Package 'TransP'

October 12, 2022

Type Package

Title Implementation of Transportation Problem Algorithms
Version 0.1
Date 2016-02-11
Author Somenath Sit
Maintainer Somenath Sit <somenath.bhu. 2010@gmail.com>
Description Implementation of two transportation problem algorithms.

1. North West Corner Method
2. Minimum Cost Method or Least cost method.

For more technical details about the algorithms please refer below URLs.
http://www.universalteacherpublications.com/univ/ebooks/or/Ch5/nw.htm. http://personal.maths.surrey.ac.uk/st/J.F/chapter7.pdf.

License GPL (>= 2)
LazyLoad yes
RoxygenNote 5.0.1
URL https://github.com/Somenath24/TransP
NeedsCompilation no
Repository CRAN
Date/Publication 2016-02-13 19:01:12

R topics documented:

mincost 2
nwc 3
Index 5

Description

This function implements Minimum Cost Algorithm to resolve transportation problem and get optimized allocation matrix

Usage

mincost(ex_matrix)

Arguments

ex_matrix A cost matrix where last column must be the supply and last row must be the demand. Input matrix should not have any missing values (NA), otherwise function will throw an error.

Details

This function takes a cost matrix (with Supply and Demand) and using North-West Corner approach gives the allocation matrix as well as the calcualted optimized cost. This function checks for degenerated problem but it can't resolve it. User need to resolve by seeing final allocation matrix. If Supply and Demand are not equal Balance Supply/Demand will be stored in Dummy variable.

Value

A List which contrains the allocation matrix and the total optimized cost.

Examples

```
## Not run:
#Input matrix where last row is the Demand and last column is the Supply
ex_matrix=data.frame(M1=c(13,10, 25,17,210),M2=c(25,19,10, 24,240),
    M3=c (8,18,15,18,110),M4=c(13,5,14,13, 80),M5=c(20,12,18,19,170),
    Supply=c(430,150,100,130, 810),
    row.names = c("W1","W2","W3","W4","Demand"))
ex_matrix
\begin{tabular}{lrrrrrrr} 
& \multicolumn{2}{c}{ M1 } & M2 & \multicolumn{2}{c}{ M3 } & M4 & M5 \\
Supply \\
W1 & 13 & 25 & 8 & 13 & 20 & 430 \\
W2 & 10 & 19 & 18 & 5 & 12 & 150 \\
W3 & 25 & 10 & 15 & 14 & 18 & 100 \\
W4 & 17 & 24 & 18 & 13 & 19 & 130 \\
Demand & 210 & 240 & 110 & 80 & 170 & 810
\end{tabular}
mincost(ex_matrix)
```

\$Alloc_Matrix
M1 M2 M3 M4 M5
W1 $140140110 \quad 0 \quad 40$
W2 $70 \quad 0 \quad 080 \quad 0$
W3 $0100 \quad 0 \quad 0 \quad 0$
W4 $0 \quad 0 \quad 0 \quad 0130$
\$Total_Cost
[1] 11570
\#\# End(Not run)
nwc
Implements North-West Corner Algorithm to solve transportation problem

Description

This function implements North-West Corner Algorithm to solve transportation problem by optimized cost matrix and total optimized cost

Usage

\# Get optimized cost matrix for input matrix ex_matrix nwc (ex_matrix)

Arguments

ex_matrix A cost matrix where last column must be the supply and last row must be the demand. Input matrix should not have any missing values (NA), otherwise function will throw an error.

Details

This function takes a cost matrix (with Supply and Demand) and using North-West Corner approach gives the cost allocation matrix as well as the calcualted optimized cost. This function checks for degenerated problem but it can't resolve it. User need to resolve by seeing the cost allocation matrix.

Value

A List which contrains the Cost allocation matrix and the total optimized cost.

Examples

```
## Not run:
#Input matrix where last row is the Demand and last column is the Supply
ex_matrix=data.frame (M1 =c (13,10, 25,17,210),M2=c (25,19,10,24, 240),
                                    M3 =c (8, 18, 15,18, 110) ,M4=c(13,5,14,13, 80) ,M5=c (20, 12, 18, 19, 170),
                                    Supply=c(430,150,100,130,810),
                                    row.names = c("W1", "W2", "W3", "W4", "Demand"))
ex_matrix
\begin{tabular}{lrlrrrc} 
& \multicolumn{1}{c}{ M1 } & M2 & \multicolumn{2}{c}{ M3 } & M4 & M5 \\
W1 & 13 & 25 & 8 & 13 & 20 & 430 \\
W1 & 10 & 19 & 18 & 5 & 12 & 150 \\
W2 & 25 & 10 & 15 & 14 & 18 & 100 \\
W3 & 17 & 24 & 18 & 13 & 19 & 130 \\
W4 & 210 & 240 & 110 & 80 & 170 & 810
\end{tabular}
nwc(ex_matrix)
$Alloc_Matrix
        M1 M2 M3 M4 M5
W1 210 220 0 0 0
W2 0 20 110 20 0
W3 0 0 0 60 40
W4 0}00000013
$Total_Cost
[1] 14720
## End(Not run)
```


Index

mincost, 2
nwc, 3

