Package 'RPDTest'

September 27, 2023

Title A New Type of Test Statistic and Method for Multinomial Goodness-of-Fit Test

Version 0.0.1

Description Performs multinomial goodness-of-fit test on multinomially distributed data using the Randomized phi-divergence test statistics. Details of this kind of statistics can be found at Nikita Puchkin, Vladimir Ulyanov (2023) <doi:10.1214/22-AIHP1299>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Imports doParallel, foreach, parallel, stats

NeedsCompilation no

Author Renkang Liu [aut, cre]

Maintainer Renkang Liu <eG0im@outlook.com>

Repository CRAN

Date/Publication 2023-09-27 09:10:05 UTC

R topics documented:

pVals . rpdStat . rpdTest		•	•	•		•	•		•					•	•									•	•	•	•		•					•			•	•		2
iparest	• •	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	5

Index

pVals

Randomized phi-divergence test: simulated p-value part

Description

This is one of the auxiliary functions used to execute the rpdTest function. This function can be used to calculate p-values based on Monte Carlo simulation. Users generally do not need to call this function except for testing purposes.

Usage

pVals(x, p, lambda = 1, ll, simNum, edfLen, n.cores, nDim, r)

Arguments

x	the obtained multinomial distribution data.Same data structure as the data parameter in rpdTest.
р	the probability vector in the null hypothesis. It is necessary to ensure beforehand that the vectors are valid.
lambda	a control parameter of the statistic calculation, adjusting it will significantly change the final obtained statistic.
11	an integer specifying the number of outer loops of the Monte Carlo simulation.
simNum	an integer specifying the number of inner loops of the Monte Carlo simulation.
edfLen	an integer that adjusts the number of points used to generate the empirical dis- tribution function used to perform the simulation.
n.cores	an integer used to specify the number of cores used to perform parallel oper- ations. The default is to use the maximum number of cores available to the computer minus one.
nDim	an integer indicating the dimension of the uniformly distributed vectors gener- ated during the computation of the statistic. It is equal to the number of experi- ments for the multinomial distribution.
r	an integer indicating the dimension of the data parameter. It is equal to the number of possible outcomes of the multinomial distribution.

Value

an numeric value indicating simulated p-value.

Examples

```
d <- c(20,40)
#The next line is equivalent to rpdTest(d,sim.pValue = TRUE,n.cores = 2)$p.value
#It usually takes 1-2 minutes to perform this calculation process
pVals(d, c(1/2,1/2), ll = 5, simNum = 30, edfLen = 2500, n.cores = 2, nDim = sum(d), r = length(d))</pre>
```

rpdStat

Randomized phi-divergence test: statistic part

Description

This is one of the auxiliary functions used to execute the rpdTest function. This function calculates the statistic for a single Randomized phi-divergence test. Users generally do not need to call this function except for testing purposes.

rpdTest

Usage

```
rpdStat(data, probability, lambda = 1, nDim, r)
```

Arguments

data	the same data structure that provided in rpdTest.
probability	the same numeric vector that provided in rpdTest.
lambda	the same parameter that provided in rpdTest.
nDim	an integer indicating the dimension of the uniformly distributed vectors gener- ated during the computation of the statistic. It is equal to the number of experi- ments for the multinomial distribution.
r	an integer indicating the dimension of the data parameter. It is equal to the number of possible outcomes of the multinomial distribution.

Value

a numeric value that reflects the statistic obtained after an execution of rpdTest at that time.

Examples

```
d <- c(20,40)
#The next line is equivalent to rpdTest(d)$statistic
rpdStat(d, c(1/2,1/2), nDim = sum(d), r = length(d))</pre>
```

rpdTest

Randomized phi-divergence test

Description

The most important part of the package: a function for performing hypothesis testing — An analogue of Chi-square Goodness-of-Fit Test. Accept a vector, matrix or a data.frame as observed data. Then obtain a specific Randomized phi-divergence statistic, which is computed based on a uniformly distributed random vector on the n-sphere. This random vector is uniquely generated at runtime. No definite p-value is provided at current stage. However, a p-values in Monte Carlo simulation is available as an option. It executes in parallel within a nested for loop to reduce randomness. In the current version (0.0.1), this feature is still being debugged and improved, so this option is not enabled by default.

Usage

```
rpdTest(
   data,
   p = rep(1/length(data), length(data)),
   lambda = 1,
   sim.pValue = FALSE,
   ll = 5,
   simNum = 30,
   edfLen = 2500,
   n.cores = NULL
)
```

Arguments

data	a one-dimensional vector or matrix of this shape (data.frame) in which observa- tion data for some multinomial distribution are stored.
р	the probability vector in the null hypothesis. Will check the validity of this vector.
lambda	a control parameter of the statistic calculation, adjusting it will significantly change the final obtained statistic.
sim.pValue	a logical variable. It decides whether to compute p-values in Monte Carlo sim- ulation.
11	an integer specifying the number of outer loops of the Monte Carlo simulation.
simNum	an integer specifying the number of inner loops of the Monte Carlo simulation.
edfLen	an integer that adjusts the number of points used to generate the empirical dis- tribution function used to perform the simulation.
n.cores	an integer used to specify the number of cores used to perform parallel oper- ations. The default is to use the maximum number of cores available to the computer minus one.

Value

standard list object with class "htest".

Examples

```
d <- rmultinom(1, 120, c(1/4,3/4))
#following will only obtain statistic
rpdTest(d)
#following will obtain sim.p.value either. You can also specify the number of
#cores to use. For example, two:
#It usually takes 1-2 minutes to perform this calculation process
rpdTest(d,sim.pValue = TRUE,n.cores = 2)</pre>
```

4

Index

data.frame,3

pVals,<mark>1</mark>

rpdStat, 2
rpdTest, 2, 3, 3