## Package 'bipl5’

November 2, 2023
Title Construct Reactive Calibrated Axes Biplots
Version 1.0.2
Description A modern view on the principal component analysis biplot with calibrated axes. Create principal component analysis biplots rendered in HTML with significant reactivity embedded within the plot. Furthermore, the traditional biplot view is enhanced by translated axes with inter-class kernel densities superimposed. For more information on biplots, see Gower, J.C., Lubbe, S. and le Roux, N.J. (2011, ISBN: 978-0-470-01255-0).
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
Imports cluster, crayon ( $>=1.5 .2$ ), htmlwidgets ( $>=1.6 .2$ ), knitr ( $>=$ 1.43), methods, plotly ( $>=4.10 .2$ )

Depends R ( $>=2.10$ )
NeedsCompilation no
Author Ruan Buys [aut, cre, cph] ([https://orcid.org/0000-0001-8527-8631](https://orcid.org/0000-0001-8527-8631)), Carel van der Merwe [aut, ths] ([https://orcid.org/0000-0003-0676-8240](https://orcid.org/0000-0003-0676-8240))
Maintainer Ruan Buys [ruanbuys8@gmail.com](mailto:ruanbuys8@gmail.com)
Repository CRAN
Date/Publication 2023-11-02 15:50:05 UTC

## $R$ topics documented:

bipl5 ..... 2
colorpal ..... 3
FMbiplot ..... 3
PCAbiplot ..... 4
plot.bipl5 ..... 6
predict.bipl5 ..... 6
print.bipl5 ..... 7
Symbol_List ..... 8
TDAbiplot ..... 8
bipl5
bipl5: Constructing Reactive Calibrated Axes Biplots

## Description

A modern view on PCA biplot with calibrated axes. Create PCA biplots rendered in HTML with significant reactivity embedded on the plot. Furthermore, the traditional biplot view is enhanced by translated axes with interclass kernel densities superimposed.

## Details

| Package: | bipl5 |
| :--- | :--- |
| Type: | Package |
| Version: | 0.0 .0 .9400 |
| Date: | $16-10-2023$ |
| License: | MIT |
| LazyLoad: | TRUE |

## Author(s)

- Ruan Buys (Maintainer)
- Carel van der Merwe


## Core Functions

- PCAbiplot
- TDAbiplot
- FMbiplot
- predict.bipl5
- print.bipl5


## Code Availability

The newest version of the package can be obtained on GitHub: https://github.com/RuanBuys/ bipl5

```
colorpal bpl5 default color scales
```


## Description

bpl5 default color scales

## Usage

colorpal(number = 16)

## Arguments

number Number of distinct colors to return

## Value

A vector of colors

## Examples

colorpal()

FMbiplot Determine various measures of fit for the PCA biplot

## Description

Print various measures of fit of the biplot display to the console

## Usage

FMbiplot(x)

## Arguments

x
An object of class bipl5

## Value

A list returned invisibly containing the following fit measures:

- Cumulative Predictivity
- Marginal Predictivity for the first three principal components
- Marginal Adequacy for the first three principal components
- Overall quality of display


## Examples

```
x<-PCAbiplot(iris[,-5])
FMbiplot(x)
```

```
PCAbiplot Construct a rank-2 PCA biplot
```


## Description

Rank-2 PCA biplots are constructed based on a combination of the first three principal components.

```
Usage
    PCAbiplot(
        x,
        group = NULL,
        scale = TRUE,
        basis = 1:2,
        symbol = "circle",
        color = NULL,
        build_plot = TRUE
    )
```


## Arguments

$x \quad$ A numeric matrix or data frame of size nxp
group $\quad$ Vector of size $n$ representing the class of each observation in $x$
scale Boolean: indicating whether the data matrix should be standardized before SVD is performed. Similar to the cor argument in princomp
basis A vector specifying which eigenvectors serve as basis for the plot. Currently only a biplot of rank 2 is supported
symbol Plotting symbol to be used per class group
color $\quad$ Colors to be utilized per class group
build_plot Boolean, indicating whether the biplot should be drawn or not. Mostly used in internal function calls serve as basis for the biplot. Currently only a biplot of rank 2 is supported

