
Package ‘FSAtools’
August 18, 2023

Type Package

Title Fragment Analysis and Capillary Sequencing Tool Kit

Version 2.0.5

Date 2023-08-18

URL https://bioinformatics.ovsa.fr/FSAtools

BugReports https://github.com/maressyl/R.FSAtools/issues

Description A flexible and interfaced framework for importing, processing and ploting Ap-
plied Biosystems data files. Application to Reverse-Transcriptase Multiplex Ligation-
dependent Probe Amplification (RT-MLPA) gene-expression profiling and classification is illus-
trated in Mareschal, Ruminy et al (2015) <doi:10.1016/j.jmoldx.2015.01.007>. Gene-fusion de-
tection and Sanger sequencing are illus-
trated in Mareschal, Palau et al (2021) <doi:10.1182/bloodadvances.2020002517>. Exam-
ples are provided for genotyping applications as well.

Note FSAtools replaces and generalizes the former MLPA package from
the same authors.

Depends graphics, grDevices, stats, utils, R (>= 2.10)

Imports methods

Suggests Biostrings, parallel, tcltk, tools

License GPL (>= 3)

NeedsCompilation no

Author Sylvain Mareschal [aut, cre],
Philippe Ruminy [dtc, ctb],
Jean R. Lobry [ctb],
Fabrice Jardin [ths]

Maintainer Sylvain Mareschal <mareschal@ovsa.fr>

Repository CRAN

Date/Publication 2023-08-18 18:12:35 UTC

1

https://bioinformatics.ovsa.fr/FSAtools
https://github.com/maressyl/R.FSAtools/issues
https://doi.org/10.1016/j.jmoldx.2015.01.007
https://doi.org/10.1182/bloodadvances.2020002517

2 add.model

R topics documented:
add.model . 2
align.fsa . 4
classify . 6
designFile . 7
export.attr . 9
filter.fsa . 10
fusions.process . 11
generic.log . 12
generic.process . 13
genotype.fsa . 15
multiplot . 17
peaks.fsa . 18
plot.fsa . 20
plot.fsaModel . 22
print.fsa . 23
read.abif . 24
read.fsa . 25
read.sanger . 26
train . 27
wav2RGB . 28

Index 30

add.model Object constructor for binary predictors

Description

This function aggregates the data required to predict class in classify.

Usage

add.model(x, model, groupMeans, groupSDs, groupNames, groupColors, threshold,
geneNames, geneTs, geneMs)

Arguments

x An object of class fsa to which add a model.

model A list aggregating the model parameters. Can be provided instead of the argu-
ment vectors below individually.

groupMeans Numeric vector of length 2, the means of the scores in each group as computed
on a training series. If model is provided, this vector will be used instead.

groupSDs Numeric vector of length 2, the standard deviations of the scores in each group
as computed on a training series. If model is provided, this vector will be used
instead.

add.model 3

groupNames Character vector of length 2, the names of the group described in groupMeans,
groupSDs and groupColors. If model is provided, this vector will be used
instead.

groupColors Character vector of length 2, the colors to use to plot each group (see par for
allowed values). If model is provided, this vector will be used instead.

threshold Single numeric vector, the confidence threshold to use for prediction (a call will
be made only if it is at least at this level of certainty). If model is provided, this
vector will be used instead.

geneNames Character vector, the names of the genes whose expression is to be used. If
model is provided, this vector will be used instead.

geneTs Numeric vector, for each gene in geneNames, the statistic of a t.test comparing
its expression between the two groups in a training series. If model is provided,
this vector will be used instead.

geneMs Numeric vector, for each gene in geneNames, the mean expression in the whole
training series. If model is provided, this vector will be used instead.

Value

Returns an S3 object of class fsaModel.

Author(s)

Sylvain Mareschal

See Also

classify

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa_GEP/A5918.fsa", package="FSAtools"))

Add model from design file
design <- designFile(system.file("extdata/design_GEP.conf", package="FSAtools"))
fsa <- add.model(fsa, model=design$GLOBALS$MODEL)

Observe model
print(attr(fsa, "model"))
plot(attr(fsa, "model"))

4 align.fsa

align.fsa Aligns peaks using size ladder

Description

This function adds to a fsa object a linear regression model allowing the raw time indexes to be
converted into base pair sizes, using a known size markers ladder.

Usage

align.fsa(x, channel = "ROX", fullLadder = c(50, 60, 90, 100, 120, 150, 160, 180, 190,
200, 220, 240, 260, 280, 290, 300, 320, 340, 360, 380, 400), useLadder = c(50, 60,
90, 100, 120), outThreshold = 0.15, noiseLevel = 10, surePeaks = 5,

leakingRatios = c(-1, 10), trim = c("forward", "backward", "none"),
maskOffScale = FALSE, rMin = 0.999, rescue = FALSE, ylim = NULL, ...)

