
Package ‘breakfast’
April 26, 2024

Title Methods for Fast Multiple Change-Point/Break-Point Detection and
Estimation

Version 2.4

Description A developing software suite for multiple change-point and change-point-
type feature detection/estimation (data segmentation) in data sequences.

Depends R (>= 3.0.0)

License GPL-2

Imports plyr, Rcpp, ggplot2, splines

LinkingTo Rcpp

Encoding UTF-8

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.2.3

NeedsCompilation yes

Author Andreas Anastasiou [aut],
Yining Chen [aut, cre],
Haeran Cho [aut],
Piotr Fryzlewicz [aut]

Maintainer Yining Chen <y.chen101@lse.ac.uk>

Repository CRAN

Date/Publication 2024-04-26 15:10:02 UTC

R topics documented:
breakfast-package . 2
breakfast . 3
model.fixednum . 5
model.gsa . 7
model.ic . 8
model.lp . 10
model.sdll . 11

1

2 breakfast-package

model.thresh . 13
plot.breakfast.cpts . 15
print.breakfast.cpts . 15
print.cptmodel . 16
sol.idetect . 16
sol.idetect_seq . 18
sol.not . 19
sol.tguh . 21
sol.wbs . 22
sol.wbs2 . 23
sol.wcm . 25

Index 27

breakfast-package Breakfast: Methods for Fast Multiple Change-point Detection and Es-
timation

Description

A developing software suite for multiple change-point detection/estimation (data segmentation) in
data sequences.

Details

The current version implements methods for detecting changes in the data sequence modelled as (i)
a piecewise-constant function plus i.i.d. Gaussian noise, (ii) a piecewise-constant function plus au-
toregressive time series, (iii) a piecewise-linear and continuous function plus i.i.d. Gaussian noise,
and (iv) a piecewise-linear and discontinuous function plus i.i.d. Gaussian noise. This is carried out
via a two-stage procedure combining solution path generation and model selection methodologies.
Change-point detection in breakfast is carried out in two stages, first the computation of a solu-
tion path, followed by a model selection step along the path. A variety of solution path and model
selection methods are included, which can be accessed individually, or through breakfast. Cur-
rently supported solution path methods are: sol.idetect, sol.idetect_seq, sol.wbs, sol.wbs2, sol.not,
sol.tguh and sol.wcm.

Currently supported model selection methods are: model.ic, model.lp, model.sdll, model.thresh and
model.gsa.

Check back future versions for more change-point models and the corresponding methods.

Author(s)

• Andreas Anastasiou

• Yining Chen

• Haeran Cho

• Piotr Fryzlewicz

We would like to thank Shakeel Gavioli-Akilagun, Anica Kostic, Shuhan Yang and Christine Yuen
for their comments and suggestions that helped improve this package.

https://www.andreasanastasiou-statistics.com/
http://personal.lse.ac.uk/cheny100/
https://sites.google.com/view/haeran-cho/
http://stats.lse.ac.uk/fryzlewicz/

breakfast 3

See Also

browseVignettes(package = "breakfast") contains a detailed comparative simulation study of
various methods implemented in breakfast for the models (i), (iii) and (iv).

breakfast Methods for fast detection of multiple change-points

Description

This function estimates the number and locations of change-points in a univariate data sequence,
which is modelled as (i) a piecewise-constant function plus i.i.d. Gaussian noise, (ii) a piecewise-
constant function plus autoregressive time series, (iii) a piecewise-linear and continuous function
plus i.i.d. Gaussian noise, or (iv) a piecewise-linear and discontinuous function plus i.i.d. Gaussian
noise. This is carried out via a two-stage procedure combining solution path generation and model
selection methodologies.

