

Create HRF design matrix columns from onsets and durations

Usage

```
make_HRFs(
    onsets,
    TR,
    duration,
    dHRF = c(0, 1, 2),
    dHRF_as = c("auto", "nuisance", "task"),
    downsample = 100,
    verbose = FALSE
)
```

onsets	L-length list in which the name of each element is the name of the corresponding task, and the value of each element is a matrix of onsets (first column) and durations (second column) for each stimuli (each row) of the corresponding task.
TR	Temporal resolution of the data, in seconds.
duration	The number of volumes in the fMRI data.

dHRF	Set to 1 to add the temporal derivative of each column in the design matrix, 2 to add the second derivatives too, or 0 to not add any columns. Default: 1.
dHRF_as	Only applies if dHRF > 0. Model the temporal derivatives as "nuisance" signals to regress out, "tasks", or "auto" to treat them as tasks unless the total number of columns in the design matrix (i.e. the total number of tasks, times dHRF+1), would be >=10, the limit for INLA.
downsample	Downsample factor for convolving stimulus boxcar or stick function with canon- ical HRF. Default: 100.
verbose	If applicable, print a message saying how the HRF derivatives will be modeled? Default: FALSE.

Value

List with the design matrix and/or the nuisance matrix containing the HRF-convolved stimuli as columns, depending on dHRF_as.

Examples

```
onsets <- list(taskA=cbind(c(2,17,23),4)) # one task, 3 four sec-long stimuli
TR <- .72 # .72 seconds per volume, or (1/.72) Hz
duration <- 300 # session is 300 volumes long (300*.72 seconds long)
make_HRFs(onsets, TR, duration)</pre>
```

make_mask	Mask out invalid data	

Description

Mask out data locations that are invalid (missing data, low mean, or low variance) for any session.

Usage

```
make_mask(data, meanTol = 1e-06, varTol = 1e-06, verbose = TRUE)
```

Arguments

data	A list of sessions, where each session is a list with elements BOLD, design, and optionally nuisance. See ?is.BfMRI.sess for details.
<pre>meanTol, varTol</pre>	
	Tolerance for mean and variance of each data location. Locations which do not meet these thresholds are masked out of the analysis. Defaults: 1e-6.
verbose	Print messages counting how many locations are removed? Default: TRUE.

Value

A logical vector indicating locations that are valid across all sessions.

make_mesh

Examples

```
nT <- 30
nV <- 400
BOLD1 <- matrix(rnorm(nT*nV), nrow=nT)
BOLD1[,seq(30,50)] <- NA
BOLD2 <- matrix(rnorm(nT*nV), nrow=nT)
BOLD2[,65] <- BOLD2[,65] / 1e10
data <- list(sess1=list(BOLD=BOLD1, design=NULL), sess2=list(BOLD=BOLD2, design=NULL))
make_mask(data)
```

make_mesh

```
Make Mesh
```

Description

Make INLA triangular mesh from faces and vertices

Usage

```
make_mesh(vertices, faces, use_INLA = TRUE)
```

Arguments

vertices	A $V \times 3$ matrix, where each row contains the Euclidean coordinates at which a given vertex in the mesh is located. V is the number of vertices in the mesh
faces	An $F \times 3$ matrix, where each row contains the vertex indices for a given triangular face in the mesh. F is the number of faces in the mesh.
use_INLA	(logical) Use the INLA package to make the mesh? Default: TRUE. Otherwise, mesh construction is based on an internal function, galerkin_db.

