Package 'breakfast'

April 26, 2024
Title Methods for Fast Multiple Change-Point/Break-Point Detection and Estimation
Version 2.4
Description A developing software suite for multiple change-point and change-pointtype feature detection/estimation (data segmentation) in data sequences.
Depends R (>=3.0.0)
License GPL-2
Imports plyr, Rcpp, ggplot2, splines
LinkingTo Rcpp
Encoding UTF-8
Suggests testthat, knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.2.3
NeedsCompilation yes
Author Andreas Anastasiou [aut],
Yining Chen [aut, cre],
Haeran Cho [aut], Piotr Fryzlewicz [aut]
Maintainer Yining Chen y.chen101@1se.ac.uk
Repository CRAN
Date/Publication 2024-04-26 15:10:02 UTC

R topics documented:

breakfast-package 2
breakfast 3
model.fixednum 5
model.gsa 7
model.ic 8
model.lp 10
model.sdll 11
model.thresh 13
plot.breakfast.cpts 15
print.breakfast.cpts 15
print.cptmodel 16
sol.idetect 16
sol.idetect_seq 18
sol.not 19
sol.tguh 21
sol.wbs 22
sol.wbs2 23
sol.wem 25
Index 27
breakfast-package Breakfast: Methods for Fast Multiple Change-point Detection and Es-
timation

Description

A developing software suite for multiple change-point detection/estimation (data segmentation) in data sequences.

Details

The current version implements methods for detecting changes in the data sequence modelled as (i) a piecewise-constant function plus i.i.d. Gaussian noise, (ii) a piecewise-constant function plus autoregressive time series, (iii) a piecewise-linear and continuous function plus i.i.d. Gaussian noise, and (iv) a piecewise-linear and discontinuous function plus i.i.d. Gaussian noise. This is carried out via a two-stage procedure combining solution path generation and model selection methodologies. Change-point detection in breakfast is carried out in two stages, first the computation of a solution path, followed by a model selection step along the path. A variety of solution path and model selection methods are included, which can be accessed individually, or through breakfast. Currently supported solution path methods are: sol.idetect, sol.idetect_seq, sol.wbs, sol.wbs2, sol.not, sol.tguh and sol.wem.
Currently supported model selection methods are: model.ic, model.lp, model.sdll, model.thresh and model.gsa.
Check back future versions for more change-point models and the corresponding methods.

Author(s)

- Andreas Anastasiou
- Yining Chen
- Haeran Cho
- Piotr Fryzlewicz

We would like to thank Shakeel Gavioli-Akilagun, Anica Kostic, Shuhan Yang and Christine Yuen for their comments and suggestions that helped improve this package.

See Also

browseVignettes (package = "breakfast") contains a detailed comparative simulation study of various methods implemented in breakfast for the models (i), (iii) and (iv).
breakfast Methods for fast detection of multiple change-points

Description

This function estimates the number and locations of change-points in a univariate data sequence, which is modelled as (i) a piecewise-constant function plus i.i.d. Gaussian noise, (ii) a piecewiseconstant function plus autoregressive time series, (iii) a piecewise-linear and continuous function plus i.i.d. Gaussian noise, or (iv) a piecewise-linear and discontinuous function plus i.i.d. Gaussian noise. This is carried out via a two-stage procedure combining solution path generation and model selection methodologies.

Usage

```
    breakfast(
        x,
        type = c("const", "lin.cont", "lin.discont"),
        solution.path = NULL,
        model.selection = NULL
    )
```


Arguments

x
type

A numeric vector containing the data to be processed
The type of change-point models fitted to the data; currently supported models are: piecewise constant signals (type = "const", chosen by default), piecewise linear and continuous signals (type = "lin. cont") and piecewise linear and discontinuous signals (type = "lin. discont").
solution.path A string or a vector of strings containing the name(s) of solution path generating method(s); if individual methods are accessed via this option, default tuning parameters are used. Alternatively, you can directly access each solution path generating method via sol. [method]. If both solution. path and model.selection are unspecified, we return the output from the suggested combinations based on their performance, which depends on type as below:
When type = "const": ("idetect", "ic"), ("idetect_seq", "thresh"), ("not", "ic"), ("tguh", "lp"), ("wbs", "ic"), ("wbs2", "sdll") and ("wcm", "gsa").
When type = "lin. cont" or type = "lin.discont": ("idetect_seq", "thresh"), ("not", "ic") and ("idetect", "sdll").
If solution. path is specified but model. selection is not, we return the output from the specified solution. path methods combined with the suggested model selection methods (respectively) as above.

```
    "idetect" IDetect, supporting type = "const", "lin.cont", "lin.discont",
        see sol.idetect
    "idetect_seq" Sequential IDetect, supporting type = "const", "lin.cont",
        "lin.discont", see sol.idetect_seq
    "not" Narrowest-Over-Threshold, supporting type = "const", "lin.cont",
        "lin.discont", see sol.not
    "tguh" Tail-Greedy Unbalanced Haar, supporting type = "const", see sol.tguh
    "wbs" Wild Binary Segmentation, supporting type = "const", see sol.wbs
    "wbs2" Wild Binary Segmentation 2, supporting type = "const", see sol.wbs2
    "wem" Wild Contrast Maximisation, supporting type = "const" in combina-
        tion with model.gsa handling model (ii), see sol.wem
    "all" All of the above that support the type
```

