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dfba_bayes_vs_t_power Simulated Distribution-Free Bayesian Power and t Power

Description

The function is a design tool for comparing Bayesian distribution-free power versus frequentist t
power for a range of sample sizes. Allows for the stipulation of one of nine probability models for
data generation.

Usage

dfba_bayes_vs_t_power(
n_min = 20,
delta,
model,
design,
effect_crit = 0.95,
shape1 = 1,
shape2 = 1,
samples = 1000,
a0 = 1,
b0 = 1,
block_max = 0,
hide_progress = FALSE

)
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Arguments

n_min Smallest desired value of sample size for power calculations (minimun 20; de-
fault is also 20)

delta Offset amount between the two variates

model Theoretical probability model for the data. One of "normal", "weibull", "cauchy",
"lognormal", "chisquare", "logistic", "exponential", "gumbel", or "pareto".

design Indicates the data structure. One of "independent" or "paired".

effect_crit Stipulated value for a significant differences for a t-test (1 - p), and the critical
probability for the Bayesian alternative hypothesis for a Bayesian distribution-
free analysis

shape1 The shape parameter for the condition 1 variate for the distribution indicated by
the model input (default is 1)

shape2 The shape parameter for the condition 2 variate for the distribution indicated by
the model input (default is 1)

samples Desired number of Monte Carlo data sets drawn to estimate the power (default
is 1000)

a0 The first shape parameter for the prior beta distribution (default is 1). Must be
positive and finite.

b0 The second shape parameter for the prior beta distribution (default is 1). Must
be positive and finite.

block_max The maximum size for a block effect (default is 0)

hide_progress (Optional) If TRUE, hide percent progress while Monte Carlo sampling is run-
ning. (default is FALSE).

Details

Researchers need to make experimental-design decisions such as the choice about the sample size
per condition and the decision of whether to use a within-block design or an independent-groups
design. These planning issues arise regardless if one uses either a frequentist or a Bayesian ap-
proach to statistical inference. In the DFBA package, there are a number of functions to help users
with these decisions. The dfba_bayes_vs_t_power() function produces (a) the Bayesian power
estimate from a distribution-free analysis and (b) the corresponding frequentist power from a para-
metric t-test for a set of 11 sample sizes ranging from n_min to n_min + 50 in steps of 5. These
estimates are based on a number of different Monte- Carlo-sampled data sets generated by the
dfba_sim_data() function.

For each data set, statistical tests are performed. If design = "paired", the frequentist t-test is a
one-tailed test on the within-block difference scores to assess the null hypothesis that the population
mean for E is greater than the population mean for C; if design = "independent", the frequentist
t-test is the one-tailed test to assess if there is a significant difference between the two independent
conditions (i.e. if the mean for condition 2 is significantly greater than the condition 1 mean). If
design = "paired", the Bayesian analysis assesses if the posterior probability for phi_w > .5 from
the Bayesian Wilcoxon test is greater than effect_crit; if design = "independent", the Bayesian
analysis assesses if the posterior probability for omega_E > .5 on a Bayesian Mann-Whitney test is
greater than effect_crit. The frequentist power is estimated by the proportion of the data sets
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where a parametric t-test detects a significant effect because the upper-tail t value has a p-value
less than 1-effect_crit. The Bayesian power is the proportion of the data sets where a posterior
probability for the alternative hypothesis is greater than effect_crit. The default value for the
effect_crit argument is effect_crit = .95. The frequentist p-value and the Bayesian posterior
probability for the alternative hypothesis are calculated using the dfba_sim_data() function.

The arguments for the dfba_sim_data() function are passed from the dfba_bayes_vs_t_power()
function. Besides the sample size n, there are eight other arguments that are required by the
dfba_sim_data() function, which are passed from the dfba_bayes_vs_t_power() function:

• a0

• b0

• model

• design

• delta

• shape1

• shape2

• block_max.

The a0 and b0 values are the respective first and second beta shape parameters for the prior distri-
bution needed for the Bayesian distribution-free tests, which are ultimately done by calling either
the dfba_wilcoxon() function or by the dfba_mann_whitney() function.

The model argument is one of the following strings:

• "normal"

• "weibull"

• "cauchy"

• "lognormal"

• "chisquare"

• "logistic"

• "exponential"

• "gumbel"

• "pareto"

The design argument is either "independent" or "paired", and stipulates whether the two sets
of scores are either independent or from a common block such as for the case of two scores for the
same person (i.e., one in each condition).

The shape1 and shape2 arguments are values for the shape parameter for the respective first and
second condition, and their meaning depends on the probability model. For model="normal",
these parameters are the standard deviations of the two distributions. For model = "weibull",
the parameters are the Weibull shape parameters. For model = "cauchy", the parameters are the
scale factors for the Cauchy distributions. For model = "lognormal", the shape parameters are
the standard deviations for log(X). For model = "chisquare", the parameters are the degrees of
freedom (df ) for the two distributions. For model = "logistic", the parameters are the scale factors



dfba_bayes_vs_t_power 5

for the distributions. For model = "exponential", the parameters are the rate parameters for the
distributions.

For the Gumbel distribution, the E variate is equal to delta - shape2*log(log(1/U)) where U is
a random value sampled from the uniform distribution on the interval [.00001, .99999], and the
C variate is equal to -shape1*log(log(1/U)) where U is another score sampled from the uniform
distribution. The shape1 and shape2 arguments for model = "gumbel" are the scale parameters for
the distributions. The Pareto model is a distribution designed to account for income distributions
as studied by economists (Pareto, 1897). For the Pareto distribution, the cumulative function is
equal to 1-(x_m/x)^alpha where x is greater than x_m (Arnold, 1983). In the E condition, x_m =
1 + delta and in the C condition x_m = 1. The alpha parameter is 1.16 times the shape parameters
shape1 and shape2. Since the default value for each shape parameter is 1, the resulting alpha value
of 1.16 is the default value. When alpha = 1.16, the Pareto distribution approximates an income
distribution that represents the 80-20 law where 20% of the population receives 80% of the income
(Hardy, 2010).

The block_max argument provides for incorporating block effects in the random sampling. The
block effect for each score is a separate effect for the block. The block effect B for a score is a
random number drawn from a uniform distribution on the interval [0, block_max]. When design
= "paired", the same random block effect is added to the score in the first condition, which is the
random C value, and it is also added to the corresponding paired value for the E variate. Thus,
the pairing research design eliminates the effect of block variation for the assessment of condition
differences. When design = "independent", there are different block-effect contributions to the
E and C variates, which reduces the discrimination of condition differences because it increases
the variability of the difference in the two variates. The user can study the effect of the relative
discriminability of detecting an effect of delta by adjusting the value of the block_max argument.
The default for block_max is 0, but it can be altered to any non-negative real number.

Value

A list containing the following components:

nsims The number of Monte Carlo data sets; equal to the value of the samples argu-
ment

model Probability model for the data

design The design for the data; one of "independent" or "paired"

effect_crit The criterion probability for considering a posterior probability for the hypoth-
esis that delta > 0 to be a detection; it is also 1 - p_crit for a frequentist t-test

deltav The offset between the variates; equal to the delta argument

a0 The first shape parameter for the beta prior distribution

b0 The second shape parameter for the beta prior distribution

block_max The maximum size of a block effect; equal to block_max argument

outputdf A dataframe of possible sample sizes and the corresponding Bayesian and fre-
quentist power values
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See Also

Distributions for details on the parameters of the normal, Weibull, Cauchy, lognormal, chi-
squared, logistic, and exponential distributions.

dfba_wilcoxon

dfba_mann_whitney

dfba_sim_data for further details about the data for two conditions that differ in terms of their
theoretical mean by an amount delta.

Examples

# Note: these examples have long runtimes due to Monte Carlo sampling;
# please feel free to run them in the console.

# Examples for two data sets sampled from standard normal distributions with
# no blocking effect

dfba_bayes_vs_t_power(n_min = 40,
delta = .45,
model = "normal",
design = "paired",
samples = 250,
hide_progress = TRUE)

dfba_bayes_vs_t_power(n_min = 50,
delta = .45,
model = "weibull",
design = "independent",
samples = 250,
hide_progress = TRUE)

dfba_bayes_vs_t_power(n_min = 50,
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delta = .45,
model = "weibull",
design = "paired",
shape1 = .8,
shape2 = .8,
samples = 250,
block_max = 2.3,
hide_progress = TRUE)

dfba_beta_bayes_factor

Bayes Factor for Posterior Beta Distribution

Description

Given a beta posterior distribution and given a prior for the variate, computes the Bayes factor for
either point or interval null hypotheses.

Usage

dfba_beta_bayes_factor(a_post, b_post, method, H0, a0 = 1, b0 = 1)

Arguments

a_post The first shape parameter for the posterior beta distribution. Must be positive
and finite.

b_post The second shape parameter for the posterior beta distribution. Must be positive
and finite.

method One of "interval" if the null hypothesis is a range on the [0,1] interval or
"point" if the null hypothesis is a single number in the [0,1] interval

H0 If method="interval", then the H0 input is vector of two values, which are lower
and upper limits for the null hypothesis; if method="point", then the H0 input is
single number, which is the null hypothesis value

a0 The first shape parameter for the prior beta distribution (default is 1). Must be
positive and finite.

b0 The second shape parameter for the prior beta distribution(default is 1). Must
be positive and finite.

Details

For a binomial variate with n1 successes and n2 failures, the Bayesian analysis for the population
success rate parameter φ is distributed as a beta density function with shape parameters a_post
and b_post for a_post = n1 + a0 and b_post = n2 + b0 where a0 and b0 are the shape parameters
for the prior beta distribution. It is common for users to be interested in testing hypotheses about
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the population φ parameter. The Bayes factor is useful to assess if either the null or the alternative
hypothesis are credible.
There are two types of null hypotheses – an interval null hypothesis and a point null hypothesis.
For example, an interval null hypothesis might be φ ≤ .5 with the alternative hypothesis being
φ > .5, whereas a point null hypothesis might be φ = .5 with the alternative being φ 6= .5. It is
conventional to call the null hypothesisH0 and to call the alternative hypothesisH1. For frequentist
null hypothesis testing, H0 is assumed to be true, to see if this assumption is likely or not. With
the frequentist approach the null hypothesis cannot be proved since it was assumed in the first
place. With frequentist statistics, H0 is thus either retained as assumed or it is rejected. Unlike
the frequentist approach, Bayesian hypothesis testing does not assume either H0 or H1; it instead
assumes a prior distribution for the population parameter φ, and based on this assumption arrives at
a posterior distribution for the parameter given the data of n1 and n2 for the binomial outcomes.
There are two related Bayes factors - BF10 and BF01 where BF01 = 1/BF10. When BF10 > 1, there
is more support for the alternative hypothesis, whereas when BF01 > 1, there is more support for
the null hypothesis. Thus, in Bayesian hypothesis testing it is possible to build support for either
H_0 or H_1. In essence, the Bayes factor is a measure of the relative strength of evidence. There
is no standard guideline for recommending a decision about the prevailing hypothesis, but several
statisticians have suggested criteria. Jeffreys (1961) suggested that BF > 10 was strong and BF > 100
was decisive; Kass and Raffrey (1995) suggested that BF > 20 was strong and BF > 150 was decisive.
Chechile (2020) argued from a decision-theory framework for a third option for the user to decide
not to decide if the prevailing Bayes factor is not sufficiently large. From this decision-making
perspective, Chechile (2020) suggested that BF > 19 was a good bet - too good to disregard, BF >
99 was a strong bet - irresponsible to avoid, and BF > 20,001 was virtually certain. Chechile also
pointed out that despite the Bayes factor value there is often some probability, however small, for
either hypothesis. Ultimately, each academic discipline has to set the standard for their field for the
strength of evidence. Yet even when the Bayes factor is below the user’s threshold for making claims
about the hypotheses, the value of the Bayes factor from one study can be nonetheless valuable to
other researchers and might be combined via a product rule in a meta-analysis. Thus, the value of
the Bayes factor has a descriptive utility.
The Bayes factor BF10 for an interval null is the ratio of the posterior odds of H1 to H0 divided by
the prior odds of H1 to H0. Also, the converse Bayes factor BF01 is the ratio of posterior odds of
H0 to H1 divided by the prior odds of H0 to H1; hence BF01 = 1/BF10. If there is no change in the
odds ratio as a function of new data being collected, then BF10 = BF01 = 1. But, if evidence is more
likely for one of the hypotheses, then either BF10 or BF01 will be greater than 1.
The population parameter φ is distributed on the continuous interval [0, 1]. The prior and posterior
beta distribution are probability density displays. Importantly, this means that no point has a nonzero
probability density, even as the probability mass for any mathematical point is zero. For this reason,
all point null hypotheses have a probability measure of zero, but can have a probability density that
can be different for prior and posterior distributions. There still is a meaningful Bayes factor for a
point hypothesis. As described in Chechile (2020),