Value

INLA triangular mesh

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

mask_Param_vertices mask: vertices

Description

mask: vertices

Arguments

mask A length V logical vector indicating if each vertex is within the input mask.

max.threads_Param max.threads

Description

max.threads

Arguments

max.threads The maximum number of threads to use in the inla-program for model estimation. 0 (default) will use the maximum number of threads allowed by the system.

mesh_Param_either mesh: either

Description

mesh: either

Arguments

mesh

An "inla.mesh" object (see make_mesh for surface data)

Description

mesh: INLA only

Arguments

mesh

An "inla.mesh" object (see make_mesh for surface data).

num.threads_Param num.threads

Description

num.threads

Arguments

num.threads The maximum number of threads to use for parallel computations: prewhitening parameter estimation, and the inla-program model estimation. Default: 4. Note that parallel prewhitening requires the parallel package.

```
plot.act_BayesGLM_cifti
```

S3 method: use view_xifti_surface to plot a
"act_BayesGLM_cifti" object

Description

S3 method: use view_xifti_surface to plot a "act_BayesGLM_cifti" object

Usage

S3 method for class 'act_BayesGLM_cifti'
plot(x, idx = NULL, session = NULL, ...)

Arguments

Х	An object of class "act_BayesGLM_cifti"
idx	Which task should be plotted? Give the numeric indices or the names. NULL (default) will show all tasks. This argument overrides the idx argument to view_xifti_surface.
session	Which session should be plotted? NULL (default) will use the first.
	Additional arguments to view_xifti_surface

Value

Result of the call to ciftiTools::view_cifti_surface.

Description

S3 method: use view_xifti_surface to plot a "BayesGLM2_cifti" object

Usage

```
## S3 method for class 'BayesGLM2_cifti'
plot(x, idx = NULL, what = c("contrasts", "activations"), ...)
```

Arguments

х	An object of class "BayesGLM2_cifti"
idx	Which contrast should be plotted? Give the numeric index. NULL (default) will show all contrasts. This argument overrides the idx argument to view_xifti_surface.
what	Estimates of the "contrasts" (default), or their thresholded "activations".
	Additional arguments to view_xifti_surface

Value

Result of the call to ciftiTools::view_cifti_surface.

Description

S3 method: use view_xifti_surface to plot a "BayesGLM_cifti" object

Usage

```
## S3 method for class 'BayesGLM_cifti'
plot(x, idx = NULL, session = NULL, method = NULL, zlim = c(-1, 1), ...)
```

Arguments

х	An object of class "BayesGLM_cifti"
idx	Which task should be plotted? Give the numeric indices or the names. NULL (default) will show all tasks. This argument overrides the idx argument to view_xifti_surface.
session	Which session should be plotted? NULL (default) will use the first.
method	"Bayes" or "classical". NULL (default) will use the Bayesian results if available, and the classical results if not.
zlim	Overrides the zlim argument for view_xifti_surface. Default: c(-1, 1).
	Additional arguments to view_xifti_surface

Value

Result of the call to ciftiTools::view_cifti_surface.

plot.prev_BayesGLM_cifti

S3 method: use view_xifti to plot a "prev_BayesGLM_cifti" object

Description

S3 method: use view_xifti to plot a "prev_BayesGLM_cifti" object

Usage

```
## S3 method for class 'prev_BayesGLM_cifti'
plot(
    x,
    idx = NULL,
    session = NULL,
    drop_zeros = NULL,
    colors = "plasma",
    zlim = c(round(1/x$n_results - 0.005, 2), 1),
    ...
)
```

х	An object of class "prev_BayesGLM_cifti"
idx	Which task should be plotted? Give the numeric indices or the names. NULL (default) will show all tasks. This argument overrides the idx argument to view_xifti.
session	Which session should be plotted? NULL (default) will use the first.

drop_zeros	Color locations without any activation across all results (zero prevalence) the same color as the medial wall? Default: NULL to drop the zeros if only one idx is being plotted.
colors, zlim	See view_xifti. Here, the defaults are overrided to use the Viridis "plasma" color scale between $1/nA$ and 1, where nA is the number of results in x.
	Additional arguments to view_xifti

Value

Result of the call to ciftiTools::view_cifti_surface.

pw_estimate Estimate residual autocorrelation for prewhitening

Description

Estimate residual autocorrelation for prewhitening

Usage

```
pw_estimate(resids, ar_order, aic = FALSE)
```

Arguments

resids	Estimated residuals
ar_order, aic	Order of the AR model used to prewhiten the data at each location. If !aic (default), the order will be exactly ar_order. If aic, the order will be between zero and ar_order, as determined by the AIC.