Arguments

x An object of class fsa, as returned by read.fsa

channel Single character value, the name of the channel used for size markers.

fullLadder Integer vector, the size markers used in the assay (in base pairs).

useLadder Integer vector, the size markers to use for the alignment (using only size markers
nearing the expected size for the experimental peaks may achieve a more precise
alignment). They must be present in fullLadder. If NULL, fullLadder will be
used entirely.

outThreshold Single numeric value, maximal distance from the computed size-marker inten-
sity for a peak to be considered as a size-marker. If lower than 1, it is considered
as a proportion of the size-marker intensity computed from sure peaks.

noiseLevel Single numeric value, minimal intensity for a local maximum to be considered
as a peak.

maskOffScale Single logical value, whether to mask indexes with off-scale values in any chan-
nel to limit side-effects or not.

surePeaks Single integer value, amount of peaks to use to compute size-marker intensity.
They are selected at the end of the profile, as most artefacts are observed ate the
beginning. Consider to reduce this value if your assay was prematurely ended.

leakingRatios Numeric vector of length two, defining the thresholds to consider a marker peak
as a leakage from another channel. A leakage is expected to show at least one
channel with a negative value below the absolute value of the marker channel
(first ratio, -1) and another channel with a positive value higher than 10 times
the absolute value of the marker channel (second ratio, 10).

trim Single character value, defining how to behave when more/less peaks than ex-
pected are read. "forward" will keep first peaks and adjust discarding the last
ones, "backward" will keep last peaks and adjust discarding the first ones, and
"none" will generate an error.

align.fsa 5

rMin Single numeric value, minimum adjusted r squared value (see summary.lm) to
consider an alignment as "good". Poor alignments raise a warning, and may be
due to artefactual peaks in the size-marker channel or errors in fullLadder def-
inition. Consider lowering outThreshold and raising noiseLevel to minimize
artefact selection.

rescue Single logical value, whether to plot a "rescue" profile or not. Rescue profiles are
calls to plot.fsa on which diverse additionnal data is drawn to help diagnose
alignment problems.

ylim To be passed to plot.fsa for the alignment rescue plot, if enabled (see rescue).

... Further arguments to be passed to plot.fsa for the alignment rescue plot, if
enabled (see rescue).

Value

Returns the object of class fsa provided with updated attributes :

ladderModel A numeric vector of linear regression coefficients to use to convert raw indexes
into base pairs.

ladderExact A named numeric vector of raw indexes at which size markers were detected.

Author(s)

Sylvain Mareschal, Philippe Ruminy

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa_GEP/A5918.fsa", package="FSAtools"))

Plot subset of the profile (time index)
plot(fsa, units="index", xlim=c(4000,5000))

Align using full ladder
fullLadder <- c(

50, 60, 90, 100, 120, 150, 160, 180, 190, 200, 220,
240, 260, 280, 290, 300, 320, 340, 360, 380, 400

)
fsa <- align.fsa(fsa, fullLadder=fullLadder)

Plot subset of the profile (base pairs)
plot(fsa, units="bp", xlim=c(80,130))

6 classify

classify Apply the binary predictor to FSA peaks

Description

Predict to which class the sample is most likely to belong, using a modified LPS model.

Usage

classify(x, plot = TRUE)

Arguments

x A fsa object with peaks and model attributes.

plot Single logical value, whether to plot a visual representation of the prediction or
not.

Value

Returns a list :

score The raw score used to make the prediction.

p The probability to belong to each of the two groups.

class The final prediction, as a group name. May be NA if no probability passes the
model threshold.

Author(s)

Sylvain Mareschal

References

Radmacher MD, McShane LM, Simon R. A paradigm for class prediction using gene expression
profiles. J Comput Biol. 2002;9(3):505-11.

Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method
to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S
A. 2003 Aug 19;100(17):9991-6.

Bohers E, Mareschal S, Bouzelfen A, Marchand V, Ruminy P, Maingonnat C, Menard AL, Etancelin
P, Bertrand P, Dubois S, Alcantara M, Bastard C, Tilly H, Jardin F. Targetable activating mutations
are very frequent in GCB and ABC diffuse large B-cell lymphoma. Genes Chromosomes Cancer.
2014 Feb;53(2):144-53.

See Also

read.fsa, peaks.fsa, add.model, generic.process

designFile 7

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa_GEP/A5918.fsa", package="FSAtools"))
fsa <- align.fsa(fsa)

Add model from design file
design <- designFile(system.file("extdata/design_GEP.conf", package="FSAtools"))
fsa <- add.model(fsa, model=design$GLOBALS$MODEL)

Add peak heights
fsa <- peaks.fsa(fsa, peaks=design$GLOBALS$PEAKS)

Classify sample
fsa <- classify(fsa, plot=TRUE)
print(attr(fsa, "classification"))

designFile Process interface’s design file

Description

This function is a slave for generic.process. It process a design file and returns its processed
elements as a list.

Usage

designFile(fileName)

Arguments

fileName Single character value, the path and name of a design file to process.

Details

Design files are text file split in multiple sections. Each section starts with a "[NAME]" line and
ends when the next section begins. Lines starting with a # sign are ignored, as well as blank lines.

Standard sections refer to an existing R function (the section name is expected to match the function
name in a case-sensitive manner), each line in the section setting an argument to call this function :
the first value is the argument name, then after a tabulation come one or many values separated by
tabulations. Multiple values will be aggregated into a vector, and type.convert will try to guess
the correct type.

One or many modifiers can be added in the section name after the function name followed by the :
sign and separated by commas (e.g. file.remove:first,nowarn). Modifiers have the following
effects :

first The function will be called only once, while processing the first .fsa file.

last The function will be called only once, while processing the last .fsa file.