model.selection

A string or a vector of strings containing the name(s) of model selection method(s); if individual methods are accessed via this option, default tuning parameters are used. Alternatively, you can directly access each model selection method via model.[method]. If both solution. path and model.selection are unspecified, we return the output from the suggested combinations based on their performance, see solution. path. If model.selection is specified but solution. path is not, we return the output from the specified model. selection methods combined with the suggested solution path methods (respectively). Not all solution. path methods are supported by all model.selection methods; check the individual functions for more information.
'ic' Strengthened Schwarz information criterion, supporting type = "const", "lin.cont", "lin.discont", see model.ic
'lp" Localised pruning, supporting type = "const", see model.lp
"sdll" Steepest Drop to Low Levels method, supporting type = "const", "lin.cont", "lin.discont", see model.sdll
"thresh" Thresholding, supporting type = "const", "lin.cont", "lin.discont", see model.thresh
'gsa" gappy Schwarz algorithm, supporting type = "const" in combination with sol.wcm handling model (ii), see model.gsa
"all" All of the above that support the given type

Details

Please also take a look at the vignette for tips/suggestions/examples of using the breakfast package.

Value

An S3 object of class breakfast.cpts, which contains the following fields:
\mathbf{x} Input vector x
cptmodel.list A list containing S3 objects of class cptmodel; each contains the following fields:
solution.path The solution path method used
model.selection The model selection method used to return the final change-point estimators object
no.of.cpt The number of estimated change-points in the piecewise-constant mean of the vector cptpath. object\$x
cpts The locations of estimated change-points in the piecewise-constant mean of the vector cptpath. object\$x. These are the end-points of the corresponding constant-mean intervals
est An estimate of the piecewise-constant mean of the vector cptpath. object\$x; the values are the sample means of the data (replicated a suitable number of times) between each pair of consecutive detected change-points

References

A. Anastasiou \& P. Fryzlewicz (2022) Detecting multiple generalized change-points by isolating single ones. Metrika, 85(2), 141-174.
R. Baranowski, Y. Chen \& P. Fryzlewicz (2019) Narrowest-over-threshold detection of multiple change points and change-point-like features. Journal of the Royal Statistical Society: Series B, 81(3), 649-672.
H. Cho \& C. Kirch (2022) Two-stage data segmentation permitting multiscale change points, heavy tails and dependence. Annals of the Institute of Statistical Mathematics, 74(4), 653-684.
H. Cho \& P. Fryzlewicz (2024) Multiple change point detection under serial dependence: Wild contrast maximisation and gappy Schwarz algorithm. Journal of Time Series Analysis, 45(3): 479494.
P. Fryzlewicz (2014) Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6), 2243-2281.
P. Fryzlewicz (2018) Tail-greedy bottom-up data decompositions and fast multiple change-point detection. The Annals of Statistics, 46(6B), 3390-3421.
P. Fryzlewicz (2020) Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection. Journal of the Korean Statistical Society, 49(4), 1027-1070.

Examples

```
f <- rep(rep(c(0, 1), each = 50), 10)
x <- f + rnorm(length(f)) * . }
breakfast(x)
```

```
model.fixednum
```

Estimate the location of change-points when the number of them is fixed

Description

Return a solution with the given number of change-points or change-point-type features from the solution path

Usage

model.fixednum(cptpath.object, fixednum $=$ NULL)

Arguments

cptpath. object A solution-path object, returned by a sol.[name] routine. Note that the field cptpath. object $\$ x$ contains the input data sequence.
fixednum The number of change-points or change-point-type features

Details

The model selection method which returns results with a given number of change-points or change-point-type features. If there are multiple such elements on the solution path, the one with the smaller residual sum of squares will be returned. On the other hand, if no such element exists, an empty set (i.e. with no change-points) will be returned.

Value

An S3 object of class cptmodel, which contains the following fields:
solution. path The solution path method used to obtain cptpath. object
type The model type used, inherited from the given cptpath. object
model.selection
The model selection method used to return the final change-point or change-point-type feature estimators object, here its value is "ic"
no.of.cpt The number of estimated features in the mean of the vector cptpath. object $\$ x$ based on the given type of the model
cpts The locations of estimated features in the mean of the vector cptpath. object $\$ x$. These are the end-points of the corresponding constant-mean or constant-slope intervals
est An estimate of the mean of the vector cptpath. object\$x; for piecewise-constant signals, the values are the sample means of the data (replicated a suitable number of times) between each pair of consecutive detected change-points; for piecewiselinear but discontinuous signals, the values are the estimated linear trend (replicated a suitable number of times) between each pair of consecutive detected change of slopes; for piecewise-linear and continuous signals, it is similar to the previous case but with the continuity constraint enforced, which envolves solving a global least squares problem.

See Also

sol.idetect, sol.not, sol.tguh, sol.wbs, sol.wbs2, sol.wcm, breakfast

Examples

```
x <- c(rep(0, 100), rep(1, 100), rep(0, 100)) + rnorm(300)
model.fixednum(sol.wbs(x),2)
model.fixednum(sol.not(x),2)
```


Description

This function estimates the number and locations of change-points in the piecewise-constant mean of a noisy data sequence with auto-regressive noise via gappy Schwarz algorithm from a candidate model sequence generated by sol.wcm.