BF10 = [p(H1|D)/p(H1)][p(H0)/p(H0|D)]

where D denotes the data. The first term in this equation is 1/1 = 1. But the second term is of
the form 0/0, which appears to undefined. However, by using L’Hospital’s rule, it can be proved
that the term p(H0)/p(H0|D) is the ratio of prior probability density at the null point divided by
the posterior probability density. This method for finding the Bayes factor for a point is called
the Savage-Dickey method because of the separate contributions from both of those statisticians
(Dickey & Lientz, 1970).
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Value

A list containing the following components:

method The string of either "interval" or "point" corresponding to the type of null
hypothesis tested

a_post The value for the posterior beta first shape parameter

b_post The value for the posterior beta second shape parameter

a0 The first shape parameter for the prior beta distribution

b0 The second shape parameter for the prior beta distribution

BF10 The Bayes factor for the alternative over the null hypothesis

BF01 The Bayes factor for the null over the alternative hypothesis
null_hypothesis

The value for the null hypothesis when method = "point"

H0lower The lower limit of the null hypothesis when method = "interval"

H0upper The upper limit of the null hypothesis when method = "interval"

dpriorH0 The prior probability density for the null point when method = "point"

dpostH0 The posterior probability density for the null point when method = "point"

pH0 The prior probability for the null hypothesis when method = "interval"

pH1 The prior probability for the alternative hypothesis when method = "interval"

postH0 The posterior probability for the null hypothesis when method = "interval"

postH1 The posterior probability for the alternative hypothesis when method = "interval"

References

Chechile, R. A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction
Using Distribution-Free Methods. MIT Press.

Dickey, J. M., & Lientz, B. P. (1970). The weighted likelihood ratio, sharp hypotheses about chance,
the order of a Markov chain. The Annals of Mathematical Statistics, 41, 214-226.
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Examples

## Examples with the default uniform prior
dfba_beta_bayes_factor(a_post = 17,

b_post = 5,
method = "interval",
H0 = c(0, .5)
)

dfba_beta_bayes_factor(a_post = 377,
b_post = 123,
method = "point",
H0 = .75)
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# An example with the Jeffreys prior
dfba_beta_bayes_factor(a_post = 377.5,

b_post = 123.5,
method = "point",
H0 = .75,
a0 = .5,
b0 = .5
)

dfba_beta_bayes_factor(a_post = 273,
b_post = 278,
method = "interval",
H0 = c(.4975,

.5025)
)

dfba_beta_contrast Bayesian Contrasts

Description

This function implements a Bayesian analysis of a linear contrast of conditions when there are 2 or
more independent conditions and where the variate for each condition is a binomial.

Usage

dfba_beta_contrast(
n1_vec,
n2_vec,
contrast_vec,
a0_vec = rep(1, length(n1_vec)),
b0_vec = rep(1, length(n1_vec)),
prob_interval = 0.95,
samples = 10000

)

Arguments

n1_vec A vector of length K that consists of the observed number of successes for the
categorical variable in each of the K separate conditions

n2_vec A vector of length K that consists of the observed number of failures for the
categorical variable in each of the K separate conditions

contrast_vec A vector of coefficients of a linear comparison among the conditions where the
sum of all the coefficients must be 0 and the sum of the positive coefficients
must be 1 and the sum of the negative coefficients must be -1
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a0_vec A vector of length K that consists of the prior a0 shape parameters for the sepa-
rate betas (the default values are 1)

b0_vec A vector of length K that consists of the prior b0 shape parameters for the sepa-
rate betas (the default values are 1)

prob_interval Desired probability for equal-tail interval estimate on the contrast (default is
0.95)

samples The desired number of Monte Carlo samples taken from each posterior beta
variate (default is 10000)

Details

Since the Bayesian analysis for each separate condition has a posterior beta distribution with known
shape parameters, the program approximates, via Monte Carlo sampling, a linear contrast among
the set of independent beta distributions because the contrast of beta distributions is not a known
probability model.

Given a binomial categorical variate for each of K independent conditions with K ≥ 2, the stan-
dard frequentist nonparametric analysis is to do a χ2 test with K − 1 degrees of freedom (Siegel &
Castellan, 1988). Hypothesis testing for the frequentist χ2 test assesses the sharp-null hypothesis
that the binomial success rate is exactly equal in all the conditions. But this point-null hypothesis is
not an interesting question about the population success rate from a Bayesian viewpoint because the
probability of any single point hypothesis has a probability measure value of zero (Chechile, 2020).
Although it is possible that the frequentist null hypothesis can be retained for small-n studies, the
hypothesis itself is about the population in the case of unlimited sample size, and surely for this
limiting case it is almost certain that the hypothesis is not exactly true. Thus, from the Bayesian
framework, the point- null hypothesis is not a good use of scientific effort and resources, and it is
more scientifically meaningful to assess a linear comparison of the conditions, such as to assess if
the population success rate in one condition is greater than the success rate in another condition.
An interval hypothesis such as this has a meaningful probability value, as does the complimentary
hypothesis. If φ1 and φ2 are, respectively, the population success rates for the binomials in con-
ditions 1 and 2, then a meaningful comparison might be to assess the probability distribution for
∆ = φ2 − φ1. This example is a simple linear contrast with contrast coefficient weights of -1 and
1, which are the multipliers for the two population success rates. If the posterior interval estimate
for the contrast contains 0, then the hypothesis of ∆ = 0 has some credibility in light of the given
sample size. Thus, by estimating the distribution of ∆, the user learns important information about
condition differences. As another example of a contrast, suppose there are three conditions where
the first condition is a standard control and the other two conditions are different alternative condi-
tions. In this case, a user might want to compare the mean of the control data against the average of
the two experimental- condition means, i.e., the contrast of

∆ = −1φ1 + .5φ2 + .5φ3.

In this second example, the coefficients of the contrast are [−1,+.5,+.5]. As a third example, the
user might also be interested in a comparison where the two experimental conditions are compared,
i.e., the contrast of

∆ = 0φ1 + 1φ2 − 1φ3.

For the dfba_beta_contrast() function, the user is required to stipulate the coefficients of a
contrast such that the sum of all the coefficients is 0, the sum of the positive coefficients is 1, and
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the sum of the negative coefficients is -1. This constraint on the coefficients forces ∆ to be on the
[−1,+1] interval.

There is a standard Bayesian posterior for each condition, which is a beta distribution (see Chechile
(2020) for a detailed discussion of this literature). In short, it is well known that the beta distribu-
tion is a natural Bayesian conjugate function for Bernoulli random processes. Thus, a prior beta
distribution with shape parameters a0 and b0 results (via Bayes’s theorem) in a posterior beta with
shape parameters a and b where a = a0 + n1 and b = b0 + n2, where n1 and n2 are the respec-
tive successes and failures of the categorical variable. While the Bayesian analysis of each beta
distribution for the separate conditions are known, a comparison among 2 or more separate beta
distributions is not distributed as a beta. The posterior mean of a linear contrast of separate beta
variates has a known mean regardless of the correlations among the variates, but the distributional
form of the contrast of independent betas is not known in closed form. The distributional form is
important for ascertaining issues such as determining the probability that the contrast is positive or
specifying a probability interval for the contrast. But, with the dfba_beta_contrast() function,
these important aspects of the Bayesian analysis are approximated via Monte Carlo simulation.

The samples argument stipulates the number of random values to be drawn from each of the K
posterior conditions. The default value for samples is 10000. The default value of 10000 is also
the minimum value that can be selected (increased values of samples provide increased precision).
Posterior interval estimation and the Bayes factor for the contrast are provided on the basis of
the Monte Carlo sampling. If samples is equal to N and if φ1, . . . , φK are the parameters for
the population success rates, then there are N random values drawn from each of φi parameters
for i = 1, . . . ,K. Given the contrast coefficients stipulated in the arguments, there are N delta
random posterior values where ∆j = Ψ1φ1j + . . . + ΨiφKj for j = 1, . . . , N , where Ψi are
the contrast coefficients specified in the contrast_vec argument. The Monte Carlo sampling from
each posterior beta with known shape parameters uses the rbeta() function. Thus, unlike Bayesian
procedures that employ Markov chain Monte Carlo algorithms, the Monte Carlo sampling in the
dfba_beta_contrast() function does not depend on a burn-in process or a starting estimate. Thus,
all the N sampled values are valid random samples. Repeated use of the dfba_beta_contrast()
function for the same input will naturally exhibit some random variation in the interval estimate
and in the Bayes factor for a contrast greater than 0. However, the point estimate for the contrast
does not depend on the Monte Carlo sampling, and it is constant given the vectors for n1_vec and
n2_vec and given the same prior.

Value

A list containing the following components:

mean Exact posterior mean estimate for the contrast
eti_lower The lower equal-tail limit for the contrast for the probability interval value spec-

ified by prob_interval

eti_upper The upper equal-tail limit for the contrast for the probability interval value spec-
ified by prob_interval

prob_positive_delta

Posterior probability that the contrast is positive
prior_positive_delta

Prior probability that the contrast is positive
bayes_factor The Bayes factor for the posterior-to-prior odds for a positive contrast to a non-

positive contrast
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delta_quantiles

Quantile values (probs = seq(0, 1, 0.01)) for the posterior contrast from the
Monte Carlo sampling

a_vec A vector of length K that consists of the posterior a shape parameters for the
separate posterior beta distributions

b_vec A vector of length K that consists of the posterior b shape parameters for the
separate posterior beta distributions

a0_vec A vector of length K that consists of the prior a0 shape parameters for the sepa-
rate prior beta distributions

b0_vec A vector of length K that consists of the prior b0 shape parameters for the sepa-
rate prior beta distributions

contrast_vec A vector for the contrast coefficients for a linear comparison of posterior beta
variates

prob_interval The probability for the equal-tail estimate for the contrast (default is 0.95)

samples The number of Monte Carlo samples from the K separate posterior beta distri-
butions

References

Chechile, R. A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction
Using Distribution-Free Methods. Cambridge: MIT Press.

Siegel, S. & Castellan, N. J. (1988). Nonparametric Statistics for the Behavioral Sciences. New
York: McGraw Hill.

Examples

## Suppose there are four conditions from a factorial design
# where the conditions labels are A1B1, A2B1, A1B2, and A2B2
# where the frequencies for success for the binomial variate are:
n1_vec <- c(22, 15, 13, 21)
# and the frequencies for failures per condition are:
n2_vec <- c(18, 25, 27, 19)
# Let us test the following three orthogonal contrasts
contrast.B1vsB2 <- c(.5, .5, -.5, -.5)
contrast.A1vsA2 <- c(.5, -.5, .5, -.5)
contrast.ABinter <- c(.5, -.5, -.5, .5)

dfba_beta_contrast(n1_vec = n1_vec,
n2_vec = n2_vec,
contrast_vec = contrast.B1vsB2)

dfba_beta_contrast(n1_vec,
n2_vec,
contrast_vec = contrast.A1vsA2)

dfba_beta_contrast(n1_vec,
n2_vec,
contrast_vec = contrast.ABinter)
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# Plot the cumulative distribution for AB interaction
testABinteraction<-dfba_beta_contrast(n1_vec,

n2_vec,
contrast_vec = contrast.ABinter)

plot(testABinteraction)

dfba_beta_descriptive Descriptive Statistics for a Beta Distribution

Description

Given the two shape parameters for a beta distribution, the function provides central tendency statis-
tics, interval limits, and density and cumulative probabilities.