8 designFile

nowarn The function will be embedded inside suppressWarnings to silently ignore warnings.

$NAME and @NAME can be used while setting an argument to refer to global variable NAME. Use $
reference for character variables, which will be replaced with gsub and can thus be combined (e.g.
$NAME.txt). Use @ reference to obtain the raw R variable, regardless of its type. Default globals
are :

FILE_PATH The full name and path of the .fsa file currently considered in the loop.

FILE_DIR The parent directory of the .fsa file currently considered in the loop.

FILE_NAME The base name (without path) of the .fsa file currently considered in the loop.

OBJECT The last object of class ’fsa’ returned by any function called in the pipeline.

OUTPUT_PATH The full name and path defined by output while calling generic.process.

OUTPUT_DIR The parent directory of output while calling generic.process.

OUTPUT_NAME The base name (without path) defined by output while calling generic.process.

Sections with full uppercase names (only letters and _ are allowed) will define a new global variable
with matching name. The global will be a named list, each line in the section defining a vector (the
first value being the name for the vector in the list). The table modifier can be used while defining
globals (e.g. PEAKS:table), to request instead the section to be parsed as a TSV file (one row in the
section is one row in the table, columns are separated by tabulations, see read.table). The first
row will be used as column names and the first column as row names.

A DESIGN global ([DESIGN] section) is strongly recommended to keep design file self-explained,
the following elements are suggested :

author The name of the design author (for human readers only).

purpose The description of the design (for human readers only).

FSAtools Version of the FSAtools package for which the design was created (separated with dots).

updated Date of the last design update (YYYY-MM-DD).

Please refer to the two provided working examples to help building your own designs. Full process-
ing with the examples are described in generic.process examples section, direct access to the
example design files is shown below.

Value

Returns a multi-level list, with a direct children per function to call and an extra GLOBALS element.

Children are named according to the function to call, thus multiple children can have the same
name.

Author(s)

Sylvain Mareschal

See Also

generic.process, generic.interface

export.attr 9

Examples

Example file provided
file <- system.file("extdata/design_GEP.conf", package="FSAtools")
design <- designFile(file)

Alignment rescue design provided
file <- system.file("extdata/design_SNP.conf", package="FSAtools")
design <- designFile(file)

export.attr Print an attribute of a ’fsa’ object to a file

Description

Adds the content of an attribute of a ’fsa’ object to a CSV file, either appending new rows or
columns.

Typically used in generic.process via the design file to export numeric data during the processing.

Usage

export.attr(x, attr, file, meta = character(0), sep = "\t", dec = ".", quote = TRUE)

Arguments

x The fsa object whose attribute is to be printed.
attr Single character value, the name of the attribute to print.
file Single character value, the path and name to the file to create or update.
meta Character vector, the names of x meta-data fields to export as extra columns.
sep To be passed to write.table.
dec To be passed to write.table.
quote To be passed to write.table.

Details

New data will be appended below the content of the file with extra ’meta’ columns, row names will
be added only if the file was empty.

Value

Invisibly returns TRUE on success.

Author(s)

Sylvain Mareschal

See Also

read.fsa, peaks.fsa, genotype.closest.fsa, genotype.ratio.fsa, classify

10 filter.fsa

filter.fsa Applies filter() to a "fsa" object

Description

Replaces the requested column of values by the output of filter, possibly after masking values
out of a specified index or bp range.

Usage

filter.fsa(x, channel, ..., from = NA, to = NA, units = "bp")

Arguments

x An object of class fsa, as returned by read.fsa

channel Single character value, the name of the channel used for size markers.

... Further arguments to be passed to filter.

from Single numeric value, the starting offset (integer index or numeric bp) to con-
sider. No subsetting will be applied if NA.

to Single numeric value, the last offset (integer index or numeric bp) to consider.
No subsetting will be applied if NA.

units Either "index" or "bp", defining the unit of from and to. Notice x must have
been processed by align.fsa to use "bp".

Value

Returns x, with updated content.

Author(s)

Sylvain Mareschal

See Also

read.fsa

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa_GEP/A5918.fsa", package="FSAtools"))
fsa <- align.fsa(fsa)

Profile before filtering
plot(fsa)

Plot subset of the profile (base pairs)
fsa <- filter.fsa(fsa, channel="ROX", filter=20, from=40, to=140, units="bp")

fusions.process 11

Profile after filtering
plot(fsa)

fusions.process LD-RTPCR fusion identification by Sanger

Description

Automatically interpret gene fusions found by Sanger sequencing using the Ligation-Dependent
PCR protocol.

Usage

fusions.process(input, design, output, sheet = NA, cores = NA, ...)

Arguments

input Single character value, the path to the directory containing the AB1 files to pro-
cess.

design Data.frame describing all possible fusions (see Details).

output Single character value, the path to a directory in which to produce output files
(will be created if doesn’t yet exists).

sheet Single character value, the name and path of a CSV file describing the files to
process. 3 columns are expected: ID which gives a simpler sample name to use
in outputs, way which defines if sequencing was ’forward’ or ’reverse’, and file
which gives the file name and path relative to the input argument.

cores Single integer value, the amount of CPUs to use on the local machine to paral-
lelize the computation. If NA, a guess will be made. If 1, computation will not
use the parallel package at all but only loop over samples.