Usage

breakfast(
x,
type = c("const", "lin.cont", "lin.discont"),
solution.path = NULL,
model.selection = NULL

)

Arguments

x A numeric vector containing the data to be processed

type The type of change-point models fitted to the data; currently supported models
are: piecewise constant signals (type = "const", chosen by default), piecewise
linear and continuous signals (type = "lin.cont") and piecewise linear and
discontinuous signals (type = "lin.discont").

solution.path A string or a vector of strings containing the name(s) of solution path gen-
erating method(s); if individual methods are accessed via this option, default
tuning parameters are used. Alternatively, you can directly access each solu-
tion path generating method via sol.[method]. If both solution.path and
model.selection are unspecified, we return the output from the suggested
combinations based on their performance, which depends on type as below:
When type = "const": ("idetect", "ic"), ("idetect_seq", "thresh"), ("not",
"ic"), ("tguh", "lp"), ("wbs", "ic"), ("wbs2", "sdll") and ("wcm", "gsa").
When type = "lin.cont" or type = "lin.discont": ("idetect_seq", "thresh"),
("not", "ic") and ("idetect", "sdll").
If solution.path is specified but model.selection is not, we return the output
from the specified solution.path methods combined with the suggested model
selection methods (respectively) as above.

4 breakfast

"idetect" IDetect, supporting type = "const", "lin.cont", "lin.discont",
see sol.idetect

"idetect_seq" Sequential IDetect, supporting type = "const", "lin.cont",
"lin.discont", see sol.idetect_seq

"not" Narrowest-Over-Threshold, supporting type = "const", "lin.cont",
"lin.discont", see sol.not

"tguh" Tail-Greedy Unbalanced Haar, supporting type = "const", see sol.tguh
"wbs" Wild Binary Segmentation, supporting type = "const", see sol.wbs
"wbs2" Wild Binary Segmentation 2, supporting type = "const", see sol.wbs2
"wcm" Wild Contrast Maximisation, supporting type = "const" in combina-

tion with model.gsa handling model (ii), see sol.wcm
"all" All of the above that support the type

model.selection

A string or a vector of strings containing the name(s) of model selection method(s);
if individual methods are accessed via this option, default tuning parameters are
used. Alternatively, you can directly access each model selection method via
model.[method]. If both solution.path and model.selection are unspeci-
fied, we return the output from the suggested combinations based on their perfor-
mance, see solution.path. If model.selection is specified but solution.path
is not, we return the output from the specified model.selection methods com-
bined with the suggested solution path methods (respectively). Not all solution.path
methods are supported by all model.selection methods; check the individual
functions for more information.

"ic" Strengthened Schwarz information criterion, supporting type = "const",
"lin.cont", "lin.discont", see model.ic

"lp" Localised pruning, supporting type = "const", see model.lp
"sdll" Steepest Drop to Low Levels method, supporting type = "const", "lin.cont",

"lin.discont", see model.sdll
"thresh" Thresholding, supporting type = "const", "lin.cont", "lin.discont",

see model.thresh
"gsa" gappy Schwarz algorithm, supporting type = "const" in combination

with sol.wcm handling model (ii), see model.gsa
"all" All of the above that support the given type

Details

Please also take a look at the vignette for tips/suggestions/examples of using the breakfast package.

Value

An S3 object of class breakfast.cpts, which contains the following fields:

x Input vector x

cptmodel.list A list containing S3 objects of class cptmodel; each contains the following fields:

solution.path The solution path method used
model.selection The model selection method used to return the final change-point estimators

object

model.fixednum 5

no.of.cpt The number of estimated change-points in the piecewise-constant mean of the vec-
tor cptpath.object$x

cpts The locations of estimated change-points in the piecewise-constant mean of the vector
cptpath.object$x. These are the end-points of the corresponding constant-mean inter-
vals

est An estimate of the piecewise-constant mean of the vector cptpath.object$x; the values
are the sample means of the data (replicated a suitable number of times) between each
pair of consecutive detected change-points

References

A. Anastasiou & P. Fryzlewicz (2022) Detecting multiple generalized change-points by isolating
single ones. Metrika, 85(2), 141–174.

R. Baranowski, Y. Chen & P. Fryzlewicz (2019) Narrowest-over-threshold detection of multiple
change points and change-point-like features. Journal of the Royal Statistical Society: Series B,
81(3), 649–672.

H. Cho & C. Kirch (2022) Two-stage data segmentation permitting multiscale change points, heavy
tails and dependence. Annals of the Institute of Statistical Mathematics, 74(4), 653–684.

H. Cho & P. Fryzlewicz (2024) Multiple change point detection under serial dependence: Wild
contrast maximisation and gappy Schwarz algorithm. Journal of Time Series Analysis, 45(3): 479–
494.