Value

Estimated AR coefficients and residual variance at every vertex

pw_smooth	Smooth AR coefficients and white noise variance
-----------	---

Description

Smooth AR coefficients and white noise variance

Usage

```
pw_smooth(vertices, faces, mask = NULL, AR, var, FWHM = 5)
```

Arguments

vertices	A $V \times 3$ matrix, where each row contains the Euclidean coordinates at which a given vertex in the mesh is located. V is the number of vertices in the mesh
faces	An $F \times 3$ matrix, where each row contains the vertex indices for a given triangular face in the mesh. F is the number of faces in the mesh.
mask	A logical vector indicating, for each vertex, whether to include it in smoothing. NULL (default) will use a vector of all TRUE, meaning that no vertex is masked out; all are used for smoothing.
AR	A Vxp matrix of estimated AR coefficients, where V is the number of vertices and p is the AR model order
var	A vector length V containing the white noise variance estimates from the AR model
FWHM	FWHM parameter for smoothing. Remember that $\sigma = \frac{FWHM}{2*sqrt(2*log(2))}$. Set to 0 or NULL to not do any smoothing. Default: 5.#'

Value

Smoothed AR coefficients and residual variance at every vertex

return_INLA_Param return_INLA

Description

return_INLA

Arguments

return_INLA Return the INLA model object? (It can be large.) Use "trimmed" (default) to return only the more relevant results, which is enough for both id_activations and BayesGLM2, "minimal" to return just enough for BayesGLM2 but not id_activations, or "full" to return the full output of inla.

scale_BOLD_Param scale_BOLD

Description

scale_BOLD

Arguments

scale_BOLD	Option for scaling the BOLD response.
	"auto" (default) will use "mean" scaling except if demeaned data is detected (if
	any mean is less than one), in which case "sd" scaling will be used instead.
	"mean" scaling will scale the data to percent local signal change.
	"sd" scaling will scale the data by local standard deviation.
	"none" will only center the data, not scale it.

scale_design_Param scale_design

Description

scale_design

Arguments

scale_design Scale the design matrix by dividing each column by its maximum and then subtracting the mean? Default: TRUE. If FALSE, the design matrix is centered but not scaled.

seed_Param

Description

seed

Arguments

seed Random seed (optional). Default: NULL.

seed

session_names_Param session_names

Description

session_names

Arguments

session_names (Optional, and only relevant for multi-session modeling) Names of each session. Default: NULL. In BayesGLM this argument will overwrite the names of the list entries in data, if both exist. summary.act_BayesGLM Summarize a "act_BayesGLM" object

Description

Summary method for class "act_BayesGLM"

Usage

```
## S3 method for class 'act_BayesGLM'
summary(object, ...)
## S3 method for class 'summary.act_BayesGLM'
print(x, ...)
## S3 method for class 'act_BayesGLM'
print(x, ...)
```

Arguments

object	Object of class "act_BayesGLM".
	further arguments passed to or from other methods.
x	Object of class "summary.act_BayesGLM".

Value

A "summary.act_BayesGLM" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.act_BayesGLM_cifti

Summarize a "act_BayesGLM_cifti" object

Description

Summary method for class "act_BayesGLM_cifti"

Usage

```
## S3 method for class 'act_BayesGLM_cifti'
summary(object, ...)
## S3 method for class 'summary.act_BayesGLM_cifti'
print(x, ...)
## S3 method for class 'act_BayesGLM_cifti'
print(x, ...)
```

Arguments

object	Object of class "act_BayesGLM_cifti".
	further arguments passed to or from other methods.
x	$Object \ of \ class \ "{\tt summary.act_BayesGLM_cifti"}.$

Value

A "summary.act_BayesGLM_cifti" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.BayesGLM Summarize a "BayesGLM" object

Description

Summary method for class "BayesGLM"

Usage

```
## S3 method for class 'BayesGLM'
summary(object, ...)
```

```
## S3 method for class 'summary.BayesGLM'
print(x, ...)
```

S3 method for class 'BayesGLM'
print(x, ...)