## Details

The method performs Principal Component Analysis (PCA) on the input data and constructs both a traditional biplot using vector representation and with calibrated axes. The data is clustered together on the display by the group parameter. The scale parameter determines if SVD is performed on the covariance matrix or correlation of $x$. It is highly recommended to set scale=TRUE as the rendered display is sensitive to the scaling in $x$.
By default three sets of principal components are used for the scaffolding axes, namely: 1 and 2, 1 and 3, and 2 and 3 . The function constructs these biplots in the plot_ly graphing library with reactivity embedded on the display. The following features are available on the display:

- A dropdown menu to change the principal components used to construct the display. Currently only the first three pairwise are supported.
- A button to give fit statistics of the biplot. Once clicked, a table is added to give the adequacy and predictivity of each axis for the display.
- A button that inserts a graph depicting the cumulative predictivity of each axis against the dimension of the biplot. See FMbiplot for the coordinates.
- A button that changes the display from vector representation of the variables, to calibrated axes in their original scale. The vector representation includes a unit circle around the origin.
- Prediction lines are inserted onto the display if an observation is clicked. The prediction lines can be removed by clicking on the legend entry.


## Value

A named list of class bipl5 with the following attributes
$x \quad$ A data frame which is the original input data
$\mathrm{Z} \quad$ A matrix of $\mathrm{n} \times 2$ representing the coordinates of each observation on the biplot
rank The rank of the approximated data
scale Whether the data is standardized prior to performing dimension reduction
group $\quad$ The grouping vector of the data
mu The vector of column means of the input data
stddev Vector of column standard deviations if the scale parameter is set to TRUE.
PCA The singular value decomposition of the covariance/correlation matrix, see svd
bipl The plotly graph displaying the biplot, see plot_ly
Adequacy The adequacy of each axis displayed for each set of principal components
Predictivity The predictivity of each axis displayed for each set of principal components

## See Also

print.bipl5 to display the biplot graph and further see TDAbiplot to draw a biplot with calibrated density axes. Fit measures can be obtained by FMbiplot

## Examples

```
## Consruct a biplot with
x<-PCAbiplot(iris[,1:4],group=iris[,5])
#alternatively
print(x)
## Construct a biplot that preserves the correlation structure among the variables
y<-PCAbiplot(iris[,-5],group=iris[,5],scale=TRUE)
```

```
plot.bipl5 Plot an object of class bipl5
```


## Description

Plot an object of class bipl5

## Usage

\#\# S3 method for class 'bipl5'
plot ( $x, y=$ NULL, ...)

## Arguments

x
An object of class bipl5
y Unsupported
... Unsupported

## Value

A plot_ly graph containing the biplot

## Examples

```
x<-PCAbiplot(iris[,-5])
plot(x)
```

predict.bipl5 Method to obtain the predicted or fitted values of the biplot

## Description

Extract the fitted values of the biplot display

## Usage

\#\# S3 method for class 'bipl5'
predict(object, ...)

## Arguments

object An object of class bipl5 from which predicted values are to be obtained Additional arguments to be passes to the kable function, contained in a list named kable.args

## Value

The function invisibly returns the predicted values of the biplot display, and outputs the predicted values via the kable function

## Examples

```
kable.args<-list()
kable.args$format<-"pipe"
x<-PCAbiplot(iris[,-5])
predict(x,kable.args)
```

print.bipl5 Default print method for an object of class bipl5

## Description

Default print method for an object of class bipl5

## Usage

```
## S3 method for class 'bipl5'
print(x, ...)
```


## Arguments

| $x$ | Object of class bipl5 |
| :--- | :--- |
| $\ldots$ | Additional parameters |

## Value

The object is returned invisibly

## Examples

```
x<-PCAbiplot(iris[,1:4],group=iris[,5])
print.bipl5(x)
```


## Description

Retrieve all valid plotting symbols for plotly library

## Usage

Symbol_List()

## Value

A vector of all the valid plotting symbols used in the plot_ly library.

## Examples

Symbol_List()

TDAbiplot Construct PCA biplots with translated calibrated density axes

## Description

Construct various rank-2 PCA biplots with translated axes based on a combination of the first three principal components.