Usage

dfba_beta_descriptive(a, b, prob_interval = 0.95)

Arguments

a The first shape parameter for the beta distribution. Must be positive and finite.
b The second shape parameter for the beta distribution. Must be positive and finite.
prob_interval Desired probability within interval limits (default is .95)

Details

The density function for a beta variate is

f(x) =

{
Kxa−1(1− x)b−1 if 0 ≤ x ≤ 1,

0 otherwise

where

K =
Γ(a+ b)

Γ(a)Γ(b)
.

(Johnson, Kotz, & Balakrishnan, 1995). The two shape parameters a and b must be positive values.

The dfba_beta_descriptive() function provides features to complement the beta distribution
functions available in the stats package. The function provides the mean, median, mode, and vari-
ance for a beta variate in terms of its two shape parameters.

While the mean, variance, and median are straightforward, there are several conditions that result in
an undefined mode. When either (1) a = b = 1, (2) a < 1, or (3) b < 1, the mode is undefined. For
example, when a = b = 1, the function is the uniform distribution, which does not have a modal
value. The other cases above result in the density function diverging at either x = 0 or x = 1. The
function returns a value of NA for the mode for all the cases where a unique mode does not exist.

For interval estimation, the function finds an equal-tail interval limits in all cases, and it also pro-
vides the highest-density limits when there is a well-defined mode. When the mode does not exist,
the function returns NA for the limits for the highest-density interval (HDI). For interval estimation,
the probability between the lower and upper limit is the probability specified in the prob_interval
input. The dfba_beta_descriptive() output object includes a dataframe that has density and
cumulative probability information that can be used for plotting.
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Value

A list containing the following components:

a The first beta shape parameter

b The second beta shape parameter

prob_interval The probability for interval estimates

x_mean The mean of the distribution

x_median The median of the distribution

x_mode The mode for the distribution

x_variance The variance for the distribution

eti_lower The equal-tail lower interval limit

eti_upper The equal-tail upper interval limit

hdi_lower The lower limit for the highest-density interval

hdi_upper The upper limit for the highest-density interval

outputdf A dataframe of x, density, and cumulative probability for x from 0 to 1 in steps
of .005

References

Johnson, N. L., Kotz S., and Balakrishnan, N. (1995). Continuous Univariate Distributions, Vol. 1,
New York: Wiley.

See Also

Distributions for additional details on functions for the beta distribution in the stats package.

Examples

dfba_beta_descriptive(a = 38,
b = 55)

dfba_beta_descriptive(38,
55,
prob_interval=.99)
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dfba_binomial Bayesian Binomial Rate Parameter Inference

Description

Given binomial frequency data, provides a Bayesian analysis for the population binomial rate pa-
rameter.

Usage

dfba_binomial(n1, n2, a0 = 1, b0 = 1, prob_interval = 0.95)

Arguments

n1 Integer number of binomial observations for a category 1 response (e.g., the
number of successes)

n2 Integer number of binomial observations for a category 2 response (e.g., the
number of failures)

a0 The first shape parameter for the prior beta distribution that corresponds to the
population binomial parameter (default is 1). Must be positive and finite.

b0 The second shape parameter for the prior beta distribution for the population
binomial rate parameter (default is 1). Must be positive and finite.

prob_interval Probability within interval estimates for the population binomial rate parameter
(default is .95)

Details

The binomial distribution with size = n and probability = φ has discrete probabilities

p(x) =
n!

z!(n− x!)
φx(1− φ)n−x

where x is an integer from 0 to n in steps of 1. The binomial model assumes a Bernoulli process
of independent trials where there are binary outcomes that have the same probability (say, φ) for
a response in one of the two categories and a probability of 1 − φ for the other category. Before
any data are collected, there are n+ 1 possible values for x number of outcomes in category 1 and
n − x number of outcomes in category 2. The binomial distribution is a likelihood distribution. A
likelihood is the probability of an outcome given a specific value for the population rate parameter.
Yet for real applications, the population parameter is not known. All that is known are the outcomes
observed from a set of binomial trials. The binomial inference problem is to estimate the population
φ parameter based on the sample data.

The frequentist approach to statistics is based on the relative frequency method of assigning prob-
ability values (Ellis, 1842). From this framework, there are no probabilities for anything that does
not have a relative frequency (von Mises, 1957). In frequency theory, the φ parameter does not have
a relative frequency, so it cannot have a probability distribution. From a frequentist framework, a
value for the binomial rate parameter is assumed, and there is a discrete distribution for the n + 1
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outcomes for x from 0 to n. The discrete likelihood distribution has relative frequency over repeated
experiments. Thus, for the frequentist approach, x is a random variable, and φ is an unknown fixed
constant. Frequency theory thus delibrately eschews the idea of the binomial rate parameter having
a probability distribution. Laplace (1774) had previously employed a Bayesian approach of treating
the φ parameter as a random variable. Yet Ellis and other researchers within the frequentist tradi-
tion delibrately rejected the Bayes/Laplace approach. For tests of a null hypothesis of an assumed
φ value, the frequentist approach either continues to assume the null hypothesis or it rejects the null
hypothesis depending on the likelihood of the observed data plus the likelihood of more extreme
unobserved outcomes. The confidence interval is the range of φ values where the null hypothesis of
specific φ values would be retained given the observed data (Clopper & Pearson, 1934). However,
the frequentist confidence interval is not a probability interval since population parameters cannot
have a probability distribution with frequentist methods. Frequentist statisticians were well aware
(e.g., Pearson, 1920) that if the φ parameter had a distribution, then the Bayes/Laplace approach
would be correct.

Bayesian statistics rejects the frequentist theoretical decisions as to what are the fixed constants
and what is the random variable that can take on a range of values. From a Bayesian framework,
probability is anything that satisfies the Kolmogorov (1933) axioms, so probabilities need not be
limited to processes that have a relative frequency. Importantly, probability can be a measure of in-
formation or knowledge provided that the probability representation meets the Kolmogorov axioms
(De Finetti, 1974). Given binomial data, the population binomial rate parameter φ is unknown, so
it is represented with a probability distribution for its possible values. This assumed distribution
is the prior distribution. Furthermore, the quantity x for the likelihood distribution above is not a
random variable once the experiment has been conducted. If there are n1 outcomes for category 1
and n2 = n − n1 outcomes in category 2, then these are fixed values. While frequentist methods
compute both the likelihood of the observed outcome and the likelihood for unobserved outcomes
that are more extreme, in Bayesian inference it is only the likelihood of the observed outcome that
is computed. From the Bayesian perspective, the inclusion of unobserved outcomes in the anal-
ysis violates the likelihood principle (Berger & Wolpert, 1988). A number of investigators have
found paradoxes with frequentist procedures when the likelihood principle is not used (e.g., Lind-
ley & Phillips, 1976; Chechile, 2020). The Bayesian practice of strictly computing only the likeli-
hood of the observed data produces the result that the likelihood for the binomial is proportional to
φn1(1 − φ)n2 . In Bayesian statistics, the proportionality constant is not needed because it appears
in both the numerator and the denominator of Bayes theorem and thus cancels. See Chechile (2020)
for more extensive comparisons between frequentist and Bayesian approaches with a particular
focus on the binomial model.

Given a beta distribution prior for the binomial φ parameter, it has been shown that the resulting
posterior distribution from Bayes theorem is another member of the beta family of distributions
(Lindley & Phillips, 1976). This property of the prior and posterior being in the same distributional
family is called conjugacy. The beta distribution is a natural Bayesian conjugate function for all
Bernoulli processes where the likelihood is proportional to φn1(1 − φ)n2 (Chechile, 2020). The
density function for a beta variate is

f(x) =

{
Kxa−1(1− x)b−1 if 0 ≤ x ≤ 1,

0 otherwise

where

K =
Γ(a+ b)

Γ(a)Γ(b)
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(Johnson, Kotz, & Balakrishnan, 1995). The two shape parameters a and b must be positive values.
If the beta prior shape parameters are a0 and b0, then the posterior beta shape parameters are apost =
a0 + n1 and bpost = b0 + n2. The default prior for the dfba_binomial() function is a0 = b0 = 1,
which corresponds to the uniform prior.

Thus, the Bayesian inference for the unknown binomial rate parameter phi is the posterior beta
distribution with shape parameters of a_post and b_post. The dfba_binomial() function calls
the dfba_beta_descriptive() function to find the centrality point estimates (i.e., the mean, me-
dian, and mode) and to find two interval estimates that contain the probability specified in the
prob_interval argument. One interval has equal-tail probabilities and the other interval is the
highest-density interval. Users can use the dfba_beta_bayes_factor() function to test hypothe-
ses about the φ parameter.

Value

A list containing the following components:

n1 Observed number of category 1 responses

n2 Observed number of category 2 responses

a0 First shape parameter for the prior beta distribution of the binomial rate param-
eter

b0 Second shape parameter for the prior beta distribution of the binomial rate pa-
rameter

prob_interval Probability within interval estimates for the population binomial rate parameter

a_post First shape parameter for the posterior beta distribution for the binomial rate
parameter

b_post Second shape parameter for the posterior beta distribution for the binomial rate
parameter

phimean Mean of the posterior beta distribution for the binomial rate parameter

phimedian Median of the posterior beta distribution for the binomial rate parameter

phimode Mode of the posterior beta distribution for the binomial rate parameter

eti_lower Lower limit for the posterior equal-tail interval that has the probability stipulated
in the prob_interval argument

eti_upper Upper limit for the posterior equal-tail interval that has the probability stipulated
in the prob_interval argument

hdi_lower Lower limit for the posterior highest-density interval that has the probability
stipulated in the prob_interval argument

hdi_upper Upper limit for the posterior highest-density interval that has the probability
stipulated in the prob_interval argument

References

Berger, J. O., & Wolpert, R. L. (1988). The Likelihood Principle (2nd ed.) Hayward, CA: Institute
of Mathematical Statistics.

Chechile, R. A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction
Using Distribution-Free Statistics. Cambridge: MIT Press.
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Clopper, C. J., & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the
case of the binomial. Biometrika, 26, 404-413.

De Finetti, B. (1974). Bayesianism: Its unifying role for both the foundations and applications of
statistics. International Statistical Review/ Revue Internationale de Statistique, 117-130.

Ellis, R. L. (1842). On the foundations of the theory of probability. Transactions of the Cambridge
Philosophical Society, 8, 1-6.

Johnson, N. L., Kotz S., and Balakrishnan, N. (1995). Continuous Univariate Distributions, Vol. 1,
New York: Wiley.

Kolmogorov, A. N. (1933/1959). Grundbegriffe der Wahrcheinlichkeitsrechnung. Berlin: Springer.
English translation in 1959 as Foundations of the Theory of Probability. New York: Chelsea.

Laplace, P. S. (1774). Memoire sr la probabilite des causes par les evenements. Oeuvres complete,
8,5-24.

Lindley, D. V., & Phillips, L. D. (1976). Inference for a Bernoulli process (a Bayesian view). The
American Statistician, 30, 112-119.

Pearson, K. (1920). The fundamental problem of practical statistics. Biometrika, 13(1), 1-16.

von Mises, R. (1957). Probability, Statistics, and Truth. New York: Dover.

See Also

Distributions for details on the functions included in the stats regarding the beta and the binomial
distributions.

dfba_beta_bayes_factor for further documentation about the Bayes factor and its interpretation.

dfba_beta_descriptive for advanced Bayesian descriptive methods for beta distributions

Examples

# Example using defaults of a uniform prior and 95% interval estimates
dfba_binomial(n1 = 16,

n2 = 2)

# Example with the Jeffreys prior and 99% interval estimates
dfba_binomial(n1 = 16,

n2 = 2,
a0 = .5,
b0 = .5,
prob_interval = .99)

dfba_bivariate_concordance

Bayesian Distribution-Free Correlation and Concordance



20 dfba_bivariate_concordance

Description

Given bivariate data, computes the sample number of concordant changes nc between the two vari-
ates and the number of discordant changes nd. Provides the frequentist tau_A correlation coefficient
(nc-nd)/(nc+nd), and provides a Bayesian analysis of the population concordance parameter phi:
the limit of the proportion of concordance changes between the variates. For goodness-of-fit appli-
cations, provides a concordance measure that corrects for the number of fitting parameters.