Arguments

object	Object of class "BayesGLM".
	further arguments passed to or from other methods.
x	Object of class "summary.BayesGLM".

32

summary.BayesGLM2

Value

A "summary.BayesGLM" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.BayesGLM2 Summarize a "BayesGLM2" object

Description

Summary method for class "BayesGLM2"

Usage

```
## S3 method for class 'BayesGLM2'
summary(object, ...)
## S3 method for class 'summary.BayesGLM2'
print(x, ...)
## S3 method for class 'BayesGLM2'
print(x, ...)
```

Arguments

object	Object of class "BayesGLM2".
	further arguments passed to or from other methods.
x	Object of class "summary.BayesGLM2".

Value

A "summary.BayesGLM2" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

```
summary.BayesGLM2_cifti
```

Summarize a "BayesGLM2_cifti" object

Description

Summary method for class "BayesGLM2_cifti"

Usage

```
## S3 method for class 'BayesGLM2_cifti'
summary(object, ...)
## S3 method for class 'summary.BayesGLM2_cifti'
print(x, ...)
## S3 method for class 'BayesGLM2_cifti'
print(x, ...)
```

Arguments

object	Object of class "BayesGLM2_cifti".
	further arguments passed to or from other methods.
x	Object of class "summary.BayesGLM2_cifti".

Value

A "summary.BayesGLM2_cifti" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

 ${\tt summary.BayesGLM_cifti}$

Summarize a "BayesGLM_cifti" object

Description

Summary method for class "BayesGLM_cifti"

Usage

```
## S3 method for class 'BayesGLM_cifti'
summary(object, ...)
## S3 method for class 'summary.BayesGLM_cifti'
print(x, ...)
## S3 method for class 'BayesGLM_cifti'
print(x, ...)
```

Arguments

object	Object of class "BayesGLM_cifti".
	further arguments passed to or from other methods.
x	Object of class "summary.BayesGLM_cifti".

Value

A "summary.BayesGLM_cifti" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.prev_BayesGLM Summarize a "prev_BayesGLM" object

Description

Summary method for class "prev_BayesGLM"

Usage

```
## S3 method for class 'prev_BayesGLM'
summary(object, ...)
```

S3 method for class 'summary.prev_BayesGLM'
print(x, ...)

S3 method for class 'prev_BayesGLM'
print(x, ...)

object	Object of class "prev_BayesGLM".
	further arguments passed to or from other methods.
х	Object of class "summary.prev_BayesGLM".

36

A "summary.prev_BayesGLM" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

```
summary.prev_BayesGLM_cifti
```

Summarize a "prev_BayesGLM_cifti" object

Description

Summary method for class "prev_BayesGLM_cifti"

Usage

```
## S3 method for class 'prev_BayesGLM_cifti'
summary(object, ...)
```

```
## S3 method for class 'summary.prev_BayesGLM_cifti'
print(x, ...)
```

```
## S3 method for class 'prev_BayesGLM_cifti'
print(x, ...)
```

Arguments

object	Object of class "prev_BayesGLM_cifti".
	further arguments passed to or from other methods.
x	Object of class "summary.prev_BayesGLM_cifti".