P. Fryzlewicz (2014) Wild binary segmentation for multiple change-point detection. The Annals of
Statistics, 42(6), 2243–2281.

P. Fryzlewicz (2018) Tail-greedy bottom-up data decompositions and fast multiple change-point
detection. The Annals of Statistics, 46(6B), 3390–3421.

P. Fryzlewicz (2020) Detecting possibly frequent change-points: Wild Binary Segmentation 2 and
steepest-drop model selection. Journal of the Korean Statistical Society, 49(4), 1027–1070.

Examples

f <- rep(rep(c(0, 1), each = 50), 10)
x <- f + rnorm(length(f)) * .5
breakfast(x)

model.fixednum Estimate the location of change-points when the number of them is
fixed

Description

Return a solution with the given number of change-points or change-point-type features from the
solution path

Usage

model.fixednum(cptpath.object, fixednum = NULL)

6 model.fixednum

Arguments

cptpath.object A solution-path object, returned by a sol.[name] routine. Note that the field
cptpath.object$x contains the input data sequence.

fixednum The number of change-points or change-point-type features

Details

The model selection method which returns results with a given number of change-points or change-
point-type features. If there are multiple such elements on the solution path, the one with the smaller
residual sum of squares will be returned. On the other hand, if no such element exists, an empty set
(i.e. with no change-points) will be returned.

Value

An S3 object of class cptmodel, which contains the following fields:

solution.path The solution path method used to obtain cptpath.object

type The model type used, inherited from the given cptpath.object

model.selection

The model selection method used to return the final change-point or change-
point-type feature estimators object, here its value is "ic"

no.of.cpt The number of estimated features in the mean of the vector cptpath.object$x
based on the given type of the model

cpts The locations of estimated features in the mean of the vector cptpath.object$x.
These are the end-points of the corresponding constant-mean or constant-slope
intervals

est An estimate of the mean of the vector cptpath.object$x; for piecewise-constant
signals, the values are the sample means of the data (replicated a suitable number
of times) between each pair of consecutive detected change-points; for piecewise-
linear but discontinuous signals, the values are the estimated linear trend (repli-
cated a suitable number of times) between each pair of consecutive detected
change of slopes; for piecewise-linear and continuous signals, it is similar to
the previous case but with the continuity constraint enforced, which envolves
solving a global least squares problem.

See Also

sol.idetect, sol.not, sol.tguh, sol.wbs, sol.wbs2, sol.wcm, breakfast

Examples

x <- c(rep(0, 100), rep(1, 100), rep(0, 100)) + rnorm(300)
model.fixednum(sol.wbs(x),2)
model.fixednum(sol.not(x),2)

model.gsa 7

model.gsa Estimating change-points in the piecewise-constant mean of a noisy
data sequence with auto-regressive noise via gappy Schwarz algorithm

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of a noisy data sequence with auto-regressive noise via gappy Schwarz algorithm from a candidate
model sequence generated by sol.wcm.

Usage

model.gsa(cptpath.object, p.max = 10, pen = log(length(cptpath.object$x))^1.01)

Arguments

cptpath.object A solution-path object, returned by a sol.wcm routine. Note that the field
cptpath.object$x contains the input data sequence.

p.max The maximum AR order. The default is p.max = 10.
pen Penalty used for the Schwarz criterion. log(length(cptpath.object$x))^1.01

is used as default.

Details

From the largest to the smallest (i.e. empty) candidate models generated by sol.wcm, gappy
Schwarz algorithm locally evaluates the Schwarz criterion (SC, under piecewise constant signal
+ AR(p) noise model, with the AR order p to be determined adaptively) and its modification SC0
on each segment determined by the next smallest candidate model. It selects the larger model as the
final model if over each segment, all newly introduced estimators are deemed ‘significant’ according
to SC and SC0; see Cho and Fryzlewicz (2023) for details.