Usage

dfba_bivariate_concordance(
x,
y,
a0 = 1,
b0 = 1,
prob_interval = 0.95,
fitting.parameters = NULL

)

Arguments

x Vector of x variable values

y Vector of y variable values

a0 First shape parameter for the prior beta distribution (default is 1)

b0 Second shape parameter for the prior beta distribution (default is 1)

prob_interval Desired width for interval estimates (default is .95)
fitting.parameters

(Optional) If either x or y values are generated by a predictive model, the number
of free parameters in the model (default is NULL)

Details

The product-moment correlation depends on Gaussian assumptions about the residuals in a re-
gression analysis. It is not robust because it is strongly influenced by any extreme outlier scores
for either of the two variates. A rank-based analysis can avoid both of these limitations. The
dfba_bivariate_concordance() function is focused on a nonparametric concordance metric for
characterizing the association between the two bivariate measures.

To illustrate the nonparametric concepts of concordance and discordance, consider a specific exam-
ple where there are five paired scores with

x = 3.8, 4.7, 4.7, 4.7, 11.8

and
y = [5.9,−4.1, 7.3, 7.3, 38.9].

The ranks for the x variate are 1, 3, 3, 3, 5 and the corresponding ranks for y are 2, 1, 3.5, 3.5, 5, so
the five points in terms of their ranks are P1 = (1, 2), P2 = (3, 1), P3 = (3, 3.5), P4 = (3, 3.5) and
P5 = (5, 5). The relationship between any two of these points Pi and Pj, is either (1) concordant
if the sign of Rxi − Rxj is the same as the sign of Ryi − Ryj , (2) discordant if signs are different
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between Rxi − Rxj and Ryi − Ryj , or (3) null if either Rxi = Rxj or if Ryi = Ryj . For the
above example, there are ten possible comparisons among the five points; six are concordant, one
is discordant, and there are three comparisons lost due to ties. In general, given n bivariate scores
there are n(n− 1)/2 total possible comparisons. When there are ties in the x variate, there is a loss
of Tx comparisons, when there are ties in the y variate, there are Ty lost comparisons. Ties in both x
and y are denoted Txy . The total number of possible comparisons, accounting for ties, is therefore:

n(n− 1)/2− Tx − Ty + Txy,

where Txy is added to avoid double-counting of lost comparisons.

In the above example, there are three lost comparisons due to ties in x, one lost comparison due to a
tie in y, and one comparison lost to a tie in both the x and y variates. Thus, there are [(5∗4)/2]−3−
1+1 = 7 comparisons for the above example. The τA correlation is defined as (nc−nd)/(nc+nd),
which is a value on the [−1, 1] interval. However, it is important to note the original developer of the
frequentist τ correlation used a different coefficient that has come to be called τB , which is given
as (nc − nd)/([(n ∗ (n − 1)/2) − Tx][(n ∗ (n − 1)/2) − Ty]).5. However, τB does not properly
correct for tied scores, which is unfortunate because τB is the value returned by the stats function
cor(..., method = "kendall"). If there are no ties, then Tx = Ty = Txy = 0 and τA = τB . But
if there are ties, then the proper coefficient is given by τA. The dfba_bivariate_concordance()
function provides the proper correction for tied scores and outputs a sample estimate for τA.

The focus for the Bayesian analysis is on the population proportion of concordance, which is the
limit of the ratio nc/(nc + nd). This proportion is a value on the [0, 1] interval, and it is called
φ (Phi). φ is also connected to the population τA because τA = (2φ − 1). Moreover, Chechile
(2020) showed that the likelihood function for observing nc concordant changes and nd discordant
changes is a censored Bernoulli process, so the likelihood is proportional to (φnc)((1 − φ)nd).
In Bayesian statistics, the likelihood function is only specified as a proportional function because,
unlike in frequentist statistics, the likelihood of unobserved and more extreme events are not com-
puted. This idea is the likelihood principle, and its violation can lead to paradoxes (Lindley &
Phillips, 1976). Also, the likelihood need only be a proportional function because the proportional-
ity constant appears in both the numerator and denominator of Bayes theorem, so it cancels out. If
the prior for φ is a beta distribution, then it follows that the posterior is also a beta distribution (i.e.,
the beta is a natural Bayesian conjugate function for Bernoulli processes). The default prior for the
dfba_bivariate_concordance() function is the flat prior (i.e., a0 = 1 and b0 = 1).

In the special case where the user has a model for predicting a variate in terms of known quanti-
ties and where there are free-fitting parameters, the dfba_bivariate_concordance() function’s
concordance parameter is a goodness-of-fit measure for the scientific model. Thus, the bivari-
ate pair are the observed value of a variate along with the corresponding predicted score from
the model. The concordance proportion must be adjusted in these goodness-of-fit applications to
take into account the number of free parameters that were used in the prediction model. Chechile
and Barch (2021) argued that the fitting parameters increases the number of concordant changes.
Consequently, the value for nc is downward-adjusted as a function of the number of free parame-
ters. The Chechile-Barch adjusted nc value for a case where there are m free fitting parameters is
nc − (n ∗m) + [m ∗ (m + 1)/2]. As an example, suppose that there are n = 20 scores, and the
prediction equation has m = 2 free parameters that result in creating a prediction for each observed
score (i.e., there are 20 paired values of observed score x and predicted score y), and further suppose
that this model results in nc = 170 and nd = 20. The value of n_d is kept at 20, but the number of
concordant changes is reduced to 170− (20 ∗ 2) + (2 ∗ 3/2) = 133.
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Value

A list containing the following components:

tau Nonparametric Tau-A correlation
sample_p Sample concordance proportion
nc Number of concordant comparisons
nd Number of discordant comparisons
a_post The first shape parameter for the posterior beta distribution for the concordance

proportion
b_post The second shape parameter for the posterior beta distribution for the concor-

dance proportion
a0 The first shape parameter for the prior beta distribution for the concordance

proportion
b0 The second shape parameter for the prior beta distribution for the concordance

proportion
prob_interval The probability within the interval estimates for the phi parameter
post_median Median of posterior distribution on phi
eti_lower Lower limit of the equal-tail interval with width specified by prob_interval
eti_upper Upper limit of the equal-tail interval with width specified by prob_interval
tau_star Corrected tau_A to account for the number of free fitting parameter in goodness-

of-fit applications
nc_star The corrected number of concordant comparisons for a goodness-of-fit applica-

tion when there is an integer value for fitting.parameters
nd_star The number of discordant comparison when there is an integer value for fitting.parameters
sample_p_star Correct proportion of concordant comparisons to account for free-fitting param-

eter for goodness-of-fit applications
a_post_star Corrected value for the first shape parameter for the posterior for the concor-

dance proportion when there are free fitting parameter for goodness-of-fit appli-
cations

b_post_star The second shape parameter for the posterior distribution for the concordance
proportion when there is a goodness-of-fit application

post_median_star

The posterior median for the concordance proportion when there is a goodness-
of-fit application

eti_lower_star Lower limit for the interval estimate when there is a goodness-of-fit application
eti_upper_star Upper limt for the interval estimate when there is a goodness-of-fit application

References

Chechile, R.A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction
Using Distribution_Free Statistics. Cambridge: MIT Press.

Chechile, R.A., & Barch, D.H. (2021). A distribution-free, Bayesian goodness-of-fit method for as-
sessing similar scientific prediction equations. Journal of Mathematical Psychology. https://doi.org/10.1016/j.jmp.2021.102638

Lindley, D. V., & Phillips, L. D. (1976). Inference for a Bernoulli process (a Bayesian view). The
American Statistician, 30, 112-119.
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Examples

x <- c(47, 39, 47, 42, 44, 46, 39, 37, 29, 42, 54, 33, 44, 31, 28, 49, 32, 37, 46, 55, 31)
y <- c(36, 40, 49, 45, 30, 38, 39, 44, 27, 48, 49, 51, 27, 36, 30, 44, 42, 41, 35, 49, 33)

dfba_bivariate_concordance(x, y)

## A goodness-of-fit example for a hypothetical case of fitting data in a
## yobs vector with prediction model

p = seq(.05,.95,.05)
ypred= 17.332 - (50.261*p) + (48.308*p^2)

# Note the coefficients in the ypred equation were found first via a
# polynomial regression

yobs<-c(19.805, 10.105, 9.396, 8.219, 6.110, 4.543, 5.864, 4.861, 6.136,
5.789, 5.443, 5.548, 4.746, 6.484, 6.185, 6.202, 9.804, 9.332,
14.408)

dfba_bivariate_concordance(x = yobs,
y = ypred,
fitting.parameters = 3)

dfba_gamma Goodman-Kruskal Gamma

Description

Given bivariate data in the form of either a rank-ordered table or a matrix, returns the number of
concordant and discordant changes between the variates, the Goodman-Kruskal gamma statistic,
and a Bayesian analysis of the population concordance proportion parameter phi.

Usage

dfba_gamma(x, a0 = 1, b0 = 1, prob_interval = 0.95)

Arguments

x Cross-tabulated matrix or table where cell [I, J] represents the frequency of ob-
servations where the rank of measure 1 is I and the rank of measure 2 is J.

a0 First shape parameter for the prior beta distribution (default is 1)

b0 Second shape parameter for the prior beta distribution (default is 1)

prob_interval Desired width for interval estimates (default is 0.95)
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Details

For bivariate data where two measures are restricted on an ordinal scale, such as when the two
variates are ranked data over a limited set of integers, then an ordered contingency table is often a
convenient data representation. For such a case the element in the [I, J ] cell of the matrix is the
frequency of occasions where one variate has a rank value of I and the corresponding rank for the
other variate is J . This situation is a special case of the more general case where there are two
continuous bivariate measures. For the special case of a rank-order matrix with frequencies, there
is a distribution-free concordance correlation that is in common usage: Goodman and Kruskal’s
gamma G (Siegel & Castellan, 1988).

Chechile (2020) showed that Goodman and Kruskal’s gamma is equivalent to the more general
τA nonparametric correlation coefficient. Historically, gamma was considered a different met-
ric from τ because typically the version of τ in standard use was τB , which is a flawed met-
ric because it does not properly correct for ties. Note: cor(... ,method = "kendall") returns
the τB correlation, which is incorrect when there are ties. The correct τA is computed by the
dfba_bivariate_concordance() function.

The gamma statistic is equal to (nc−nd)/(nc +nd), where nc is the number of occasions when the
variates change in a concordant way and nd is the number of occasions when the variates change in
a discordant fashion. The value of nc for an order matrix is the sum of terms for each [I, J ] that are
equal to nijN+

ij , where nij is the frequency for cell [I, J ] and N+
ij is the sum of a frequencies in

the matrix where the row value is greater than I and where the column value is greater than J . The
value nd is the sum of terms for each [I, J ] that are nijN−

ij , whereN−
ij is the sum of the frequencies

in the matrix where row value is greater than I and the column value is less than J . The nc and nd
values computed in this fashion are, respectively, equal to nc and nd values found when the bivariate
measures are entered as paired vectors into the dfba_bivariate_concordance() function.

As with the dfba_bivariate_concordance() function, the Bayesian analysis focuses on the pop-
ulation concordance proportion phi (φ); andG = 2φ−1. The likelihood function is proportional to
φnc(1−φ)nd . The prior distribution is a beta function, and the posterior distribution is the conjugate
beta where a = a0 + nc and b = b0 + nd.