Usage

model.gsa(cptpath.object, p.max $=10$, pen $=\log ($ length(cptpath.object\$x))^1.01)

Arguments

cptpath. object A solution-path object, returned by a sol.wcm routine. Note that the field cptpath. object $\$ x$ contains the input data sequence.
p.max \quad The maximum AR order. The default is $\mathrm{p} . \max =10$.
pen Penalty used for the Schwarz criterion. log(length (cptpath. object $\$ x$))^1.01 is used as default.

Details

From the largest to the smallest (i.e. empty) candidate models generated by sol.wcm, gappy Schwarz algorithm locally evaluates the Schwarz criterion (SC, under piecewise constant signal $+\mathrm{AR}(\mathrm{p})$ noise model, with the AR order p to be determined adaptively) and its modification SC0 on each segment determined by the next smallest candidate model. It selects the larger model as the final model if over each segment, all newly introduced estimators are deemed 'significant' according to SC and SC0; see Cho and Fryzlewicz (2023) for details.

Value

An S3 object of class cptmodel, which contains the following fields:
solution.path The solution path method used to obtain cptpath.object, here its value is "wcm"
model.selection
The model selection method used to return the final change-point estimators object, here its value is "gsa"
no.of.cpt The number of estimated change-points in the piecewise-constant mean of the vector cptpath. object\$x
cpts The locations of estimated change-points in the piecewise-constant mean of the vector cptpath. object $\$ x$. These are the end-points of the corresponding constant-mean intervals
est An estimate of the piecewise-constant mean of the vector cptpath. object $\$ x$; the values are the sample means of the data (replicated a suitable number of times) between each pair of consecutive detected change-points

References

H. Cho \& P. Fryzlewicz (2024) Multiple change point detection under serial dependence: Wild contrast maximisation and gappy Schwarz algorithm. Journal of Time Series Analysis, 45(3): 479494.

See Also

sol.wcm

Examples

```
set.seed(111)
f <- rep(c(0, 5, 2, 8, 1, -2), c(100, 200, 200, 50, 200, 250))
x <- f + arima.sim(list(ar = c(.75, -.5), ma = c(.8, .7, .6, .5, .4, .3)), n = length(f), sd = 1)
model.gsa(sol.wcm(x))
```

model.ic Estimating change-points or change-point-type features in the mean of a noisy data sequence via the strengthened Schwarz information criterion

Description

This function estimates the number and locations of change-points or change-point-type features in the mean of a noisy data sequence via the sSIC (strengthened Schwarz information criterion) method.

Usage

model.ic(cptpath.object, alpha $=1.01$, q. max $=$ NULL)

Arguments

cptpath. object A solution-path object, returned by a sol.[name] routine. Note that the field cptpath. object $\$ x$ contains the input data sequence.
alpha The parameter associated with the sSIC. The default value is 1.01 . Note that the SIC is recovered when alpha $=1$.
q. max The maximum number of features allowed. If nothing or NULL is provided, the default value of $\min (100, n / \log (n))$ (rounded to an integer) will be used.

Details

The model selection method for algorithms that produce nested solution path is described in "Wild binary segmentation for multiple change-point detection", P. Fryzlewicz (2014), The Annals of Statitics, 42: 2243-2281. The corresponding description for those that produce non-nested solution set can be found in "Narrowest-over-threshold detection of multiple change points and change-point-like features", R. Baranowski, Y. Chen and P. Fryzlewicz (2019), Journal of Royal Statistical Society: Series B, 81(3), 649-672.

Value

An S3 object of class cptmodel, which contains the following fields:

```
    solution.path The solution path method used to obtain cptpath.object
    type The model type used, inherited from the given cptpath.object
    model.selection
```

 The model selection method used to return the final change-point or change- point-type feature estimators object, here its value is "ic"
 no.of.cpt The number of estimated features in the mean of the vector cptpath. object $\$ x$ based on the given type of the model
cpts The locations of estimated features in the mean of the vector cptpath. object $\$ x$. These are the end-points of the corresponding constant-mean or constant-slope intervals
est An estimate of the mean of the vector cptpath. object $\$ x$; for piecewise-constant signals, the values are the sample means of the data (replicated a suitable number of times) between each pair of consecutive detected change-points; for piecewiselinear but discontinuous signals, the values are based on the estimated linear trend between each pair of consecutive detected change of slopes; for piecewiselinear and continuous signals, it is similar to the previous case but with the continuity constraint enforced, which envolves solving a global least squares problem.

References

P. Fryzlewicz (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6), 2243-2281.
R. Baranowski, Y. Chen \& P. Fryzlewicz (2019). Narrowest-over-threshold detection of multiple change points and change-point-like features. Journal of the Royal Statistical Society: Series B, 81(3), 649-672.

See Also

sol.idetect, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

Examples

```
x <- c(rep(0, 100), rep(1, 100), rep(0, 100)) + rnorm(300)
model.ic(sol.wbs(x))
model.ic(sol.not(x))
```


Description

This function estimates the number and locations of change-points in the piecewise-constant mean of a noisy data sequence via the localised pruning method, which performs a Schwarz criterionbased model selection on the given candidate set in a localised way.