## Usage

TDAbiplot(
x ,
dist = NULL,
inflate = 1,
alpha $=0.95$,
alpha_Elip = NULL,
swop = FALSE, density.args = NULL, color = NULL, symbol = "circle"
)
\#\# S3 method for class 'bipl5'
TDAbiplot(
x ,
dist = NULL,
inflate $=1$,

```
    alpha = 0.95,
    alpha_Elip = NULL,
    swop = FALSE,
    density.args = NULL,
    color = NULL,
    symbol = "circle"
)
```


## Arguments

x
dist Minimum distance between each axis. Default is roughly $12.5 \%$ of the plot diameter
inflate Density inflation factor
alpha Argument passes to alpha_Elip
alpha_Elip A function taking two arguments, $Z$ and alpha. The output of the function should be a two-column matrix of coordinates which will be used to construct an alphaellipse. See details below.
swop $\quad$ Swop the direction which to which each axis is translated
density.args Arguments to be passed to the density function
color $\quad$ Colors to be utilized per class group
symbol Plotting symbol to be used per class group

## Details

This function produces a PCA biplot with translated calibrated axes. The function constructs this biplot in the plot_ly graphing library with reactivity embedded on the display. The following features are available on the display:

- A dropdown menu to change the principal components used to construct the display. Currently only the first three pairwise are supported.
- A button to give fit statistics of the biplot. Once clicked, a table is added to give the adequacy and predictivity of each axis for the display.
- A button that inserts a graph depicting the cumulative predictivity of each axis against the dimension of the biplot.
- Prediction lines are inserted onto the display if an observation is clicked. The prediction lines can be removed by clicking on the legend entry.

The alpha_Elip argument is used to subset the biplot plotting coordinates $(Z)$ to remove the effect of outliers in the data. A common suggestion is to use an alphabag or on Convex hull peeling algorithm to strip away extreme points. The alpha-ellipse will be constructed around this data, and will impact the lengths of the calibrated axes.

## Value

A named list of class bipl5, see PCAbiplot, with the following attributes:
$x \quad$ A data frame which is the original input data
z
rank The rank of the approximated data
scale Whether the data is standardized prior to performing dimension reduction
group The grouping vector of the data
mu
stddev
The vector of column means of the input data
Vector of column standard deviations if the scale parameter is set to TRUE.
PCA
plot
The singular value decomposition of the covariance/correlation matrix, see svd

Adequacy
The plotly graph displaying the biplot, see plot_ly

Predictivity
The adequacy of each axis displayed for each set of principal components
The predictivity of each axis displayed for each set of principal components

## See Also

PCAbiplot FMbiplot

## Examples

```
## Simple illustration of a calibrated density axis biplot
x<-PCAbiplot(iris[,-5],group=iris[,5])
TDAbiplot(x,dist=1,inflate=1)
## Change the plotting characters of class-groups:
y<- x |> TDAbiplot(dist=1,inflate=1,symbol=c("circle","diamond","square"))
## Custom kernel densities can be drawn on the axes:
density.args<-list()
density.args$kernel <- "optcosine"
density.args$bw <- "sj"
y<- x |> TDAbiplot(dist=1,inflate=1,density.args=density.args)
## To lessen the effects of outliers, a smaller alpha-ellipse can be
## used to determine axis lengths. Define a function that strips away
## outliers, for example a convex hull peeling algorithm:
HullPeeling <- function(x,alpha) {
    n<-nrow(x)
    propinside<-1
    target<-1-alpha
    x2<-x
    while (propinside>target) {
        hull<-grDevices::chull(x2)
        x2old<-x2
        x2<-x2[-hull,]
```

```
        propinside<-nrow(x2)/n
    }
        return(x2[grDevices::chull(x2),])
}
```

y<- x |> TDAbiplot(dist=1,inflate=1, alpha_Elip=HullPeeling, alpha=0.4)

## Index

bipl5, 2
colorpal, 3
FMbiplot, 2, 3, 5, 10
kable, 7
PCAbiplot, 2, 4, 9, 10
plot.bipl5, 6
plot_ly, 4-6, 8-10
predict.bipl5, 2, 6
princomp, 4
print.bipl5, 2, 5, 7
svd, 5, 10
Symbol_List, 8
TDAbiplot, 2, 5, 8