Value

An S3 object of class cptmodel, which contains the following fields:

solution.path The solution path method used to obtain cptpath.object, here its value is
"wcm"

model.selection

The model selection method used to return the final change-point estimators
object, here its value is "gsa"

no.of.cpt The number of estimated change-points in the piecewise-constant mean of the
vector cptpath.object$x

cpts The locations of estimated change-points in the piecewise-constant mean of
the vector cptpath.object$x. These are the end-points of the corresponding
constant-mean intervals

est An estimate of the piecewise-constant mean of the vector cptpath.object$x;
the values are the sample means of the data (replicated a suitable number of
times) between each pair of consecutive detected change-points

8 model.ic

References

H. Cho & P. Fryzlewicz (2024) Multiple change point detection under serial dependence: Wild
contrast maximisation and gappy Schwarz algorithm. Journal of Time Series Analysis, 45(3): 479–
494.

See Also

sol.wcm

Examples

set.seed(111)
f <- rep(c(0, 5, 2, 8, 1, -2), c(100, 200, 200, 50, 200, 250))
x <- f + arima.sim(list(ar = c(.75, -.5), ma = c(.8, .7, .6, .5, .4, .3)), n = length(f), sd = 1)
model.gsa(sol.wcm(x))

model.ic Estimating change-points or change-point-type features in the mean
of a noisy data sequence via the strengthened Schwarz information
criterion

Description

This function estimates the number and locations of change-points or change-point-type features
in the mean of a noisy data sequence via the sSIC (strengthened Schwarz information criterion)
method.

Usage

model.ic(cptpath.object, alpha = 1.01, q.max = NULL)

Arguments

cptpath.object A solution-path object, returned by a sol.[name] routine. Note that the field
cptpath.object$x contains the input data sequence.

alpha The parameter associated with the sSIC. The default value is 1.01. Note that the
SIC is recovered when alpha = 1.

q.max The maximum number of features allowed. If nothing or NULL is provided, the
default value of min(100, n/log(n)) (rounded to an integer) will be used.

Details

The model selection method for algorithms that produce nested solution path is described in "Wild
binary segmentation for multiple change-point detection", P. Fryzlewicz (2014), The Annals of
Statitics, 42: 2243–2281. The corresponding description for those that produce non-nested solution
set can be found in "Narrowest-over-threshold detection of multiple change points and change-
point-like features", R. Baranowski, Y. Chen and P. Fryzlewicz (2019), Journal of Royal Statistical
Society: Series B, 81(3), 649–672.

model.ic 9

Value

An S3 object of class cptmodel, which contains the following fields:

solution.path The solution path method used to obtain cptpath.object

type The model type used, inherited from the given cptpath.object

model.selection

The model selection method used to return the final change-point or change-
point-type feature estimators object, here its value is "ic"

no.of.cpt The number of estimated features in the mean of the vector cptpath.object$x
based on the given type of the model

cpts The locations of estimated features in the mean of the vector cptpath.object$x.
These are the end-points of the corresponding constant-mean or constant-slope
intervals

est An estimate of the mean of the vector cptpath.object$x; for piecewise-constant
signals, the values are the sample means of the data (replicated a suitable number
of times) between each pair of consecutive detected change-points; for piecewise-
linear but discontinuous signals, the values are based on the estimated linear
trend between each pair of consecutive detected change of slopes; for piecewise-
linear and continuous signals, it is similar to the previous case but with the
continuity constraint enforced, which envolves solving a global least squares
problem.

References

P. Fryzlewicz (2014). Wild binary segmentation for multiple change-point detection. The Annals of
Statistics, 42(6), 2243–2281.

R. Baranowski, Y. Chen & P. Fryzlewicz (2019). Narrowest-over-threshold detection of multiple
change points and change-point-like features. Journal of the Royal Statistical Society: Series B,
81(3), 649–672.

See Also

sol.idetect, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

Examples

x <- c(rep(0, 100), rep(1, 100), rep(0, 100)) + rnorm(300)
model.ic(sol.wbs(x))
model.ic(sol.not(x))

10 model.lp

model.lp Estimating change-points in the piecewise-constant mean of a noisy
data sequence via the localised pruning

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of a noisy data sequence via the localised pruning method, which performs a Schwarz criterion-
based model selection on the given candidate set in a localised way.