Usage

```
    model.lp(
        cptpath.object,
        min.d = 5,
        penalty = c("log", "polynomial"),
        pen.exp = 1.01,
        do.thr = TRUE,
        th.const = 0.5
    )
```


Arguments

cptpath. object A solution-path object, returned by a sol.[name] routine. Note that the field cptpath. object $\$ x$ contains the input data sequence.
min.d A number specifying the minimal spacing between change points; min. $d=5$ by default
penalty A string specifying the type of penalty term to be used in Schwarz criterion; possible values are:
"log" Use penalty $=\log (\text { length }(x))^{\wedge}$ pen. exp
"polynomial" Use penalty = length(x)^pen.exp
pen.exp Exponent for the penalty term (see penalty)
do.thr If do.thr = TRUE, mild threshoding on the CUSUM test statistics is performed after internal standardisation step in order to "pre-prune down" the candidates
th. const A constant multiplied to sqrt ($2 * \log (\operatorname{length}(x))$) to form a mild threshold; if not supplied, a default value ($0.5 *$ the value suggested in Fryzlewicz (2020)) is used, see th. const in model.sdll

Details

Further information can be found in Cho and Kirch (2022).

Value

An S3 object of class cptmodel, which contains the following fields:
solution. path The solution path method used to obtain cptpath. object
model.selection
The model selection method used to return the final change-point estimators object, here its value is "lp"
no.of.cpt The number of estimated change-points in the piecewise-constant mean of the vector cptpath. object\$x
cpts The locations of estimated change-points in the piecewise-constant mean of the vector cptpath. object\$x. These are the end-points of the corresponding constant-mean intervals
est An estimate of the piecewise-constant mean of the vector cptpath. object\$x; the values are the sample means of the data (replicated a suitable number of times) between each pair of consecutive detected change-points

References

H. Cho \& C. Kirch (2022) Two-stage data segmentation permitting multiscale change points, heavy tails and dependence. Annals of the Institute of Statistical Mathematics, 74(4), 653-684.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

Examples

```
f<- rep(rep(c(0, 1), each = 50), 10)
x <- f + rnorm(length(f)) * . }
model.lp(sol.not(x))
```

model.sdll Estimating change-points in the piecewise-constant or piecewise-
linear mean of a noisy data sequence via the Steepest Drop to Low Levels method

Description

This function estimates the number and locations of change-points in the piecewise-constant or piecewise-linear mean of a noisy data sequence via the Steepest Drop to Low Levels method.

```
Usage
    model.sdll(
        cptpath.object,
        sigma = stats::mad(diff(cptpath.object$x)/sqrt(2)),
        universal = TRUE,
        th.const = NULL,
        th.const.min.mult = 0.3,
        lambda = 0.9
    )
```


Arguments

cptpath. object A solution-path object, returned by a sol. [name] routine. The cptpath. object\$type variable decides the model type: piecewise-constant (type == "const"), piecewiselinear and continuous (type == "lin. cont") or piecewise-linear and discontinuous (type == "lin.discont"). In the piecewise-constant model, SDLL model selection should work well when cptpath. object is an object returned by the sol.wbs2 routine. In the piecewise-linear model (whether continuous or not), the output of sol.idetect should be supplied as cptpath. object. Note that the field cptpath. object $\$ x$ contains the input data sequence.
sigma An estimate of the standard deviation of the noise in the data cptpath. object $\$ x$. Can be a functional of cptpath. object $\$ x$ or a specific value if known. The default in the piecewise-constant model is the Median Absolute Deviation of the vector diff(cptpath. object\$x)/sqrt(2), tuned to the Gaussian distribution. In the piecewise-linear models, diff(cptpath. object\$x, differences $=2) / \operatorname{sqrt}(6)$ is used by default. Note that model.sdll works particularly well when the noise is i.i.d. Gaussian.
universal If TRUE, then the threshold that decides if there are any change-points is chosen automatically, so that the probability of type-I error (i.e. indicating changepoints if there are none) is approximately 1 - alpha. If FALSE, then th. const must be specified.
th. const Only relevant if universal == FALSE; in that case a numerical value must be provided. Used to create the threshold (applicable to the contrast magnitudes stored in cptpath.object) that decides if there are any change-points in the mean vector; that threshold is then th. const * $\operatorname{sqrt}(2 * \log (n)) *$ sigma, where n is the length of the data vector cptpath. object $\$ \mathrm{x}$.
th.const.min.mult
A fractional multiple of the threshold, used to decide the lowest magnitude of contrasts from cptpath. object still considered by the SDLL model selection criterion as potentially change-point-carrying.
lambda Only relevant if universal == TRUE; can be set to 0.9 or 0.95 . The approximate probability of not detecting any change-points if the truth does not contain any.

Details

The Steepest Drop to Low Levels method is described in "Detecting possibly frequent changepoints: Wild Binary Segmentation 2 and steepest-drop model selection", P. Fryzlewicz (2020), Journal of the Korean Statistical Society, 49, 1027-1070.

Value

An S3 object of class cptmodel, which contains the following fields:
solution. path The solution path method used to obtain cptpath. object
type The model type used, inherited from the given cptpath. object
model.selection
The model selection method used to return the final change-point estimators object, here its value is "sdll"
no.of.cpt The number of estimated change-points
cpts The locations of estimated change-points
est An estimate of the mean of the vector cptpath. object $\$ x$

References

P. Fryzlewicz (2020). Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection. Journal of the Korean Statistical Society, 49, 1027-1070.