Value

A list containing the following components:

gamma Sample Goodman-Kruskal gamma statistic; equivalent to the sample rank cor-
relation coefficient tau_A

a0 First shape parameter for prior beta

b0 Second shape parameter for prior beta

sample_p Sample estimate for proportion concordance nc/(nc+nd)

nc Number of concordant comparisons between the paired measures

nd Number of discordant comparisons between the paired measures

a_post First shape parameter for the posterior beta distribution for the phi parameter

b_post Second shape parameter for the posterior beta distribution for the phi parameter

post_median Median of the posterior distribution for the phi concordance parameter

prob_interval The probability of the interval estimate for the phi parameter
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eti_lower Lower limit of the posterior equal-tail interval for the phi parameter where the
width of the interval is specified by the prob_interval input

eti_upper Upper limit of the posterior equal-tail interval for the phi parameter where the
width of the interval is specified by the prob_interval input

References

Chechile, R.A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction
Using Distribution-Free Methods. Cambridge: MIT Press.

Siegel, S., & Castellan, N. J. (1988) Nonparametric Statistics for the Behavioral Sciences. New
York: McGraw Hill.

See Also

dfba_bivariate_concordance for a more extensive discussion about the τA statistic and the
flawed τB correlation

Examples

# Example with matrix input
N <- matrix(c(38, 4, 5, 0, 6, 40, 1, 2, 4, 8, 20, 30),

ncol = 4,
byrow = TRUE)

colnames(N) <- c('C1', 'C2', 'C3', 'C4')
rownames(N) <- c('R1', 'R2', 'R3')
dfba_gamma(N)

# Sample problem with table input
NTable <- as.table(N)
dfba_gamma(NTable)

dfba_gamma_out-class Classes for DFBA

Description

Classes for DFBA
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dfba_mann_whitney Independent Samples Test (Mann Whitney U)

Description

Given two independent vectors E and C, the function computes the sample Mann-Whitney U statis-
tics U_E and U_C and provides a Bayesian analysis for the population parameter omega_E, which is
the population ratio of UE/(UE + UC).

Usage

dfba_mann_whitney(
E,
C,
a0 = 1,
b0 = 1,
prob_interval = 0.95,
samples = 30000,
method = NULL,
hide_progress = FALSE

)

Arguments

E Data for independent sample 1 ("Experimental")

C Data for independent sample 2 ("Control")

a0 The first shape parameter for the prior beta distribution for omega_E (default is
1). Must be positive and finite.

b0 The second shape parameter for the prior beta distribution for omega_E (default
is 1). Must be positive and finite.

prob_interval Desired probability value for the interval estimate for omega_E (default is 95%)

samples The number of Monte Carlo samples for omega_E when method = "small" (de-
fault is 30000)

method (Optional) The method option is either "small" or "large". The "small" algo-
rithm is based on a discrete Monte Carlo solution for cases where n is typically
less than 20. The "large" algorithm is based on beta approximation model for
the posterior distribution for the omega_E parameter. This approximation is rea-
sonable when n > 19. Regardless of n, the user can stipulate method. When the
method argument is omitted, the program selects the appropriate procedure

hide_progress (Optional) If TRUE, hide percent progress while Monte Carlo sampling is running
when method = SMALL. (default is FALSE).
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Details

The Mann-Whitney U test is the frequentist nonparametric counterpart to the independent-groups
t-test. The sample U_E statistic is the number of times that the E variate is larger than the C variate,
whereas U_C is the converse number.

This test uses only rank information, so it is robust with respect to outliers, and it does not depend
on the assumption of a normal model for the variates. The Bayesian version for the Mann-Whitney
is focused on the population parameter omega_E, which is the population ratio U_E/(U_E+U_C).

While the frequentist test effectively assumes the sharp null hypothesis that omega_E is .5, the
Bayesian analysis has a prior and posterior distribution for omega_E on the [0, 1] interval. The prior
is a beta distribution with shape parameters a0 and b0. The default is the flat prior (a0 = b0 = 1),
but this prior can be altered by the user.

The prob_interval input is the value for probability interval estimates for omega_E. There are
two cases depending on the sample size for the E and C variates. When the samples sizes are small,
there is a discrete approximation method used. In this case, the Bayesian analysis considers 200
discrete values for omega_E from .0025 to .9975 in steps of .005. For each discrete value, a prior and
a posterior probability are obtained. The posterior probabilities are based on Monte Carlo sampling
to approximate the likelihood of obtaining the observed U_E and U_C values for each candidate
value for omega_E. For each candidate value for omega_E, the likelihood for the observed sample
U statistics does not depend on the true distributions of the E and C variates in the population.
For each candidate omega_E, the software constructs two exponential variates that have the same
omega_E value. The argument samples specifies the number of Monte Carlo samples used for each
candidate value of omega_E.

For large sample sizes of the E and C variates, the Bayesian posterior distribution is closely ap-
proximated by a beta distribution where the shape parameters are a function of the sample U_E and
U_C statistics. The large-sample beta approximation was developed from extensive previous empir-
ical studies designed to approximate the quantiles of the discrete approach with the corresponding
quantiles for a particular beta distribution. The large-n solution also uses Lagrange polynomials
for interpolation. The large-n approximation is reasonably accurate when n > 19 for each condi-
tion. When the method input is omitted, the function selects the appropriate procedure (i.e., either
the discrete case for a small sample size or the large-n approach). Nonetheless, the user can stip-
ulate which method they desire regardless of sample size by inputting either method="small" or
method="large". The large-n solution is rapid compared to the small-sample solution, so care
should be executed when choosing the method="small", even for large sample sizes.

Technical details of the analysis are explained in the Chechile (2020) Communications in Statistics
paper cited below.

Value

A list containing the following components:

Emean Mean of the independent sample 1 ("Experimental") data

Cmean Mean of the independent sample 1 ("Control") data

n_E Number of observations of the independent sample 1 ("Experimental") data

n_C Mean of observations of the independent sample 2 ("Control") data
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U_E Total number of comparisons for which observations from independent sample
1 ("Experimental") data exceed observations from independent sample 2 ("Con-
trol") data)

U_C Total number of comparisons for which observations from independent sample 2
("Control") data exceed observations from independent sample 1 ("Experimen-
tal") data)

prob_interval User-defined width of omega_E interval estimate (default is 0.95)

a0 First shape parameter for the prior beta distribution

b0 Second shape parameter for the prior beta distribution

a_post First shape parameter for the posterior beta distribution

b_post Second shape parameter for the posterior beta distribution

samples The number of desired Monte Carlo samples (default is 30000)

method A character string indicating the calculation method used

omega_E A vector of values representing candidate values for omega_E when method =
"small"

omegapost A vector of values representing discrete probabilities for candidate values of
omega_E

priorvector A vector of values representing prior discrete probabilities of candidate values
of omega_E when method = "small"

priorprH1 Prior probability of the alternative model that omega_E exceeds 0.5

prH1 Posterior probability of the alternative model that omega_E exceeds 0.5

BF10 Bayes Factor describing the relative increase in the posterior odds for the alter-
native model that omega_E exceeds 0.5 over the null model of omega_E less than
or equal to 0.5

omegabar Posterior mean estimate for omega_E

eti_lower Lower limit of the equal-tail probability interval for omega_E with probability
width indicated by prob_interval

eti_upper Upper limit of the equal-tail probability interval for omega_E with probability
width indicated by prob_interval

hdi_lower Lower limit of the highest-density probability interval for omega_E with proba-
bility width indicated by prob_interval when method = "small"

hdi_upper Upper limit of the highest-density probability interval for omega_E with proba-
bility width indicated by prob_interval when method = "small"

References

Chechile, R.A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction
Using Distribution-Free Methods. Cambridge: MIT Press.

Chechile, R.A. (2020). A Bayesian analysis for the Mann-Whitney statistic. Communications in
Statistics – Theory and Methods 49(3): 670-696. https://doi.org/10.1080/03610926.2018.1549247.
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Examples

# Note: examples with method = "small" have long runtimes due to Monte Carlo
# sampling; please feel free to run them in the console.

# Examples with large n per group
# The data for each condition are presorted only for the user convenience if
# checking the U stats by hand

groupA <- c(43, 45, 47, 50, 54, 58, 60, 63, 69, 84, 85, 91, 99, 127, 130,
147, 165, 175, 193, 228, 252, 276)

groupB <- c(0, 01, 02, 03, 05, 14, 15, 23, 23, 25, 27, 32, 57, 105, 115, 158,
161, 181, 203, 290)

dfba_mann_whitney(E = groupA,
C = groupB)

# The following uses a Jeffreys prior instead of a default flat prior:
dfba_mann_whitney(E = groupA,

C = groupB,
a0 = .5,
b0 =.5)

# The following also uses a Jeffreys prior but the analysis reverses the
# variates:
dfba_mann_whitney(E = groupB,

C = groupA,
a0 = .5,
b0 = .5)

# Note that BF10 from the above analysis is 1/BF10 from the original order
# of the variates.

# The next analysis constructs 99% interval estimates with the Jeffreys
# prior.

AB <- dfba_mann_whitney(E = groupA,
C = groupB,
a0 = .5,
b0 = .5,
prob_interval=.99)

AB

# Plot with prior and posterior curves
plot(AB)

# Plot with posterior curve only
plot(AB,

plot.prior = FALSE)

# Example with small n per group
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groupC <- c(96.49, 96.78, 97.26, 98.85, 99.75, 100.14, 101.15, 101.39,
102.58, 107.22, 107.70, 113.26)

groupD <- c(101.16, 102.09, 103.14, 104.70, 105.27, 108.22, 108.32, 108.51,
109.88, 110.32, 110.55, 113.42)

dfba_mann_whitney(E = groupC,
C = groupD,
samples = 250,
hide_progress = TRUE)

dfba_mcnemar Bayesian Repeated-Measures McNemar Test for Change

Description

Given a randomized-block or repeated-measures design where the response is coded as either 0 or
1, examines the subset of cases where there is a change in the response between the two measure-
ments and provides a Bayesian analysis of the population change rate phi_rb (φrb) between the two
measurements.

Usage

dfba_mcnemar(n_01, n_10, a0 = 1, b0 = 1, prob_interval = 0.95)

Arguments

n_01 The number of cases where the first response is 0 and the second response is 1.

n_10 The number of cases where the first response is 1 and the second response is 0.

a0 The first shape parameter for the prior beta distribution for the phi_rb parame-
ter. Must be positive and finite.

b0 The second shape parameter for the prior beta distribution for the phi_rb pa-
rameter. Must be positive and finite.

prob_interval Desired probability for interval estimates for phi_rb (default is .95).

Details

Sometimes, researchers are interested in the detection of a change in the response rate pre- and
post-treatment. The frequentist McNemar test is a nonparametric test that examines the subset of
binary categorical responses where the response changes between the two tests (Siegel & Castellan,
1988). The frequentist test assumes the null hypothesis that the change rate is 0.5. Chechile (2020)
pointed out that the subset of change cases are binomial data, so a Bayesian analysis can be done
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for the population response-switching rate φrb (styled phi_rb elsewhere in the documentation for
this function). Both the prior and posterior distribution for φrb are beta distributions.

The user should be aware that the McNemar test is a change-detection assessment of a binary
response. To illustrate this fact, consider the hypothetical case of a sample of 50 people who evaluate
two political candidates before and after a debate. Suppose 26 people prefer Candidate A both
before and after the debate and 14 people prefer Candidate B both before and after the debate,
but 9 people switch their preference from Candidate A to Candidate B and 1 person switches their
preference from Candidate B to Candidate A. Despite the fact that this sample has 50 participants,
it is only the 10 people who switch their preference that are being analyzed with the McNemar test.
Among this subset, there is evidence that Candidate B did better on the debate. Overall, support
for Candidate A in the whole sample fell from 35 out of 50 (70%) to 27 out of 50 (54%): still a
majority, but a smaller one than Candidate A enjoyed prior to the debate.

The dfba_mcnemar() function requires two inputs, n_01 and n_10, which are, respectively, the
number of 0 → 1 changes and the number of 1 → 0 switches in the binary responses between
the two tests. Since the cases where there is a switch are binomial trials, the prior and posterior
distributions for φrb are beta distributions. The prior distribution shape parameters are a0 and
b0. The default prior is a uniform distribution (i.e., a0 = b0 = 1). The prob_interval argument
stipulates the probability within the equal-tail interval limits for φrb. The default value for that
argument is prob_interval =.95.