Usage

model.lp(
cptpath.object,
min.d = 5,
penalty = c("log", "polynomial"),
pen.exp = 1.01,
do.thr = TRUE,
th.const = 0.5

)

Arguments

cptpath.object A solution-path object, returned by a sol.[name] routine. Note that the field
cptpath.object$x contains the input data sequence.

min.d A number specifying the minimal spacing between change points; min.d = 5 by
default

penalty A string specifying the type of penalty term to be used in Schwarz criterion;
possible values are:

"log" Use penalty = log(length(x))^pen.exp

"polynomial" Use penalty = length(x)^pen.exp

pen.exp Exponent for the penalty term (see penalty)

do.thr If do.thr = TRUE, mild threshoding on the CUSUM test statistics is performed
after internal standardisation step in order to "pre-prune down" the candidates

th.const A constant multiplied to sqrt(2*log(length(x))) to form a mild threshold; if
not supplied, a default value (0.5* the value suggested in Fryzlewicz (2020)) is
used, see th.const in model.sdll

Details

Further information can be found in Cho and Kirch (2022).

model.sdll 11

Value

An S3 object of class cptmodel, which contains the following fields:

solution.path The solution path method used to obtain cptpath.object

model.selection

The model selection method used to return the final change-point estimators
object, here its value is "lp"

no.of.cpt The number of estimated change-points in the piecewise-constant mean of the
vector cptpath.object$x

cpts The locations of estimated change-points in the piecewise-constant mean of
the vector cptpath.object$x. These are the end-points of the corresponding
constant-mean intervals

est An estimate of the piecewise-constant mean of the vector cptpath.object$x;
the values are the sample means of the data (replicated a suitable number of
times) between each pair of consecutive detected change-points

References

H. Cho & C. Kirch (2022) Two-stage data segmentation permitting multiscale change points, heavy
tails and dependence. Annals of the Institute of Statistical Mathematics, 74(4), 653–684.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

Examples

f <- rep(rep(c(0, 1), each = 50), 10)
x <- f + rnorm(length(f)) * .5
model.lp(sol.not(x))

model.sdll Estimating change-points in the piecewise-constant or piecewise-
linear mean of a noisy data sequence via the Steepest Drop to Low
Levels method

Description

This function estimates the number and locations of change-points in the piecewise-constant or
piecewise-linear mean of a noisy data sequence via the Steepest Drop to Low Levels method.

12 model.sdll

Usage

model.sdll(
cptpath.object,
sigma = stats::mad(diff(cptpath.object$x)/sqrt(2)),
universal = TRUE,
th.const = NULL,
th.const.min.mult = 0.3,
lambda = 0.9

)

Arguments

cptpath.object A solution-path object, returned by a sol.[name] routine. The cptpath.object$type
variable decides the model type: piecewise-constant (type == "const"), piecewise-
linear and continuous (type == "lin.cont") or piecewise-linear and discontin-
uous (type == "lin.discont"). In the piecewise-constant model, SDLL model
selection should work well when cptpath.object is an object returned by the
sol.wbs2 routine. In the piecewise-linear model (whether continuous or not),
the output of sol.idetect should be supplied as cptpath.object. Note that
the field cptpath.object$x contains the input data sequence.

sigma An estimate of the standard deviation of the noise in the data cptpath.object$x.
Can be a functional of cptpath.object$x or a specific value if known. The
default in the piecewise-constant model is the Median Absolute Deviation of
the vector diff(cptpath.object$x)/sqrt(2), tuned to the Gaussian distribu-
tion. In the piecewise-linear models, diff(cptpath.object$x, differences
= 2)/sqrt(6) is used by default. Note that model.sdll works particularly well
when the noise is i.i.d. Gaussian.

universal If TRUE, then the threshold that decides if there are any change-points is chosen
automatically, so that the probability of type-I error (i.e. indicating change-
points if there are none) is approximately 1 - alpha. If FALSE, then th.const
must be specified.

th.const Only relevant if universal == FALSE; in that case a numerical value must be
provided. Used to create the threshold (applicable to the contrast magnitudes
stored in cptpath.object) that decides if there are any change-points in the
mean vector; that threshold is then th.const * sqrt(2 * log(n)) * sigma, where
n is the length of the data vector cptpath.object$x.

th.const.min.mult

A fractional multiple of the threshold, used to decide the lowest magnitude of
contrasts from cptpath.object still considered by the SDLL model selection
criterion as potentially change-point-carrying.

lambda Only relevant if universal == TRUE; can be set to 0.9 or 0.95. The approximate
probability of not detecting any change-points if the truth does not contain any.