... Further arguments are passed to fusions.process.core.

Details

design must contain one row for each possible combination of a left primer with a right primer,
whether this fusion is expected and relevant or not.

Expected columns in design are (excluding extra columns required with extra) :

left.name Character, the name of the left primer.

left.seq Character (uppercase), the sequence of the left primer (gene-specific part only).

left.unileft Character (uppercase), the sequence of the left universal primer used for amplification.

left.symbol Character, the symbol of the gene targeted by the left primer.

left.GRCh38 Character, the genomic coordinates of the last base of the left primer (chromo-
some:position:strand).

12 generic.log

left.GRCh38_band Character, the cytogenetic location of the gene targeted by the left primer.

right.name Character, the name of the right primer.

right.seq Character (uppercase), the sequence of the right primer (gene-specific part only).

right.uniright Character (uppercase), the sequence of the right universal primer used for amplifi-
cation.

right.symbol Character, the symbol of the gene targeted by the right primer.

right.GRCh38 Character, the genomic coordinates of the last base of the right primer (chromo-
some:position:strand).

right.GRCh38_band Character, the cytogenetic location of the gene targeted by the right primer.

seq_forward Character (uppercase), the complete sequence expected in forward sequencing (con-
catenation of left.unileft, left.seq, right.seq, right.uniright and the right tail, if
any).

seq_reverse Character (uppercase), the complete sequence expected in reverse sequencing (reverse
complement of a concatenation of the left tail, if any, left.unileft, left.seq, right.seq,
right.uniright).

Please contact the authors to obtain a relevant design object.

Value

Invisibly returns the aggregated table of top results for all samples.

Various files are produced, in location set by the output argument :

Top.csv The aggregated table of top results for all samples.

*.pdf One plot for each sample, showing the sequencing profile and the best alignments found.

Author(s)

Sylvain Mareschal

See Also

generic.process

generic.log Wrapper for generic.process

Description

This function is mainly a wrapper for generic.process, diverting messages, warnings and errors
to a more readable log file.

Usage

generic.log(..., logFile)

generic.process 13

Arguments

... Arguments to be passed to generic.process.

logFile Single character value, the path and name of the log file where to divert output.

Value

Either an error object if one occured, an integer number of warnings which happened during the
(otherwise successfull) processing or TRUE if everything went fine.

Author(s)

Sylvain Mareschal

See Also

generic.process, generic.interface

Examples

Working in temporary directory
output <- sprintf("%s/GEP", tempdir())
logFile <- sprintf("%s.log", output)

Direct analysis
generic.process(

input = system.file("extdata/fsa_GEP", package="FSAtools"),
design = system.file("extdata/design_GEP.conf", package="FSAtools"),
output = output

)

Logged analysis (check logFile)
generic.log(

input = system.file("extdata/fsa_GEP", package="FSAtools"),
design = system.file("extdata/design_GEP.conf", package="FSAtools"),
output = output,
logFile = logFile

)

generic.process Processing multiple FSA files

Description

generic.process handles the whole analysis of a series of .fsa files according to the pipeline
described in the user-provided design file, generating tabular and graphical profiles.

generic.interface summons a Tcl-Tk interface to call generic.process interactively.

14 generic.process

Usage

generic.process(input, design, output, include = NULL, exclude = NULL,
progressBar = NULL)

generic.interface()

Arguments

input Single character value, the path to a directory containing .fsa files to analyse.
Notice it will be explored recursively, so sub-directories are allowed.

design Single character value, the path to a design file, as handled by designFile.

output Single character value, the path to a ".pdf" or ".log" file that will be created
during the analysis.

include Single character value, a regular expression files (with relative path) in input
must match to be processed (ignored if NULL).

exclude Single character value, a regular expression files (with relative path) in input
must not match to be processed (ignored if NULL).

progressBar A ttkprogressbar to increment during the processing, or NULL. This argument
is only provided to connect GEP.interface and GEP.process, thus it should
be ignored.

Details

The content of the analysis pipeline is fully controlled by the design file, see designFile for details
and the examples section below for two working examples provided in the package.

More generally, generic.process loops over the list of .fsa files in the input directory and calls
the requested functions one after the other, updating the fsa object at each step.

Value

Return nothing. generic.process raise errors, warnings and messages which are intercepted by
generic.interface and redirected to the log file (output.log).