Besides computing the posterior mean, posterior median, equal-tail interval limits, and the posterior
probability that φrb > .5, the function also computes two Bayes factor values. One is the point
Bayes factor BF10 against the null hypothesis that phi_rb = 0.5. The second Bayes factor BF10 is
the interval Bayes factor against the null hypothesis that φrb ≤ 0.5. If the interval Bayes factor
BF10 is very low, then there is support to some degree for the null hypothesis that φrb < 0.5. In
this case the Bayes factor BF01 in support of the interval null hypothesis is given by BF01 = 1/BF10.

Value

A list containing the following components:

n_01 The number of cases where the first response is 0 and the second response is 1

n_10 The number of cases where the first response is 1 and the second response is 0

prob_interval Desired posterior probability within the equal-tail interval limits for phi_rb

a0 The first shape parameter for the prior beta distribution for the phi_rb parameter

b0 The second shape parameter for the prior beta distribution for the phi_rb pa-
rameter

a_post First shape parameter for the posterior beta distribution for the phi_rb parameter

b_post Second shape parameter for the posterior beta distribution for the phi_rb pa-
rameter

post_mean Posterior mean for phi_rb

post_median Posterior median for phi_rb

eti_lower Lower limit for the posterior equal-tail interval estimate for phi_rb that contains
the probability defined in prob_interval

eti_upper Upper limit for the posterior equal-tail interval estimate for phi_rb that contains
the probability defined in prob_interval
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BF10point The Bayes factor against the point null hypothesis that phi_rb = .5

BF10interval The Bayes factor against the interval null hypothesis that phi_rb is less than or
equal to .5

postH1 The posterior probability that phi_rb > .5

References

Chechile, R.A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction
Using Distribution-Free Methods. Cambridge: MIT Press.

Siegel, S., & Castellan, N. J. (1988) Nonparametric Statistics for the Behavioral Sciences. New
York: McGraw Hill.

See Also

dfba_beta_bayes_factor for further documentation about the Bayes factor and its interpretation.

Examples

## Examples with default value for a0, b0 and prob_interval

dfba_mcnemar(n_01 = 17,
n_10 = 2)

## Using the Jeffreys prior and .99 equal-tail interval

dfba_mcnemar(n_01 = 17,
n_10 = 2,
a0 = .5,
b0 = .5,
prob_interval = .99)

dfba_median_test Bayesian Median Test

Description

Given two independent groups of continuous variables, performs a Bayesian analysis of the likeli-
hood of observing an above-median value from one of the groups relative to expectation.

Usage

dfba_median_test(E, C, a0 = 1, b0 = 1)
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Arguments

E Numeric vector of values for the continuous measurements for group 1 (generi-
cally denoted E for Experimental group).

C Numeric vector of values for the continuous measurements for group 2 (generi-
cally denoted C for Control group).

a0 The first shape parameter for the prior beta distribution for the binomial param-
eter phi (default is 1). Must be positive and finite.

b0 The second shape parameter for the prior beta distribution for the binomial pa-
rameter phi (default is 1). Must be positive and finite.

Details

Given continuous measurements E and C from two separate and independent groups, a combined
sample median value can be computed. For the frequentist median test, a 2x2 table is created.
Row 1 consists of the frequencies of the above-median responses in terms of the two groups (i.e.,
nEabove and nCabove). Row 2 has the respective frequencies for the values that are at or below
the combined median (i.e., nEbelow and nCbelow). See Siegel & Castellan (1988) for the details
concerning the frequentist median test.

Chechile (2020) provided an alternative Bayesian analysis for the median-test procedure of examin-
ing continuous data in terms of the categorization of the values as being either above the combined
median or not. The frequencies in row 1 (above median response) are binomial frequencies in terms
of the group origin (i.e., E versus C). From a Bayesian perspective, a population-level φ parameter
can be defined for the population proportion of E values that are above the combined sample me-
dian. Similarly, the frequencies for the scores at or below the combined sample median can also be
examined; in that case, the corresponding population proportion in the E condition must be 1 − φ.
Thus, it is sufficient only to examine the above-median frequencies to make an inference about the
φ parameter. Since this is a binomial problem, the prior and posterior distributions for the popu-
lation φ parameter belong to the beta family of distributions. The default prior for this function is
the uniform distribution, i.e, a0 = b0 = 1. The posterior shape parameters for φ are a_post = a0 +
nEabove and b_post = b0 + nCabove.

Because the number of scores in groups E and C might be very different, it is important to examine
the φ parameter relative to an expected base-rate value from the sample. For example, suppose that
there are nE = 90 values from the E group and nC = 10 values from the C group. In this example,
there are 50 scores that are above the combined median (and no ties that would result in fewer than
half of the scores being greater than the median) that should be examined to see if φ is greater than
0.9. If there were no difference between the E and C conditions whatsoever in this hypothetical
example, then about 90 percent of the above-median values would be from the E group. If the
posterior φ parameter were substantially above the group E base rate, then that would support the
hypothesis that group E has larger values than group C in the population.

The dfba_median_test() provides the descriptive sample information for the combined median as
well as the entries for a table for the frequencies for the E and C scores that are above the median,
as well as the frequencies for theE andC scores at or below the median. The function also provides
the prior and posterior probabilities that the E and C groups exceeding their respective base rates
for a value being above the median. The function also evaluates the hypotheses that the E and C
response rates for the above-median responses exceeding their base rate. Bayes factors are provided
for these hypothesis.
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Because the Bayesian median test ignores the available rank-order information, this procedure has
less power than the Bayesian Mann-Whitney analysis that can be computed for the same data.
Nonetheless, sometimes researchers are interested if condition differences are so strong that even a
lower power median test can detect the difference.

Value

A list containing the following components:

median The sample combined median for the E and C values

nE The number of scores from group E

nC The number of scores from group C

Ebaserate The proportion nE/(nE+nC)

Cbaserate The proportion nC/(nE+nC)

nEabove Number of E responses above the median

nCabove Number of C responses above the median

nEbelow Number of E responses at or below median

nCbelow Number of C response at or below median

a0 The first shape parameter for the prior beta distribution for the population bino-
mial parameter

b0 The second shape parameter for the prior beta distribution for the population
binomial parameter

a_post Posterior first shape parameter for the beta distribution for the probability that
an above-median response is from the E group

b_post Posterior second shape parameter for the beta distribution for the probability
that an above-median response is from the E group

postEhi Posterior probability that an above-median response exceeds the E group base
rate

postChi Posterior probabilty that an above-median response exceeds the C group base
rate

priorEhi The probability that a beta prior distribution would exceed the E group base rate

priorChi The probability that a beta prior distribution would exceed the C group base rate

BF10E The Bayes factor in favor of the hypothesis that an above-median response from
the E group is more probable than the E expected base rate

BF10C The Bayes factor in favor of the hypothesis that an above-median response from
the C group is more probable than the C group base rate

References

Chechile, R.A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction
Using Distribution-Free Methods. Cambridge: MIT Press.

Siegel, S., & Castellan, N. J. (1988) Nonparametric Statistics for the Behavioral Sciences. New
York: McGraw Hill.
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See Also

dfba_beta_bayes_factor for further documentation about the Bayes factor and its interpretation.

dfba_mann_whitney for a more powerful alternative Bayesian analysis of the E and C values that
use rank order information.

Examples

## Example with the default uniform prior
group1 <- c(12.90, 10.84, 22.67, 10.64, 10.67, 10.79, 13.55, 10.95, 12.19,

12.76, 10.89, 11.02, 14.27, 13.98, 11.52, 13.49, 11.22, 15.07,
15.74, 19.00)

group2 <- c(4.63, 58.64, 5.07, 4.66, 4.13, 3.92, 3.39, 3.57, 3.56, 3.39)

dfba_median_test(E = group1,
C = group2)

## Example with the Jeffreys prior
dfba_median_test(group1,

group2,
a0 = .5,
b0 = .5)

dfba_power_curve Power Curves

Description

This function is a design tool for comparing Bayesian distribution-free power with frequentist t
power for a range of delta values, which are the separation values between two continuous variates
that can be randomly sampled from one of nine different probability models. The function provides
a table of power values for a fixed sample size value of n.

Usage

dfba_power_curve(
n = 20,
a0 = 1,
b0 = 1,
delta_step = 0.05,
model,
design,
effect_crit = 0.95,
shape1 = 1,
shape2 = 1,
block_max = 0,
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samples = 1000,
hide_progress = FALSE

)

Arguments

n The sample size for both variates (default is 20)

a0 The first shape parameter for the prior beta distribution (default is 1). Must be
positive and finite.

b0 The second shape parameter for the prior beta distribution (default is 1). Must
be positive and finite.

delta_step The increment between successive delta values, which range from 0 to 20*delta_step
(default value is .05)

model Theoretical probability model for the data. One of "normal", "weibull", "cauchy",
"lognormal", "chisquare", "logistic", "exponential", "gumbel", or "pareto".

design Indicates the data structure. One of "independent" or "paired".

effect_crit Stipulated value for a significant differences for a t-test (1 - p), and the critical
probability for the Bayesian alternative hypothesis for a Bayesian distribution-
free analysis

shape1 The shape parameter for the condition 1 variate for the distribution indicated by
the model input (default is 1)

shape2 The shape parameter for the condition 2 variate for the distribution indicated by
the model input (default is 1)

block_max The maximum size for a block effect (default is 0)

samples Desired number of Monte Carlo data sets drawn to estimate the power (default
is 1000)

hide_progress (Optional) If TRUE, hide percent progress while Monte Carlo sampling is run-
ning. (default is FALSE).

Details

Researchers need to make experimental-design decisions such as the choice about the sample size
per condition and the decision of whether to use a within-block design or an independent-group
design. These planning issues arise regardless if one uses either a frequentist or Bayesian approach
to statistical inference. In the DFBA package there are a number of functions to help users with
these decisions. The dfba_power_curve() function produces the Bayesian power estimate from a
distribution-free analysis along with the corresponding frequentist power from a parametric t-test,
for 21 delta values, which range from 0 to 20*delta_step where delta is the separation between
two random variates. The sample size for the power estimates is the same value n in each condition.
The power estimates are based on a number of Monte Carlo sampled data sets generated by the
dfba_sim_data() function.

For each data set, statistical tests are performed. If design = "paired", the frequentist t-test is a
one-tailed test on the within-block difference scores to assess the null hypothesis that the population
mean for E is greater than the population mean for C; if design = "independent", the frequentist
t-test is the one-tailed test to assess if there is a significant difference between the two independent
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conditions (i.e. if the mean for condition 2 is signficantly greater than the condition 1 mean). If
design = "paired", the Bayesian analysis assesses if the posterior probability for phi_w > .5 on
the Bayesian Wilcoxon test is greater than effect_crit; if design = "independent", the Bayesian
analysis assesses if the posterior probability for omega_E > .5 on a Bayesian Mann-Whitney test is
greater than effect_crit. The frequentist power is estimated by the proportion of the data sets
where a parametric t-test detects a significant effect because the upper-tail t value has a p-value
less than 1-effect_crit. The Bayesian power is the proportion of the data sets where a posterior
probability for the alternative hypothesis is greater than effect_crit. The default value for the
effect_crit argument is .95. The frequentist p-value and the Bayesian posterior probability for
the alternative hypothesis are calculated using the dfba_sim_data() function.

The arguments for the dfba_power_curve() function are passed into the dfba_sim_data() func-
tion. Besides the sample size n, there are eight other arguments that are required by the dfba_power_curve()
function, which are passed into the dfba_sim_data() function:

• a0

• b0

• model

• design

• delta

• shape1

• shape2

• block_max.

The a0 and b0 values are the respective first and second beta shape parameters for the prior distri-
bution needed for the Bayesian distribution-free tests, which are ultimately done by calling either
the dfba_wilcoxon() function or by the dfba_mann_whitney().