See Also

```
sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast
```


Examples

```
f<- rep(rep(c(0, 1), each = 50), 10)
x <- f + rnorm(length(f))
model.sdll(sol.wbs2(x))
```

model.thresh

Estimating change-points in the piecewise-constant or piecewiselinear mean of a noisy data sequence via thresholding

Description

This function estimates the number and locations of change-points in the piecewise-constant or piecewise-linear mean of a noisy data sequence via thresholding.

Usage

model.thresh(cptpath.object, sigma $=$ NULL, th.const $=$ NULL)

Arguments

cptpath. object A solution-path object, returned by a sol. [name] routine. The cptpath. object $\$$ type variable decides the model type: piecewise-constant (type == "const"), piecewiselinear and continuous (type == "lin. cont") or piecewise-linear and discontinuous (type == "lin.discont"). In the piecewise-linear model (whether continuous or not), the output of sol.idetect_seq or sol not should be supplied as cptpath. object. Note that the field cptpath. object $\$ x$ contains the input data sequence.
sigma An estimate of the standard deviation of the noise in the data cptpath. object\$x. Can be a functional of cptpath. object $\$ x$ or a specific value if known. The default in the piecewise-constant model is the Median Absolute Deviation of the vector diff(cptpath. object\$x)/sqrt(2), tuned to the Gaussian distribution. In the piecewise-linear models, diff (cptpath. object $\$ x$, differences $=2) / \operatorname{sqrt}(6)$ is used by default. Note that model. thresh works particularly well when the noise is i.i.d. Gaussian.
th. const A positive real number used to define the threshold for the detection process. The default used in the piecewise-constant model is 1.15 , while in the piecewiselinear model, the value is taken equal to 1.4.

Value

An S3 object of class cptmodel, which contains the following fields:

| solution.path |
| :--- | | The solution path method used to obtain cptpath. object |
| :--- |
| type |
| model.selection |

| The model type used, inherited from the given cptpath. object |
| :--- | :--- |
| object, here its value is "thresh" |

no.of.cpt	The number of estimated change-points

cpts \quad| The locations of estimated change-points |
| :--- |

See Also
sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

Examples

```
f <- rep(rep(c(0, 1), each = 50), 10)
x <- f + rnorm(length(f))
model.thresh(sol.idetect_seq(x))
```

```
plot.breakfast.cpts Change-points estimated by the "breakfast" routine
```


Description

Plot method for objects of class breakfast.cpts

Usage

\#\# S3 method for class 'breakfast.cpts'
plot(x, display.data = TRUE, ...)

Arguments

x abreakfast.cpts object
display.data if display.data = TRUE, change-point estimators are plotted against the data by method. If display. data $=$ FALSE, only the estimators are plotted; this option is recommended when length (x) is large.
... current not in use

Examples

$f<-\operatorname{rep}(\operatorname{rep}(c(0,1)$, each $=50), 5)$
$x<-\mathrm{f}+\operatorname{rnorm(length(f))}$ * . 5
plot(breakfast(x, solution.path = 'all', model.selection = 'all'), display.data $=$ TRUE)
plot(breakfast(x), display.data = FALSE)
print.breakfast.cpts Change-points estimated by the "breakfast" routine

Description

Print method for objects of class breakfast.cpts

Usage

\#\# S3 method for class 'breakfast.cpts'
print(x, by = c("method", "estimator"), ...)

Arguments

x
by
a breakfast.cpts object
if by = 'method', change-point estimators are printed by method; if by = 'estimator', each change-point estimator is printed with the methods that detect it.
... current not in use

Examples

```
f <- rep(rep(c(0, 1), each = 50), 5)
x <- f + rnorm(length(f)) * . 5
print(breakfast(x, solution.path = 'all', model.selection = 'all'), by = 'method')
print(breakfast(x), by = 'estimator')
```

```
print.cptmodel Change-points estimated by solution path generation + model selec-
    tion methods
```


Description

Print method for objects of class cptmodel

Usage

\#\# S3 method for class 'cptmodel'
print(x, ...)

Arguments

x	a cptmodel object
\ldots	current not in use

Examples

```
    f <- rep(rep(c(0, 1), each = 50), 5)
    x <- f + rnorm(length(f)) * . 5
    print(model.ic(sol.idetect(x)))
```

sol.idetect

Solution path generation via the Isolate-Detect method

Description

This function arranges all possible change-points in the mean of the input vector, or in its linear trend, in the order of importance, via the Isolate-Detect (ID) method. It is developed to be used with the sdll and information criterion (ic) model selection rules.

Usage

```
    sol.idetect(
        x,
        type = "const",
        thr_ic_cons = 0.9,
        thr_ic_lin = 1.25,
        points = 3
    )
```


Arguments

x	A numeric vector containing the data to be processed.
type	The model type considered. type = "const", type = "lin. cont", type = "lin. discont" mean, respectively, that the signal (mean of x) is piecewise constant, piecewise linear and continuous, and piecewise linear but not necessarily continuous. If not given, the default is type = "const"
thr_ic_cons	A positive real number with default value equal to 0.9 . It is used to create the solution path for the piecewise-constant model. The lower the value, the longer the solution path.
thr_ic_lin	A positive real number with default value 1.25 . Used to create the solution path if type == "lin. cont" or type == "lin.discont"
points	A positive integer with default value equal to 3 . It defines the distance between two consecutive end- or start-points of the right- or left-expanding intervals, as described in the Isolate-Detect methodology.