Author(s)

Sylvain Mareschal

References

Mareschal, Ruminy et al (2015) <doi:10.1016/j.jmoldx.2015.01.007> "Accurate Classification of
Germinal Center B-Cell-Like/Activated B-Cell-Like Diffuse Large B-Cell Lymphoma Using a Sim-
ple and Rapid Reverse Transcriptase-Multiplex Ligation-Dependent Probe Amplification Assay: A
CALYM Study"

See Also

designFile

genotype.fsa 15

Examples

EXAMPLE 1 : Gene expression (RT-MLPA)

Working in temporary directory
output <- sprintf("%s/GEP", tempdir())

See files before analysis
dir(system.file("extdata", package="FSAtools"))

Launch analysis in package directory
generic.process(

input = system.file("extdata/fsa_GEP", package="FSAtools"),
design = system.file("extdata/design_GEP.conf", package="FSAtools"),
output = output

)

List resulting files
dir(dirname(output), full.names=TRUE)

EXAMPLE 2 : Genotyping

Working in temporary directory
output <- sprintf("%s/SNP", tempdir())

See files before analysis
dir(system.file("extdata", package="FSAtools"))

Launch analysis in package directory
generic.process(

input = system.file("extdata/fsa_SNP", package="FSAtools"),
design = system.file("extdata/design_SNP.conf", package="FSAtools"),
output = output

)

List resulting files
dir(dirname(output), full.names=TRUE)

genotype.fsa Calls alleles for a SNP genotyping experiment

Description

Calls alleles in experiments where fragments of different sizes are expected according to the allele.

genotype.closest.fsa selects for each allele the closest expected normalized peak height among
the 0, 1 and 2 copy values provided in the design.

genotype.ratio.fsa calls an allele as absent, heterozygous or homozygous using fixed thresholds
on the proportion of signal from a locus.

16 genotype.fsa

genotype.N1.fsa calls an allele as present if it exceeds a given proportion of the expected signal
for 1 copy, as provided in the design. When a single allele is called present for a locus, it is
considered homozygous.

Usage

genotype.closest.fsa(x)
genotype.ratio.fsa(x, homo = 0.85, hetero = c(0.3, 0.7))
genotype.N1.fsa(x, threshold = 0.1)

Arguments

x The fsa object to use, which must have a peaks attribute (see peaks.fsa).
Peaks are expected to be named according to the LOCUS_ALLELE pattern. genotype.closest.fsa()
expected optional N0, N1 and N2 columns with expected normalized heights for
0, 1 and 2 copies of the allele.

homo Single numeric value, the ratio of the considered allele signal over all signal
from this locus to call a homozygous allele. Similarly alleles below 1 - homo
will be called "absent".

hetero Numeric vector of length two, minimum and maximum ratios of the considered
allele signal over all signal from this locus to call a heterozygous allele.

threshold Single numeric value, the ratio of the considered allele signal over the expected
value for 1n to call an allele.

Value

Returns x, with a new or updated genotypes attribute, a data.frame with a row for each locus :

call The concatenation of the two called alleles, possibly with ?.

alleles The comma-separated list of ratios observed for all alleles (genotype.ratio.fsa()
only).

A calls vector attribute is also set, corresponding to the call column only.

Note

All three functions assume peaks to be named according to the following convention : "ALLELE -
LOCUS".

Author(s)

Sylvain Mareschal

See Also

generic.process

multiplot 17

Examples

Using a design file
design <- designFile(system.file("extdata/design_SNP.conf", package="FSAtools"))

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa_SNP/A7840.fsa", package="FSAtools"))
fsa <- align.fsa(

fsa,
channel = design$align.fsa$channel,
outThreshold = design$align.fsa$outThreshold,
useLadder = design$align.fsa$useLadder

)
fsa <- peaks.fsa(fsa, peaks=design$GLOBALS$PEAKS)

Genotype
fsa <- genotype.ratio.fsa(fsa)
print(attr(fsa, "genotypes"))
print(attr(fsa, "calls"))

multiplot Wrapper to layout

Description

Calls layout using atomic arguments and convenient defaults, mainly to be included in generic.process
design files.

Usage

multiplot(nrow, ncol, widths = rep.int(1, ncol), heights = rep.int(1, nrow),
indexes = 1:(nrow * ncol), byrow = FALSE, respect = FALSE, cex = 1)

Arguments

nrow Single integer value, the amount of rows into which divide the screen for multi-
ple plots.

ncol Single integer value, the amount of columns into which divide the screen for
multiple plots.

widths To be passed to layout.

heights To be passed to layout.

indexes Integer vector, the ordering of plots while building the mat matrix for layout.

byrow Single logical value, whether to fill the mat matrix for layout with indexes by
row or by column.

respect To be passed to layout.

cex Single numeric value, if not NA par will be called to force this value, as large
layout automatically change it.

18 peaks.fsa

Value

Invisibly returns TRUE on success.

Author(s)

Sylvain Mareschal

See Also

generic.process

Examples

multiplot(nrow=1, ncol=3, widths=c(1,2,2))
plot(1:5)
plot(1:5)
plot(1:5)

peaks.fsa Get maximal value in ranges

Description

Look for the maximal value in one or many ranges, typically for peak detection.