Details

The Steepest Drop to Low Levels method is described in "Detecting possibly frequent change-
points: Wild Binary Segmentation 2 and steepest-drop model selection", P. Fryzlewicz (2020),
Journal of the Korean Statistical Society, 49, 1027–1070.

model.thresh 13

Value

An S3 object of class cptmodel, which contains the following fields:

solution.path The solution path method used to obtain cptpath.object

type The model type used, inherited from the given cptpath.object

model.selection

The model selection method used to return the final change-point estimators
object, here its value is "sdll"

no.of.cpt The number of estimated change-points

cpts The locations of estimated change-points

est An estimate of the mean of the vector cptpath.object$x

References

P. Fryzlewicz (2020). Detecting possibly frequent change-points: Wild Binary Segmentation 2 and
steepest-drop model selection. Journal of the Korean Statistical Society, 49, 1027–1070.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

Examples

f <- rep(rep(c(0, 1), each = 50), 10)
x <- f + rnorm(length(f))
model.sdll(sol.wbs2(x))

model.thresh Estimating change-points in the piecewise-constant or piecewise-
linear mean of a noisy data sequence via thresholding

Description

This function estimates the number and locations of change-points in the piecewise-constant or
piecewise-linear mean of a noisy data sequence via thresholding.

Usage

model.thresh(cptpath.object, sigma = NULL, th.const = NULL)

14 model.thresh

Arguments

cptpath.object A solution-path object, returned by a sol.[name] routine. The cptpath.object$type
variable decides the model type: piecewise-constant (type == "const"), piecewise-
linear and continuous (type == "lin.cont") or piecewise-linear and discontin-
uous (type == "lin.discont"). In the piecewise-linear model (whether con-
tinuous or not), the output of sol.idetect_seq or sol.not should be supplied
as cptpath.object. Note that the field cptpath.object$x contains the input
data sequence.

sigma An estimate of the standard deviation of the noise in the data cptpath.object$x.
Can be a functional of cptpath.object$x or a specific value if known. The
default in the piecewise-constant model is the Median Absolute Deviation of
the vector diff(cptpath.object$x)/sqrt(2), tuned to the Gaussian distribu-
tion. In the piecewise-linear models, diff(cptpath.object$x, differences
= 2)/sqrt(6) is used by default. Note that model.thresh works particularly
well when the noise is i.i.d. Gaussian.

th.const A positive real number used to define the threshold for the detection process.
The default used in the piecewise-constant model is 1.15, while in the piecewise-
linear model, the value is taken equal to 1.4.

Value

An S3 object of class cptmodel, which contains the following fields:

solution.path The solution path method used to obtain cptpath.object

type The model type used, inherited from the given cptpath.object

model.selection

The model selection method used to return the final change-point estimators
object, here its value is "thresh"

no.of.cpt The number of estimated change-points

cpts The locations of estimated change-points

est An estimate of the mean of the vector cptpath.object$x

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs, sol.wbs2, breakfast

Examples

f <- rep(rep(c(0, 1), each = 50), 10)
x <- f + rnorm(length(f))
model.thresh(sol.idetect_seq(x))

plot.breakfast.cpts 15

plot.breakfast.cpts Change-points estimated by the "breakfast" routine

Description

Plot method for objects of class breakfast.cpts

Usage

S3 method for class 'breakfast.cpts'
plot(x, display.data = TRUE, ...)

Arguments

x a breakfast.cpts object

display.data if display.data = TRUE, change-point estimators are plotted against the data by
method. If display.data = FALSE, only the estimators are plotted; this option
is recommended when length(x) is large.

... current not in use

Examples

f <- rep(rep(c(0, 1), each = 50), 5)
x <- f + rnorm(length(f)) * .5
plot(breakfast(x, solution.path = 'all', model.selection = 'all'), display.data = TRUE)
plot(breakfast(x), display.data = FALSE)

print.breakfast.cpts Change-points estimated by the "breakfast" routine

Description

Print method for objects of class breakfast.cpts

Usage

S3 method for class 'breakfast.cpts'
print(x, by = c("method", "estimator"), ...)