Details

The Isolate-Detect method and its algorithm is described in "Detecting multiple generalized changepoints by isolating single ones", A. Anastasiou \& P. Fryzlewicz (2022), Metrika, https://doi.org/10.1007/s00184-021-00821-6.

Value

An S3 object of class cptpath, which contains the following fields:

```
solutions.nested
    TRUE, i.e., the change-point outputs are nested
solution.path Locations of possible change-points in the mean of x, arranged in decreasing
    order of change-point importance
solution.set Empty list
x Input vector }\textrm{x
type The input parameter type
cands Matrix of dimensions length(x)-1 by 4. The first two columns are (start, end)-
    points of the detection intervals of the corresponding possible change-point lo-
    cation in the third column. The fourth column is a measure of strength of the
    corresponding possible change-point. The order of the rows is the same as the
    order returned in solution.path
    method The method used, which has value "idetect" here
```


References

A. Anastasiou \& P. Fryzlewicz (2022). Detecting multiple generalized change-points by isolating single ones. Metrika, https://doi.org/10.1007/s00184-021-00821-6.

See Also

sol.idetect_seq, sol.not, sol.wbs, sol.wbs2, sol.tguh

Examples

```
r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
```

sol.idetect(r3)
sol.idetect_seq Solution path generation using the sequential approach of the IsolateDetect method

Description

This function arranges all possible change-points in the mean of the input vector, or in its linear trend, in the order of importance, via the Isolate-Detect (ID) method. It is developed to be used with the thresholding model selection rule.

Usage

sol.idetect_seq(x, type = "const", points = 4)

Arguments

x
type
都
The model type considered. type = "const", type = "lin. cont", type = "lin. discont" mean, respectively, that the signal (mean of x) is piecewise constant, piecewise linear and continuous, and piecewise linear but not necessarily continuous. If not given, the default is type $=$ "const"
points A positive integer with default value equal to 4. It defines the distance between two consecutive end- or start-points of the right- or left-expanding intervals, as described in the Isolate-Detect methodology.

Details

The Isolate-Detect method and its algorithm is described in "Detecting multiple generalized changepoints by isolating single ones", A. Anastasiou \& P. Fryzlewicz (2022), Metrika, https://doi.org/10.1007/s00184-021-00821-6.

Value

An S3 object of class cptpath, which contains the following fields:

```
solutions.nested
    TRUE, i.e., the change-point outputs are nested
solution.path Locations of possible change-points, arranged in decreasing order of change-
    point importance
solution.set Empty list
x Input vector x
type The input parameter type
```

cands	Matrix of dimensions length $(x)-1$ by 4. The first two columns are (start, end)- points of the detection intervals of the corresponding possible change-point lo- cation in the third column. The fourth column is a measure of strength of the corresponding possible change-point. The order of the rows is the same as the order returned in solution.path
method	The method used, which has value "idetect_seq" here

References

A. Anastasiou \& P. Fryzlewicz (2022). Detecting multiple generalized change-points by isolating single ones. Metrika, https://doi.org/10.1007/s00184-021-00821-6.

See Also

sol.idetect, sol.not, sol.wbs, sol.wbs2, sol.tguh

Examples

```
r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.idetect_seq(r3)
```

sol.not
Solution path generation via the Narrowest-Over-Threshold method

Description

This function arranges all possible features (e.g. change in the mean, change in the slope, etc) of the input vector in the order of importance, via the Narrowest-Over-Threshold (NOT) method.

Usage

```
sol.not(x, type = "const", M = 10000, systematic.intervals = TRUE, seed = NULL)
```


Arguments

$x \quad$ A numeric vector containing the data to be processed
type The model type considered. type = "const" means the signals are the piecewise constant, type $=$ "lin. cont" means the signals are the piecewise linear and continuous, and type $=$ "lin.discont" means the signals are the piecewise linear but not necessarily continuous. If not given, the default is type $=$ "const"
M The maximum number of all data sub-samples at the beginning of the algorithm. The default is $M=10000$
systematic.intervals
When drawing the sub-intervals, whether to use a systematic (and fixed) or random scheme. The default is systematic. intervals = TRUE
seed If a random scheme is used, a random seed can be provided so that every time the same sets of random sub-intervals would be drawn. The default is seed $=$ NULL, which means that this option is not taken

Details

The Narrowest-Over-Threshold method and its algorithm is described in "Narrowest-over-threshold detection of multiple change points and change-point-like features", R. Baranowski, Y. Chen and P. Fryzlewicz (2019), Journal of Royal Statistical Society: Series B, 81(3), 649-672.

Value

An S3 object of class cptpath, which contains the following fields:

```
solutions.nested
    FALSE, i.e., the change-point outputs are not nested
solution.path Empty list
solution.set Locations of possible change-points in the mean of x for each threshold level (in
            the decreasing order), arranged in the form of a list of lists
solution.set.th
    A list that contains threshold levels corresponding to the detections in solution.set
x Input vector x
type The model type used, which is given in the input. If not given, the default is
    type="const"
M Input parameter M
cands Matrix of dimensions length(x)-1 by 4. The first two columns are (start, end)-
    points of the detection intervals of the corresponding possible change-point loca-
    tion in the third column resulted from applying NOT to all threshold levels. The
    fourth column is a measure of strength of the corresponding possible change-
    point. The order of the rows reflect the strength of each detection in decreasing
    order. To avoid repetition, each possible location would appear at most once in
    the matrix (with the sub-interval that carries its highest possible strength)
method The method used, which has value "not" here
```


References

R. Baranowski, Y. Chen \& P. Fryzlewicz (2019). Narrowest-over-threshold detection of multiple change points and change-point-like features. Journal of the Royal Statistical Society: Series B, 81(3), 649-672.