Usage

peaks.fsa(x, peaks, names, size.min, size.max, channels, colors,
logTransform = FALSE, lowThreshold = 1000, noiseRange = c(-10, 0))

Arguments

x An aligned object of class fsa, as returned by align.fsa.

peaks A data.frame with one row for each peak to consider. Can be provided instead
of individual names (corresponding to peaks row names instead of a column),
size.min, size.max, channels and colors argument vectors.

names Character vector, the names to give to the peaks (duplicated values should be
avoided). If peaks is provided, this vector will be used instead.

size.min Numeric vector, the minimal size (in base pairs) to look for the corresponding
peak. If peaks is provided, this vector will be used instead.

size.max Numeric vector, the maximal size (in base pairs) to look for the corresponding
peak. If peaks is provided, this vector will be used instead.

channels Character vector, the name of the channel in x in which to look for the corre-
sponding peak. If peaks is provided, this vector will be used instead.

colors Vector defining the color to use in future plots to highlight the corresponding
peak. If peaks is provided, this vector will be used instead.

peaks.fsa 19

logTransform Single logical value, whether to apply log transformation (base 2) to normalized
values (previously floored to 0 and summed with 1) or not.

lowThreshold Single numeric value, threshold for which "low profile" warnings are called if
all peaks are lower.

noiseRange Numeric vector of length 2, defining the range (relative to the starting range of
the first peak defined in ranges) in which measure the noise (in bp). If the noise
peak is 20 percent greater than the first peak, a warning is raised as the accuracy
of the measure may be compromised.

Value

Returns x, with a new or updated peaks attribute, a data.frame with a row for each range :

size.min User-provided argument.

size.max User-provided argument.

channels User-provided argument.

colors User-provided argument.

size Size at which the maximum was found, in base pairs.

height Maximum found, in fluorescence units.

offScale Is there any off-scale value in the range ?

normalized Current peak’s height divided by the mean of all peak heights.

A normalized vector attribute is also set, corresponding to the normalized column only.

Author(s)

Sylvain Mareschal

See Also

generic.process

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa_GEP/A5918.fsa", package="FSAtools"))
fsa <- align.fsa(fsa)

Single custom interval
fsa <- peaks.fsa(

fsa,
names = "IRF4",
size.min = 86.2,
size.max = 87.5,
channels = "6-FAM",
colors = "blue"

)
print(attr(fsa, "peaks"))

20 plot.fsa

Using a design file
design <- designFile(system.file("extdata/design_GEP.conf", package="FSAtools"))
fsa <- peaks.fsa(fsa, peaks=design$GLOBALS$PEAKS)
print(attr(fsa, "peaks"))

plot.fsa Plot method for "fsa" objects

Description

Plots a fsa object. For each selected channel, a line is drawn bewteen measured fluorescence
intensities (y axis) along the electrophoresis time (x axis).

Usage

S3 method for class 'fsa'
plot(x, units = NA, channels = NA, chanColors = NA, ladder = TRUE,

offScaleCol = "#FF0000", offScalePch = "+", offScaleCex = 0.4, bg = "white",
fg = "black", title = "", title.adj = 0, title.line = NA, xlab = NA,
ylab = "Intensity", xlim = NA, ylim = NA, xaxt = "s", yaxt = "s", bty = "o",
xaxp = NA, nticks = 5, all.bp = TRUE, peaks.alpha = 48L, peaks.srt = 30,

peaks.adj = c(0, 0), peaks.cex = 1.3, peaks.font = 2, legend.x = "topleft", ...)

Arguments

x The fsa object to plot.

units Single character value, the unit to use on x axis. "index" uses the raw index con-
tained in files, "bp" usess base pair estimations but needs the object to be aligned
first using align.fsa. NA will select "bp" if x is aligned, "index" elsewhere.

channels Character or integer vector, the channels to plot. If NA, all channels are selected.

chanColors Character vector defining colors to use to plot channels. Can be named accord-
ing to channel names stored in x, or parallel with channels (first color for first
channel, etc, no recycling). If NA, colors stored in x are used. See the col argu-
ment in par for further details on allowed values.

ladder Single logical value, whether to add an x axis with size ladder peaks or not.
Raises a warning if x was not aligned before plotting.

offScaleCol To be passed to points for off-scale value plot (see par for allowed values).

offScalePch To be passed to points for off-scale value plot (see par for allowed values).

offScaleCex To be passed to points for off-scale value plot (see par for allowed values).

bg See par for further details.

fg See par for further details. This value is also used for col.axis, col.lab, col.main
and col.sub graphical parameters.

title Single character value, the main title to print on the plot.

title.adj To be passed as adj to title.

plot.fsa 21

title.line To be passed as line to title.

xlab See plot for further details. If NA, units is used.

ylab See plot for further details.

xlim See plot for further details. If NA, x range is used.

ylim See plot for further details. If NA, x range is used.

xaxt See par for further details.

yaxt See par for further details.

bty See par for further details.

xaxp See par for further details. If NA, a suitable value is computed.

nticks Single integer value. When xaxp is NA and units is "bp", this values fixes the
interval between X axis labels.

all.bp Single logical value, whether to force an unlabeled axis tick at each bp when
units is "bp" or not.

peaks.alpha Single integer value, the alpha channel to add to peak colors to make a back-
ground (255 is no transparency at all, 0 is invisible).

peaks.srt To be passed as srt to text while printing peak names.

peaks.adj To be passed as adj to text while printing peak names.

peaks.cex To be passed as cex to text while printing peak names.

peaks.font To be passed as font to text while printing peak names.

legend.x To be passed as x to legend.

... Further arguments to be passed to plot.

Value

Invisibly returns TRUE on success.