Value

A "summary.prev_BayesGLM_cifti" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

task_names_Param task_names

Description

task_names

Arguments

task_names (Optional) Names of tasks represented in design matrix.

trim_INLA_Param	trim_INLA
Description	
trim_INLA	
Arguments	
trim_INLA	(logical) should the INLA_model_obj within the result be trimmed to only what is necessary to use id_activations? Default: TRUE.
verbose_Param	verbose
Description	
verbose	
Arguments	
verbose	Should updates be printed? Use 1 (default) for occasional updates, 2 for occasional updates as well as running INLA in verbose mode (if applicable), or 0 for no updates.
vertex_areas	Surface area of each vertex
Description	
Compute surface	areas of each vertex in a triangular mesh.
Usage	
vertex_areas(m	esh)

Arguments

mesh

An "inla.mesh" object (see make_mesh for surface data).

Value

Vector of areas

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

vertices_Param	vertices

Description

vertices

vertices	A $V \times 3$ matrix, where each row contains the Euclidean coordinates at which a
	given vertex in the mesh is located. V is the number of vertices in the mesh

Index

.findTheta, 3 .getSqrtInvCpp, 4 .initialKP,4 .logDetQt, 5 act_prevalance, 5 aic_Param, 6 ar_order_Param, 6 ar_smooth_Param, 6 Bayes_Param, 16 BayesGLM, 7, 8, 14, 30 BayesGLM2, 8, 10, 15, 29 BayesGLM_cifti, 12 BayesGLM_group (BayesGLM2), 10 cderiv, *13*, 16 combine_sessions_Param, 17 contrasts_Param, 17 EM_Param, 18 emTol_Param, 17 faces_Param, 18 HRF, 18 id_activations, 5, 8, 15, 19, 29 INLA_Description, 20 is.BfMRI.sess, 20 make_HRFs, 20, 21 make_mask, 22 make_mesh, 8, 23, 24, 37 mask_Param_vertices, 24 max.threads_Param, 24 mesh_Param_either, 24 mesh_Param_inla, 24 num.threads_Param, 25 plot.act_BayesGLM_cifti, 25

plot.BayesGLM2_cifti, 26 plot.BayesGLM_cifti, 26 plot.prev_BayesGLM_cifti, 27 print.act_BayesGLM (summary.act_BayesGLM), 31 print.act_BayesGLM_cifti (summary.act_BayesGLM_cifti), 31 print.BayesGLM (summary.BayesGLM), 32 print.BayesGLM2 (summary.BayesGLM2), 33 print.BayesGLM2_cifti (summary.BayesGLM2_cifti), 34 print.BayesGLM_cifti (summary.BayesGLM_cifti), 34 print.prev_BayesGLM (summary.prev_BayesGLM), 35 print.prev_BayesGLM_cifti (summary.prev_BayesGLM_cifti), 36 print.summary.act_BayesGLM (summary.act_BayesGLM), 31 print.summary.act_BayesGLM_cifti (summary.act_BayesGLM_cifti), 31 print.summary.BayesGLM (summary.BayesGLM), 32 print.summary.BayesGLM2 (summary.BayesGLM2), 33 print.summary.BayesGLM2_cifti (summary.BayesGLM2_cifti), 34 print.summary.BayesGLM_cifti (summary.BayesGLM_cifti), 34 print.summary.prev_BayesGLM (summary.prev_BayesGLM), 35 print.summary.prev_BayesGLM_cifti (summary.prev_BayesGLM_cifti), 36 pw_estimate, 28 pw_smooth, 28

INDEX

```
return_INLA_Param, 29
```

saveRDS, 10
scale_BOLD_Param, 29
scale_design_Param, 30
seed_Param, 30
summary.act_BayesGLM, 31
summary.act_BayesGLM_cifti, 31
summary.BayesGLM2, 33
summary.BayesGLM2_cifti, 34
summary.PayesGLM_cifti, 34
summary.prev_BayesGLM_cifti, 36
task_names_Param, 36

trim_INLA_Param, 37

verbose_Param, 37
vertex_areas, 37
vertices_Param, 38
view_xifti, 27, 28
view_xifti_surface, 25–27