See Also

sol.idetect, sol.idetect_seq, sol.tguh, sol.wbs, sol.wbs2

Examples

```
r3 <- rnorm(1000) + c(rep (0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.not(r3)
```

```
sol.tguh Solution path generation via the Tail-Greedy Unbalanced Haar
method
```


Description

This function arranges all possible change-points in the mean of the input vector in the order of importance, via the Tail-Greedy Unbalanced Haar method.

Usage

sol.tguh(x, type = "const", $\mathrm{p}=0.01$)

Arguments

$x \quad$ A numeric vector containing the data to be processed
type The model type considered. type = "const" means piecewise-constant; this is the only type currently supported in sol. tguh
$\mathrm{p} \quad$ Specifies the number of region pairs merged in each pass through the data, as the proportion of all remaining region pairs. The default is $p=0.01$

Details

The Tail-Greedy Unbalanced Haar decomposition algorithm is described in "Tail-greedy bottom-up data decompositions and fast multiple change-point detection", P. Fryzlewicz (2018), The Annals of Statistics, 46, 3390-3421.

Value

An S3 object of class cptpath, which contains the following fields:

```
solutions.nested
```

TRUE, i.e., the change-point outputs are nested
solution.path Locations of possible change-points in the mean of x, arranged in decreasing order of change-point importance
solution.set Empty list
$x \quad$ Input vector x
type Input parameter type
$\mathrm{p} \quad$ Input parameter p
cands Matrix of dimensions length(x)-1 by 4. The first two columns are (start, end)points of the detection intervals of the corresponding possible change-point location in the third column. The fourth column is a measure of strength of the corresponding possible change-point. The order of the rows is the same as the order returned in solution. path
method The method used, which has value "tguh" here

References

P. Fryzlewicz (2018). Tail-greedy bottom-up data decompositions and fast multiple change-point detection. The Annals of Statistics, 46, 3390-3421.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.wbs, sol.wbs2

Examples

```
r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.tguh(r3)
```

sol.wbs

Solution path generation via the Wild Binary Segmentation method

Description

This function arranges all possible change-in-mean features of the input vector in the order of importance, via the Wild Binary Segmentation (WBS) method.

Usage

sol.wbs(x, type = "const", $M=10000$, systematic.intervals $=$ TRUE, seed $=$ NULL)

Arguments

x
type

M
M The maximum number of all data sub-samples at the beginning of the algorithm. The default is $M=10000$
systematic.intervals
When drawing the sub-intervals, whether to use a systematic (and fixed) or random scheme. The default is systematic. intervals = TRUE
seed If a random scheme is used, a random seed can be provided so that every time the same sets of random sub-intervals would be drawn. The default is seed $=$ NULL, which means that this option is not set

Details

The Wild Binary Segmentation algorithm is described in "Wild binary segmentation for multiple change-point detection", P. Fryzlewicz (2014), The Annals of Statistics, 42: 2243-2281.

Value

An S3 object of class cptpath, which contains the following fields:

```
solutions.nested
```

 TRUE, i.e., the change-point outputs are nested
 solution. path Locations of possible change-points in the mean of \(x\), arranged in decreasing
 order of change-point importance
 solution.set Empty list
 \(x \quad\) Input vector \(x\)
 type The input parameter type
 M Input parameter M
 cands Matrix of dimensions length \((x)-1\) by 4. The first two columns are (start, end)-
 points of the detection intervals of the corresponding possible change-point lo-
 cation in the third column. The fourth column is a measure of strength of the
 corresponding possible change-point. The order of the rows is the same as the
 order returned in solution. path
 method The method used, which has value "wbs" here

References

P. Fryzlewicz (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6), 2243-2281.
R. Baranowski, Y. Chen \& P. Fryzlewicz (2019). Narrowest-over-threshold detection of multiple change points and change-point-like features. Journal of the Royal Statistical Society: Series B, 81(3), 649-672.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs2

Examples

```
r3 <- rnorm(1000) + c(rep (0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.wbs(r3)
```


Description

This function arranges all possible change-points in the mean of the input vector in the order of importance, via the Wild Binary Segmentation 2 method.

Usage

sol.wbs2(x, type = "const", $M=1000$, systematic.intervals $=$ TRUE, seed $=$ NULL)

Arguments

$x \quad$ A numeric vector containing the data to be processed.
type The model type considered. type = "const" means piecewise-constant; this is the only type currently supported in sol.wbs2
M The maximum number of data sub-samples drawn at each recursive stage of the algorithm. The default is $M=1000$. Setting $M=0$ executes the standard binary segmentation.
systematic.intervals
Whether data sub-intervals for CUSUM computation are drawn systematically (TRUE; start- and end-points taken from an approximately equispaced grid) or randomly (FALSE; obtained uniformly with replacement). The default is TRUE.
seed If a random scheme is used, a random seed can be provided so that every time the same sets of random sub-intervals would be drawn. The default is seed $=$ NULL, which means that this option is not set

Details

The Wild Binary Segmentation 2 algorithm is described in "Detecting possibly frequent changepoints: Wild Binary Segmentation 2 and steepest-drop model selection", P. Fryzlewicz (2020), Journal of the Korean Statistical Society, 49, 1027-1070.