Author(s)

Sylvain Mareschal

See Also

read.fsa

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa_GEP/A5918.fsa", package="FSAtools"))

Plot whole profile
plot(fsa)

Plot subset of the profile (time index)
plot(fsa, units="index", xlim=c(4000,5000))

22 plot.fsaModel

Plot subset of the profile (base pairs)
fsa <- align.fsa(fsa)
plot(fsa, units="bp", xlim=c(80,130))

plot.fsaModel Plot method for "fsaModel" objects

Description

Plots a fsaModel object.

Usage

S3 method for class 'fsaModel'
plot(x, xlab = "Score", lwd = 3, ...)

Arguments

x The fsaModel object to plot.

xlab To be passed to plot.

lwd To be passed to plot.

... Further arguments to be passed to plot.

Value

Invisibly returns TRUE on success.

Author(s)

Sylvain Mareschal

See Also

train

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa_GEP/A5918.fsa", package="FSAtools"))

Add model from design file
design <- designFile(system.file("extdata/design_GEP.conf", package="FSAtools"))
fsa <- add.model(fsa, model=design$GLOBALS$MODEL)

Plot model
plot(attr(fsa, "model"))

print.fsa 23

print.fsa Print method for "fsa" objects

Description

Prints a short summary of an fsa object.

Usage

S3 method for class 'fsa'
print(x, ...)

Arguments

x The fsa object to print.

... Currently ignored.

Value

Invisibly returns TRUE on success.

Author(s)

Sylvain Mareschal

See Also

read.fsa

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa_GEP/A5918.fsa", package="FSAtools"))
print(fsa)

Aligned version
fsa <- align.fsa(fsa)
print(fsa)

24 read.abif

read.abif Read ABIF formatted files

Description

ABIF stands for Applied Biosystem Inc. Format, a binary format modeled after TIFF format.
Corresponding files usually have an *.ab1 or *.fsa extension.

Usage

read.abif(filename, max.bytes.in.file = file.info(filename)$size,
pied.de.pilote = 1.2, verbose = FALSE)

Arguments

filename The name of the file.
max.bytes.in.file

The size in bytes of the file, defaulting to what is returned by file.info

pied.de.pilote Safety factor: the argument n to readBin is set as pied.de.pilote*max.bytes.in.file.

verbose logical [FALSE]. If TRUE verbose mode is on.

Details

All data are imported into memory, there is no attempt to read items on the fly.

Value

A list with three components: Header which is a list that contains various low-level information,
among which numelements is the number of elements in the directory and dataoffset the offset
to find the location of the directory. Directory is a data.frame for the directory of the file with the
number of row being the number of elements in the directory and the 7 columns describing various
low-level information about the elements. Data is a list with the number of components equal to
the number of elements in the directory.

Note

This function and the current help page were duplicated from the seqinr package in its 3.0-7 version
(available on the CRAN under GPL 2 licensing).

Author(s)

J.R. Lobry, ’bool’ type implemented by Sylvain Mareschal

read.fsa 25

References

Charif, D. and Lobry, J.R. (2007) Structural approaches to sequence evolution: Molecules, net-
works, populations ISBN 978-3-540-35305-8, pp 207-232.

Anonymous (2006) Applied Biosystem Genetic Analysis Data File Format. Available at https://
projects.nfstc.org/workshops/resources/articles/ABIF_File_Format.pdf. Last visited
on 2020-07-10.

See Also

readBin which is used here to import the binary file and file.info to get the size of the file.

Examples

Example FSA file provided
rawFsa <- read.abif(system.file("extdata/fsa_GEP/A5918.fsa", package="FSAtools"))

read.fsa Imports a .fsa file from Applied Biosystems

Description

This function parses a FSA file holding fragment analysis data, using seqinr package’s read.abif.

Usage

read.fsa(file, lowess = TRUE, lowess.top = 200, processed = FALSE, meta.extra = NULL,
quiet = FALSE, ...)

Arguments

file Single character value, the name and path of the file to parse.

lowess Single logical value, whether to apply lowess on intensities to smooth time-
related biases or not.

lowess.top Single numeric value, values flagged as "off-scale" or above this threshold will
be replaced by lowess.top to compute the lowess smooth, in order to limit the
impact of high and wide peaks.

processed Single logical value, whether to use processed DATA values (as stored in sets 9
to 12, not always available) rather than raw values (sets 1 to 4). If NA, processed
ones will be used as long as they are available, else raw ones will be used instead.

meta.extra Named character vector, defining which extra fields to extract to populate the
runMetaData attribute. The vector names define the human-readable names to
use in output, the vector values provide the 4 uppercase letter code to extract (all
values will be gathered in a vector if the code is used several times). See the
reference provided in read.abif for existing codes in the ABIF file format.

quiet Single logical value, whether to print FSA meta-data read from the file or not.

... Further arguments to be passed to read.abif.

https://projects.nfstc.org/workshops/resources/articles/ABIF_File_Format.pdf
https://projects.nfstc.org/workshops/resources/articles/ABIF_File_Format.pdf

26 read.sanger

Value

A S3 object of class fsa

Author(s)

Sylvain Mareschal

See Also

read.abif, generic.process, plot.fsa, read.sanger

Examples

Example FSA file provided
fsa <- read.fsa(system.file("extdata/fsa_GEP/A5918.fsa", package="FSAtools"))
print(fsa)

read.sanger Imports a .ab1 file from Applied Biosystems corresponding to Sanger
sequencing

Description

This function parses a FSA/AB1 file using read.fsa, with few adjustments for Sanger sequencing
experiments.