The model argument is one of the following strings:

• "normal"

• "weibull"

• "cauchy"

• "lognormal"

• "chisquare"

• "logistic"

• "exponential"

• "gumbel"

• "pareto"

The design argument is either "independent" or "paired", and stipulates whether the two sets
of scores are either independent or from a common block such as for the case of two scores for the
same person (i.e., one in each condition).

The shape1 and shape2 arguments are values for the shape parameter for the respective first and
second condition, and their meaning depends on the probability model. For model="normal",
these parameters are the standard deviations of the two distributions. For model = "weibull",
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the parameters are the Weibull shape parameters. For model = "cauchy", the parameters are the
scale factors for the Cauchy distributions. For model = "lognormal", the shape parameters are
the standard deviations for log(X). For model = "chisquare", the parameters are the degrees of
freedom (df ) for the two distributions. For model = "logistic", the parameters are the scale factors
for the distributions. For model = "exponential", the parameters are the rate parameters for the
distributions.

For the Gumbel distribution, the E variate is equal to delta - shape2*log(log(1/U)) where U is
a random value sampled from the uniform distribution on the interval [.00001, .99999], and the
C variate is equal to -shape1*log(log(1/U)) where U is another score sampled from the uniform
distribution. The shape1 and shape2 arguments for model = "gumbel" are the scale parameters for
the distributions. The Pareto model is a distribution designed to account for income distributions
as studied by economists (Pareto, 1897). For the Pareto distribution, the cumulative function is
equal to 1-(x_m/x)^alpha where x is greater than x_m (Arnold, 1983). In the E condition, x_m =
1 + delta and in the C condition x_m = 1. The alpha parameter is 1.16 times the shape parameters
shape1 and shape2. Since the default value for each shape parameter is 1, the resulting alpha value
of 1.16 is the default value. When alpha = 1.16, the Pareto distribution approximates an income
distribution that represents the 80-20 law where 20% of the population receives 80% of the income
(Hardy, 2010).

The block_max argument provides for incorporating block effects in the random sampling. The
block effect for each score is a separate effect for the block. The block effect B for a score is a
random number drawn from a uniform distribution on the interval [0, block_max]. When design
= "paired", the same random block effect is added to the score in the first condition, which is the
random C value, and it is also added to the corresponding paired value for the E variate. Thus,
the pairing research design eliminates the effect of block variation for the assessment of condition
differences. When design = "independent", there are different block-effect contributions to the
E and C variates, which reduces the discrimination of condition differences because it increases
the variability of the difference in the two variates. The user can study the effect of the relative
discriminability of detecting an effect of delta by adjusting the value of the block_max argument.
The default for block_max is 0, but it can be altered to any non-negative real number.

Value

A list containing the following components:

n The fixed sample size for each variate

nsims The number of Monte Carlo data sets; equal to the value of the samples argu-
ment

model Probability model for the data

design The design for the data; one of "independent" or "paired"

a0 The first shape parameter for the beta prior distribution for the Bayesian analysis

b0 The second shape parameter for the beta prior distribution for the Bayesian anal-
ysis

effect_crit The criterion probability for considering a posterior probability for the alterna-
tive hypothesis to be a detection; it is also 1-p_crit for a frequentist t-test

block_max The maximum size of a block effect; equal to the block_max argument

delta_vec Vector of the 21 delta offset values
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Bayes_power The vector of 21 Bayesian power values

t_power The vector of 21 frequentist power from t-tests

outputdf A dataframe for the Bayesian power and the corresponding frequentist t power
as a function of delta
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See Also

Distributions for details on the parameters of the normal, Weibull, Cauchy, lognormal, chi-
squared, logistic, and exponential distributions.

dfba_wilcoxon

dfba_mann_whitney

dfba_sim_data for further details about the data for two conditions that differ in terms of their
theoretical mean by an amount delta.

Examples

# Note: these examples have long runtimes due to Monte Carlo sampling;
# please feel free to run them in the console.

dfba_power_curve(n = 85,
model = "normal",
design = "independent",
samples = 250,
hide_progress = TRUE)

dfba_power_curve(n = 85,
model = "normal",
design = "paired",
samples = 250,
hide_progress = TRUE)
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# Using the Jeffreys prior rather than default flat prior

dfba_power_curve(n = 30,
model = "lognormal",
design = "independent",
a0 = .5,
b0 = .5,
delta_step = .06,
block_max = 3,
samples = 250,
hide_progress = TRUE)

dfba_sign_test Bayesian Sign Test

Description

Given two paired continuous variates Y1 and Y2, provides a Bayesian sign test to assess the positivity
rate for the difference Y1 - Y2.

Usage

dfba_sign_test(Y1, Y2, a0 = 1, b0 = 1, prob_interval = 0.95)

Arguments

Y1 Vector of the continuous measurements for one group

Y2 Vector of the continuous values paired with the Y1 vector for the values in a
second group

a0 The first shape parameter for the prior beta distribution for the positive-sign rate
parameter (default is 1). Must be positive and finite.

b0 The second shape parameter for the prior beta distribution for the positive-sign
rate parameter (default is 1). Must be positive and finite.

prob_interval Desired probability within interval limits for interval estimates of the positivity
rate parameter (default is .95)

Details

Given two paired continuous variates Y1 and Y2 for two repeated measures, statistical tests for dif-
ferences examine the difference measure d = Y1 − Y2. The t-test is a conventional frequentist
parametric procedure to assess values of d. There are also two common frequentist nonparamet-
ric tests for assessing condition differences: the sign test and the Wilcoxon signed-rank test. The
sign test is less powerful than the Wilcoxon signed-rank test (Siegel & Castellan, 1988). The ap-
peal of the sign test, for some researchers, is that it is simple and - in some cases - sufficient for
demonstrating strong differences.
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The dfba_sign_test() function provides a Bayesian version of the sign test (the function dfba_wilcoxon()
provides the Bayesian signed-rank test). While the Wilcoxon procedure uses both rank and sign in-
formation, the sign test uses only sign information. The dfba_sign_test() function finds the
number of positive and negative d values, which appear in the output as n_pos and n_neg, respec-
tively. Note that it is standard both in the frequentist sign test and in the frequentist Wilcoxon
signed-rank procedure to remove the d values that are zero. Consequently, the signs for the nonzero
d values are binary, so the posterior is a beta distribution with shape parameters a - denoted in the
output as a_post and b - denoted in the output as b_post - where a_post = a0 + n_pos and b_post
= b0 + n_neg and a0 and b0 are the respective first and second beta shape parameters for the prior
distribution. The default prior is a uniform distribution a0 = b0 = 1.

The function estimates the population rate for positive signs by calling dfba_beta_descriptive()
using the computed a_post and b_post as arguments. Since interest in the sign test is focused on
the null hypothesis that the positivity rate is less than or equal to .5, dfba_sign_test() calls
dfba_beta_bayes_factor() to calculate the prior and posterior probabilities for the alternative
hypothesis that the positivity rate is greater than .5. The output also includes the Bayes factors BF10
and BF01, where BF01 = 1/BF10. Large values of BF01 indicate support for the null hypothesis;
large values of BF10 indicate support for the alternative hypothesis.

Value

A list containing the following components:

Y1 Vector of continuous values for the first within-block group

Y2 Vector of continuous values for the second within-block group

a0 First shape parameter for the prior beta distribution for the population parameter
for the positivity rate

b0 Second shape parameter for the prior beta distribution for the population posi-
tivity rate

prob_interval The probability within the interval limits for the interval estimate of population
positivity rate

n_pos Sample number of positive differences

n_neg Sample number of negative differences

a_post First shape parameter for the posterior beta distribution for the population posi-
tivity rate

b_post Second shape parameter for the posterior beta distribution for the population
positivity rate for differences

phimean Mean of the posterior distribution for the positivity rate parameter

phimedian Median of the posterior distribution for the positivity rate parameter

phimode Mode of the posterior distribution for the positivity rate parameter

eti_lower Lower limit of the equal-tail interval estimate of the positivity rate parameter

eti_upper Upper limt of the equal-tail interval estimate of the positivity rate parameter

hdi_lower Lower limit for the highest-density interval estimate of the positivity rate param-
eter
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hdi_upper Upper limit for the highest-density interval estimate of the positivity rate param-
eter

post_H1 Posterior probability that the positivity rate is greater than .5

prior_H1 Prior probability that the positivity rate is greater than .5

BF10 Bayes factor in favor of the alternative hypothesis that the positivity rate is
greater than .5

BF01 Bayes factor in favor of the null hypothesis that the positivity rate is equal to or
less than .5

References

Chechile, R. A. (2020). Bayesian Statistics for Experimental Scientists: A General Introduction
Using Distribution_Free Methods. Cambridge, MIT Press.

Siegel, S., & Castellan, N. J. (1988). Nonparametric Statistics for the Behavioral Sciences. New
York: McGraw Hill.

See Also

dfba_beta_descriptive for details on the descriptive statistics in the output

dfba_beta_bayes_factor for details on Bayes Factors calculated on the basis of beta distributions

dfba_wilcoxon for an alternative, more powerful Bayesian nonparametric test for evaluting repeated-
measures data.

Examples

measure_1 <- c(1.49, 0.64, 0.96, 2.34, 0.78, 1.29, 0.72, 1.52,
0.62, 1.67, 1.19, 0.860)

measure_2 <- c(0.53, 0.55, 0.58, 0.97, 0.60, 0.22, 0.05, 13.14,
0.63, 0.33, 0.91, 0.37)

dfba_sign_test(Y1 = measure_1,
Y2 = measure_2)

dfba_sign_test(measure_1,
measure_2,
a0 = .5,
b0 = .5,
prob_interval = .99)
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dfba_sim_data Simulated Data Generator and Inferential Comparison

Description

This function is designed to be called by other DFBA programs that compare frequentist and
Bayesian power. The function generates simulated data for two conditions that can be from nine
different probability models. The program also computes the frequentist p-value from a t-test on the
generated data, and it computes the Bayesian posterior probability from a distribution-free analysis
of the difference between the two conditions.

Usage

dfba_sim_data(
n = 20,
a0 = 1,
b0 = 1,
model,
design,
delta,
shape1 = 1,
shape2 = 1,
block_max = 0

)

Arguments

n Number of values per condition

a0 The first shape parameter for the prior beta distribution (default is 1). Must be
positive and finite.

b0 The second shape parameter for the prior beta distribution (default is 1). Must
be positive and finite.

model Theoretical probability model for the data. One of "normal", "weibull", "cauchy",
"lognormal", "chisquare", "logistic", "exponential", "gumbel", or "pareto"

design Indicates the data structure. One of "independent" or "paired".

delta Theoretical mean difference between conditions; the second condition minus the
first condition

shape1 The shape parameter for condition 1 for the distribution indicated by model input
(default is 1)

shape2 The shape parameter for condition 2 for the distribution indicated by model input
(default is 1)

block_max The maximum size for a block effect (default is 0)
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Details

Researchers need to make experimental-design decisions such as the choice about the sample size
per condition and the decision to use a within-block design or an independent-group design. These
planning issues arise regardless if one uses either a frequentist or Bayesian approach to statistical
inference. In the DFBA package, there are a number of functions to help users with these decisions.

The dfba_sim_data() program is used along with other functions to assess the relative power
for detecting a condition difference of an amount delta between two conditions. Delta is an in-
put for the dfba_sim_data() program, and it must be a nonnegative value. Specifically, the
dfba_sim_data() program generates two sets of data that are randomly drawn from one of nine
different theoretical models. The input ‘model’ stipulates the data generating probability function.
The input ‘model’ is one of the following strings:

• "normal"

• "weibull"

• "cauchy"

• "lognormal"

• "chisquare"

• "logistic"

• "exponential"

• "gumbel"

• "pareto"

For each model there are n continuous scores randomly sampled for each condition, where n is
a user-specified input value. The design argument is either "independent" or "paired", and
stipulates whether the two sets of scores are either independent or from a common blocks such as
for the case of two scores for the same person (i.e., one in each condition).