Value

An S3 object of class cptpath, which contains the following fields:

solutions.nested	
TRUE, i.e., the change-point outputs are nested	
solution.path	Locations of possible change-points in the mean of x, arranged in decreasing order of change-point importance
solution.set	Empty list
x	Input vector x
type	Input parameter type
M	Input parameter M
cands	Matrix of dimensions length $(x)-1$ by 4. The first two columns are (start, end)- points of the detection intervals of the corresponding possible change-point lo- cation in the third column. The fourth column is a measure of strength of the corresponding possible change-point. The order of the rows is the same as the order returned in solution. path
method	The method used, which has value "wbs2" here

References

P. Fryzlewicz (2020). Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection. Journal of the Korean Statistical Society, 49, 1027-1070.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs

Examples

```
r3 <- rnorm(1000) + c(rep (0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.wbs2(r3)
```

sol.wcm

Solution path generation via the Wild Contrast Maximisation method

Description

This function arranges all possible change-points in the mean of the input vector in the order of importance, via the Wild Binary Segmentation 2 method.

Usage

sol.wcm(

$$
x
$$

type = "const",
M = 100,
min.d = NULL,
$\mathrm{Q}=\mathrm{floor}\left(\log (\operatorname{leng} \operatorname{th}(\mathrm{x}))^{\wedge} 1.9\right)$, max.iter $=5$
)

Arguments

x

type

M The maximum number of data sub-samples drawn at each recursive stage of the algorithm. The default is $M=100$.
min. d The minimum distance between candidate change-point estimators; if min. $d=$
A numeric vector containing the data to be processed.
The type of change-point models fitted to the data; currently the class of piecewise constant signals (type $=$ "const") is supported.

NULL, it is set to be max (20, $10+$ ceiling $\left(\log (\operatorname{length}(x))^{\wedge} 1.1\right)$.

Q
max.iter
The maximum number of allowable change-points. The default is $Q=f \operatorname{loor}\left(\log (\operatorname{length}(x))^{\wedge 1} .9\right)$.
The maximum number of candidate change-point models considered; if a model with the number of change-point estimators exceeding Q is required to generate the sequence of required candidate models, this argument is ignored. The default is max. iter $=5$.

Details

The Wild Contrast Maximisation (WCM) algorithm generates a nested sequence of candidate models by identifying large gaps in the solution path generated by WBS2, which aids the model selection step in the presence of large random fluctuations due to serial dependence. See Cho and Fryzlewicz (2023) for further details.

Value

An S3 object of class cptpath, which contains the following fields:

```
solutions.nested
    TRUE, i.e., the change-point outputs are nested
    solution.path Locations of possible change-points in the mean of x, arranged in decreasing
        order of change-point importance; this is not used by model.gsa
    solution.set A list of candidate change-point models. Each model contains possible change-
        points in the mean of }x\mathrm{ ; this is used by model.gsa
    x Input vector x
    type The type of the change-point model considered, which has value "const" here
    M Input parameter M
    cands Matrix of dimensions Q by 4. The first two columns are (start, end)-points of the
        detection intervals of the corresponding possible change-point location in the
        third column. The fourth column is a measure of strength of the corresponding
        possible change-point. The order of the rows is the same as the order returned
        in solution.path
    method The method used, which has value "wcm" here
```


References

H. Cho \& P. Fryzlewicz (2024) Multiple change point detection under serial dependence: Wild contrast maximisation and gappy Schwarz algorithm. Journal of Time Series Analysis, 45(3): 479494.

See Also

model.gsa

Examples

```
set.seed(111)
f<- rep(c(0, 5, 2, 8, 1, -2), c(100, 200, 200, 50, 200, 250))
x<- f + arima.sim(list(ar = c(.75, -. 5), ma = c(.8,.7,.6,.5,.4,.3)), n = length(f), sd = 1)
sol.wcm(x)$solution.set
```


Index

breakfast, 2, 3, 3, 6, 9, 11, 13, 14
breakfast-package, 2
model.fixednum, 5
model.gsa, 2, 4, 7, 26
model.ic, $2,4,8$
model.lp, 2, 4, 10
model.sdll, 2, 4, 10, 11
model.thresh, $2,4,13$
plot.breakfast.cpts, 15
print.breakfast.cpts, 15
print.cptmodel, 16
sol.idetect, 2, 4, 6, 9, 11, 13, 14, 16, 19, 20, 22, 23, 25
sol.idetect_seq, $2,4,11,13,14,17,18,20$, 22, 23, 25
sol.not, 2, 4, 6, 9, 11, 13, 14, 17, 19, 19, 22, 23, 25
sol.tguh, 2, 4, 6, 9, 11, 13, 14, 17, 19, 20, 21, 23, 25
sol.wbs, 2, 4, 6, 9, 11, 13, 14, 17, 19, 20, 22, 22, 25
sol.wbs2, 2, 4, 6, 9, 11, 13, 14, 17, 19, 20, 22, 23, 23
sol.wcm, 2, 4, 6, 8, 25