Usage

read.sanger(file, channelOrder = NULL, guess.threshold = 0.3, processed = NA,
lowess = FALSE, ...)

Arguments

file Single character value, the name and path of the file to parse.

channelOrder Character vector, providing ’A’, ’C’, ’G’ and ’T’ in the order of the used chan-
nels. If NULL, a guess will be attempted based on the called sequence.

guess.threshold

Single numeric value, setting the tolerance to use for channel guessing valida-
tion. Lower values mean higher chances to get an error for channel guessing
failure.

processed To be passed to read.fsa.

lowess To be passed to read.fsa.

... To be passed to read.fsa.

Value

A S3 object of class fsa

train 27

Author(s)

Sylvain Mareschal

See Also

read.fsa, read.abif

train Training function for binary predictors

Description

This function build a model from data to predict class in classify.

Usage

train(peakMatrix, group, filter.p = 0.05, groupColors = c("red", "blue"),
threshold = 0.9)

Arguments

peakMatrix Numeric matrix of normalized peak heights with samples in rows and peaks in
columns.

group Two-level factor defining the group of every samples in peaks.

filter.p Single numeric value, if not NA only genes for which the t-test p is lower than
this will be used in the model.

groupColors Vector of length two, defining the colors to use to represent the two groups in
future plots.

threshold Single numeric value, the likelihood threshold above which make a call when
classifying (classification will return NA is this threshold is met for none of the
two groups).

Value

Returns an S3 object of class fsaModel.

Author(s)

Sylvain Mareschal

See Also

add.model, classify

28 wav2RGB

Examples

Underlying truth for pseudo-data (10 genes)
geneNames <- paste("gene", LETTERS[1:10], sep=".")
geneMean <- abs(rnorm(10))
groupShift <- rnorm(10, sd=0.1)

Generate pseudo-data for 50 samples
mtx <- NULL
for(g in 1:10) {

x <- rnorm(n=50, mean=geneMean[g], sd=0.1)
x[1:25] <- x[1:25] + groupShift[g]
x[26:50] <- x[26:50] - groupShift[g]
mtx <- cbind(mtx, x)

}
colnames(mtx) <- geneNames
rownames(mtx) <- c(

paste("group1", 1:25, sep="."),
paste("group2", 26:50, sep=".")

)

Train model
group <- c(

rep("group1", 25),
rep("group2", 25)

)
model <- train(mtx, group)
plot(model)

Compare model to truth
i <- match(geneNames, model$geneNames)
out <- data.frame(

gene = geneNames,
true.M = geneMean,
model.M = model$geneMs[i],
true.shift = groupShift,
model.T = model$geneTs[i]

)
print(out)

wav2RGB Converts light wavelengths to RGB colors

Description

Converts wavelengths in nanometers into corresponding visible colors.

Usage

wav2RGB(wav)

wav2RGB 29

Arguments

wav Numeric vector of wavelengths (in nanometers) to convert into colors.

Value

Returns a character vector of the same length as wav, with an RGB color for each wavelength.
Wavelengths out of visible ranges return black.

Author(s)

Sylvain Mareschal

References

http://codingmess.blogspot.fr/2009/05/conversion-of-wavelength-in-nanometers.html

Examples

wv <- seq(from=300, to=800, by=10)
plot(x=wv, y=rep(1, length(wv)), col=wav2RGB(wv), pch=19)

http://codingmess.blogspot.fr/2009/05/conversion-of-wavelength-in-nanometers.html

Index

add.model, 2, 6, 27
align.fsa, 4, 10, 18
attributes, 5

classify, 2, 3, 6, 9, 27

designFile, 7, 14

export.attr, 9

file.info, 24, 25
filter, 10
filter.fsa, 10
fusions.process, 11

generic.interface, 8, 13
generic.interface (generic.process), 13
generic.log, 12
generic.process, 6–9, 12, 13, 13, 16–19, 26
genotype.closest.fsa, 9
genotype.closest.fsa (genotype.fsa), 15
genotype.fsa, 15
genotype.N1.fsa (genotype.fsa), 15
genotype.ratio.fsa, 9
genotype.ratio.fsa (genotype.fsa), 15

layout, 17
legend, 21
lowess, 25

multiplot, 17

par, 3, 17, 20, 21
peaks.fsa, 6, 9, 16, 18
plot, 21, 22
plot.fsa, 5, 20, 26
plot.fsaModel, 22
points, 20
print.fsa, 23

read.abif, 24, 25–27

read.fsa, 4, 6, 9, 10, 21, 23, 25, 26, 27
read.sanger, 26, 26
read.table, 8
readBin, 24, 25

summary.lm, 5

t.test, 3
text, 21
title, 20, 21
train, 22, 27

wav2RGB, 28
write.table, 9

30

	add.model
	align.fsa
	classify
	designFile
	export.attr
	filter.fsa
	fusions.process
	generic.log
	generic.process
	genotype.fsa
	multiplot
	peaks.fsa
	plot.fsa
	plot.fsaModel
	print.fsa
	read.abif
	read.fsa
	read.sanger
	train
	wav2RGB
	Index