The shape1 and shape2 arguments are values for the shape parameter for the respective first and
second condition, and their meaning depends on the probability model. For model="normal",
these parameters are the standard deviations of the two distributions. For model = "weibull",
the parameters are the Weibull shape parameters. For model = "cauchy", the parameters are the
scale factors for the Cauchy distributions. For model = "lognormal", the shape parameters are
the standard deviations for log(X). For model = "chisquare", the parameters are the degrees of
freedom (df ) for the two distributions. For model = "logistic", the parameters are the scale factors
for the distributions. For model = "exponential", the parameters are the rate parameters for the
distributions.

For the Gumbel distribution, the E variate is equal to delta - shape2*log(log(1/U)) where U is
a random value sampled from the uniform distribution on the interval [.00001, .99999], and the
C variate is equal to -shape1*log(log(1/U)) where U is another score sampled from the uniform
distribution. The shape1 and shape2 arguments for model = "gumbel" are the scale parameters for
the distributions. The Pareto model is a distribution designed to account for income distributions
as studied by economists (Pareto, 1897). For the Pareto distribution, the cumulative function is
equal to 1-(x_m/x)^alpha where x is greater than x_m (Arnold, 1983). In the E condition, x_m =
1 + delta and in the C condition x_m = 1. The alpha parameter is 1.16 times the shape parameters
shape1 and shape2. Since the default value for each shape parameter is 1, the resulting alpha value
of 1.16 is the default value. When alpha = 1.16, the Pareto distribution approximates an income



dfba_sim_data 45

distribution that represents the 80-20 law where 20% of the population receives 80% of the income
(Hardy, 2010).

The block_max argument provides for incorporating block effects in the random sampling. The
block effect for each score is a separate effect for the block. The block effect B for a score is a
random number drawn from a uniform distribution on the interval [0, block_max]. When design
= "paired", the same random block effect is added to the score in the first condition, which is the
random C value, and it is also added to the corresponding paired value for the E variate. Thus,
the pairing research design eliminates the effect of block variation for the assessment of condition
differences. When design = "independent", there are different block-effect contributions to the
E and C variates, which reduces the discrimination of condition differences because it increases
the variability of the difference in the two variates. The user can study the effect of the relative
discriminability of detecting an effect of delta by adjusting the value of the block_max argument.
The default for block_max is 0, but it can be altered to any non-negative real number.

The output from calling the dfba_sim_data() function are two statistics that are based on the n
scores generated in the two conditions. One statistic is the frequentist p-value for rejecting the
null hypothesis that delta <= 0 from a parametric t-test. The p-value is the upper tail probabil-
ity of the sample t-statistic for either the paired t-test when design = "paired" or it is the upper
tail probability of the sample t-statistic for the two-group t-test when design = "independent".
The second output statistic is the Bayesian posterior probability for one of two possible nonpara-
metric tests. If design = "paired", the dfba_sim_sim() function calls the dfba_wilcoxon()
function to ascertain the posterior probability that phi_w > .5. If design = "independent", the
dfba_sim_data() function calls the dfba_mann_whitney() function to estimate the posterior
probability that omega_E > .5. The arguments a0 and b0 for the dfba_sim_data() function are
passed along to either the dfba_wilcoxon() function or the dfba_mann_whitney() function. The
default values are a0 = b0 = 1.

Value

A list containing the following components:

pvalue The upper tail of the sample t value for the test that delta <= 0

prH1 Bayesian posterior probability either for the hypothesis that phi_w > .5 from
the nonparametric Wilcoxon test when design = "paired" or for the hypothesis
that omega_E > .5 from the Mann-Whitney test when design = "independent"

C Vector of length n of simulated values for condition 1

E Vector of length n of simulated values for condition 2

design The data structure indicated by the design argument. One of "independent"
or "paired".

Note

Random sampling for both the Gumbel and the Pareto distributions are generated by the dfba_sim_data()
function using the inverse transform method (Fishman, 1996).
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See Also

Distributions for details on the parameters of the normal, Weibull, Cauchy, lognormal, chi-
squared, logistic, and exponential distributions.

dfba_wilcoxon

dfba_mann_whitney

Examples

# Example of two paired normal distributions where the s.d. of the two
# conditions are 1 and 4.

dfba_sim_data(n = 50,
model = "normal",
design = "paired",
delta = .4,
shape1 = 1,
shape2 = 4)

# Example of two independent Weibull variates with their shape parameters =.8
# and with a .25 offset

dfba_sim_data(n = 80,
model = "weibull",
design = "independent",
delta = .25,
shape1 = .8,
shape2 = .8)

# Example of two independent Weibull variates with their shape
# parameters = .8 and with a .25 offset along with some block differences
# with the max block effect being 1.5

dfba_sim_data(n = 80,
model = "weibull",
design = "independent",
delta = .25,
shape1 = .8,
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shape2 = .8,
block_max = 1.5)

# Example of two paired Cauchy variates with a .4 offset

dfba_sim_data(n = 50,
model = "cauchy",
design = "paired",
delta = .4)

# Example of two paired Cauchy variates with a .4 offset where the Bayesian
# analysis uses the Jeffreys prior

dfba_sim_data(n = 50,
a0 = .5,
b0 = .5,
model = "cauchy",
design = "paired",
delta=.4)

dfba_wilcoxon Repeated-Measures Test (Wilcoxon Signed-Ranks Test)

Description

Given two continuous, paired variates Y1 and Y2, computes the sample T_pos and T_neg statistics
for the Wilcoxon signed-rank test and provides a Bayesian analysis for the population sign-bias
parameter phi_w, which is the population proportion of positive differences.

Usage

dfba_wilcoxon(
Y1,
Y2,
a0 = 1,
b0 = 1,
prob_interval = 0.95,
samples = 30000,
method = NULL,
hide_progress = FALSE

)

Arguments

Y1 Numeric vector for one continuous variate

Y2 Numeric vector for values paired with Y1 variate

a0 The first shape parameter for the prior beta distribution for phi_w. Must be
positive and finite.
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b0 The second shape parameter for the prior beta distribution for phi_w. Must be
positive and finite.

prob_interval Desired probability for interval estimates of the sign bias parameter phi_w (de-
fault is 0.95)

samples When method = "small", the number of desired Monte Carlo samples per can-
didate value for phi_w (default is 30000 per candidate phi)

method (Optional) The method option is either "small" or "large". The "small" algo-
rithm is based on a discrete Monte Carlo solution for cases where n is typically
less than 20. The "large" algorithm is based on beta approximation model for
the posterior distribution for the phi_w parameter. This approximation is reason-
able when n > 19. Regardless of n the user can stipulate either method. When
the method argument is omitted, the program selects the appropriate procedure.

hide_progress (Optional) If TRUE, hide percent progress while Monte Carlo sampling is running
when method = SMALL. (default is FALSE).

Details

The Wilcoxon signed-rank test is the frequentist nonparametric counterpart to the paired t-test. The
procedure is based on the rank of the difference scores d = Y1 - Y2. The ranking is initially done
on the absolute value of the nonzero d values, and each rank is then multiplied by the sign of the
difference. Differences equal to zero are dropped. Since the procedure is based on only ranks of the
differences, it is robust with respect to outliers in either the Y1 or Y2 measures. The procedure does
not depend on the assumption of a normal distribution for the two continuous variates.

The sample T_pos statistic is the sum of the ranks that have a positive sign, whereas T_neg is the
positive sum of the ranks that have a negative value. Given n nonzero d scores, T_pos + T_neg = n(n
+ 1)/2. Tied ranks are possible, especially when there are Y1 and Y2 values that have low precision.
In such cases, the Wilcoxon statistics are rounded to the nearest integer.

The Bayesian analysis is based on a parameter phi_w, which is the population proportion for pos-
itive d scores. The default prior for phi_w is a flat beta distribution with shape parameters a0 =
b0 =1, but the user can stipulate their preferred beta prior by assigning values for a0 and b0. The
prob_interval input, which has a default value of .95, is the value for interval estimates for the
phi_w parameter, but the user can alter this value if they prefer.

There are two cases for the Bayesian analysis - one for a small number of pairs and another for
when there is a large number of pairs. The method = small sample algorithm uses a discrete ap-
proximation where there are 200 candidate values for phi_w, which are .0025 to .9975 in steps of
.005. For each candidate value for phi_w, there is a prior and posterior probability. The posterior
probability is based on Monte Carlo sampling to approximate the likelihood for obtaining the ob-
served Wilcoxon statistics. That is, for each candidate value for phi_w, thousands of Monte Carlo
samples are generated for the signs on the numbers (1,2, ..., n) where each number is multiplied by
the sign. The proportion of the samples that result in the observed Wilcoxon statistics is an estimate
for the likelihood value for that candidate phi_w. The likelihood values along with the prior result
in a discrete posterior distribution for phi_w. The default for the number of Monte Carlo samples
per candidate phi_w is the input quantity called samples. The default value for samples is 30000,
but this quantity can be altered by the user.

Chechile (2018) empirically found that for large n there was a beta distribution that approximated
the quantiles of the discrete, small sample approach. This approximation is reasonably accurate for
n > 24, and is used when method = "large".
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If the method argument is omitted, the function employs the method that is appropriate given the
sample size. Note: the method = "small" algorithm is slower than the algorithm for method =
"large"; for cases where n > 24, method = "small" and method = "large" will produce similar
estimates but the former method requires increased processing time.

Value

A list containing the following components:

T_pos Sum of the positive ranks in the pairwise comparisons

T_neg Sum of the negative ranks in the pairwise comparisons

n Number of nonzero differences for differences d = Y1-Y2

prob_interval User-defined probability for interval estimates for phi_w

samples The number of Monte Carlo samples per candidate phi_w for method = "small"
(default is 30000)

method A character string that is either "small" or "large" for the algorithm used
(default is NULL)

a0 The first shape parameter for the beta prior distribution (default is 1)

b0 The second shape parameter for the beta distribution prior (default is 1)

a_post First shape parameter for the posterior beta distribution

b_post Second shape parameter for the posterior beta distribution

phiv The 200 candidate values for phi_w for method = "small"

phipost The discrete posterior distribution for phi_w when method = "small"

priorprH1 The prior probability that phi_w > .5

prH1 The posterior probability for phi_w > .5

BF10 Bayes factor for the relative increase in the posterior odds for the alternative
hypothesis that phi_w > .5 over the null model for phi_w <= .5

post_mean The posterior mean for phi_w

cumulative_phi The posterior cumulative distribution for phi_w when method = "small"

hdi_lower The lower limit for the posterior highest-density interval estimate for phi_w

hdi_upper The upper limit for the posterior highest-density interval estimate for phi_w

a_post The first shape parameter for a beta distribution model for phi_w when method
= "large"

b_post The second shape parameter for a beta distribution model for phi_w when method
= "large"

post_median The posterior median for phi_w when method = "large"

eti_lower The equal-tail lower limit for phi_w

eti_upper The equal-tail upper limit for phi_w
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Examples

## Examples with a small number of pairs

conditionA <- c(1.49, 0.64, 0.96, 2.34, 0.78, 1.29, 0.72, 1.52, 0.62, 1.67,
1.19, 0.86)

conditionB <- c(0.53, 0.55, 0.58, 0.97, 0.60, 0.22, 0.05, 13.14, 0.63, 0.33,
0.91, 0.37)

dfba_wilcoxon(Y1 = conditionA,
Y2 = conditionB,
samples = 250,
hide_progress = TRUE)

# Examples with large sample size

E <- c(6.45, 5.65, 4.34, 5.92, 2.84, 13.06, 6.61, 5.47, 4.49, 6.39, 6.63,
3.55, 3.76, 5.61, 7.45, 6.41, 10.16, 6.26, 8.46, 2.29, 3.16, 5.68,
4.13, 2.94, 4.87, 4.44, 3.13, 8.87)

C <- c(2.89, 4.19, 3.22, 6.50, 3.10, 4.19, 5.13, 3.77, 2.71, 2.58, 7.59,
2.68, 4.98, 2.35, 5.15, 8.46, 3.77, 8.83, 4.06, 2.50, 5.48, 2.80,
8.89, 3.19, 9.36, 4.58, 2.94, 4.75)

BW<-dfba_wilcoxon(Y1 = E,
Y2 = C)

BW
plot(BW)
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