Arguments

x a breakfast.cpts object

by if by = 'method', change-point estimators are printed by method; if by = 'estimator',
each change-point estimator is printed with the methods that detect it.

... current not in use

16 sol.idetect

Examples

f <- rep(rep(c(0, 1), each = 50), 5)
x <- f + rnorm(length(f)) * .5
print(breakfast(x, solution.path = 'all', model.selection = 'all'), by = 'method')
print(breakfast(x), by = 'estimator')

print.cptmodel Change-points estimated by solution path generation + model selec-
tion methods

Description

Print method for objects of class cptmodel

Usage

S3 method for class 'cptmodel'
print(x, ...)

Arguments

x a cptmodel object
... current not in use

Examples

f <- rep(rep(c(0, 1), each = 50), 5)
x <- f + rnorm(length(f)) * .5
print(model.ic(sol.idetect(x)))

sol.idetect Solution path generation via the Isolate-Detect method

Description

This function arranges all possible change-points in the mean of the input vector, or in its linear
trend, in the order of importance, via the Isolate-Detect (ID) method. It is developed to be used
with the sdll and information criterion (ic) model selection rules.

Usage

sol.idetect(
x,
type = "const",
thr_ic_cons = 0.9,
thr_ic_lin = 1.25,
points = 3

)

sol.idetect 17

Arguments

x A numeric vector containing the data to be processed.

type The model type considered. type = "const", type = "lin.cont", type = "lin.discont"
mean, respectively, that the signal (mean of x) is piecewise constant, piecewise
linear and continuous, and piecewise linear but not necessarily continuous. If
not given, the default is type = "const"

thr_ic_cons A positive real number with default value equal to 0.9. It is used to create the
solution path for the piecewise-constant model. The lower the value, the longer
the solution path.

thr_ic_lin A positive real number with default value 1.25. Used to create the solution path
if type == "lin.cont" or type == "lin.discont"

points A positive integer with default value equal to 3. It defines the distance between
two consecutive end- or start-points of the right- or left-expanding intervals, as
described in the Isolate-Detect methodology.

Details

The Isolate-Detect method and its algorithm is described in "Detecting multiple generalized change-
points by isolating single ones", A. Anastasiou & P. Fryzlewicz (2022), Metrika, https://doi.org/10.1007/s00184-
021-00821-6.

Value

An S3 object of class cptpath, which contains the following fields:

solutions.nested

TRUE, i.e., the change-point outputs are nested

solution.path Locations of possible change-points in the mean of x, arranged in decreasing
order of change-point importance

solution.set Empty list

x Input vector x

type The input parameter type

cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-
points of the detection intervals of the corresponding possible change-point lo-
cation in the third column. The fourth column is a measure of strength of the
corresponding possible change-point. The order of the rows is the same as the
order returned in solution.path

method The method used, which has value "idetect" here

References

A. Anastasiou & P. Fryzlewicz (2022). Detecting multiple generalized change-points by isolating
single ones. Metrika, https://doi.org/10.1007/s00184-021-00821-6.

See Also

sol.idetect_seq, sol.not, sol.wbs, sol.wbs2, sol.tguh

18 sol.idetect_seq

Examples

r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.idetect(r3)

sol.idetect_seq Solution path generation using the sequential approach of the Isolate-
Detect method

Description

This function arranges all possible change-points in the mean of the input vector, or in its linear
trend, in the order of importance, via the Isolate-Detect (ID) method. It is developed to be used
with the thresholding model selection rule.

Usage

sol.idetect_seq(x, type = "const", points = 4)

Arguments

x A numeric vector containing the data to be processed

type The model type considered. type = "const", type = "lin.cont", type = "lin.discont"
mean, respectively, that the signal (mean of x) is piecewise constant, piecewise
linear and continuous, and piecewise linear but not necessarily continuous. If
not given, the default is type = "const"

points A positive integer with default value equal to 4. It defines the distance between
two consecutive end- or start-points of the right- or left-expanding intervals, as
described in the Isolate-Detect methodology.

Details

The Isolate-Detect method and its algorithm is described in "Detecting multiple generalized change-
points by isolating single ones", A. Anastasiou & P. Fryzlewicz (2022), Metrika, https://doi.org/10.1007/s00184-
021-00821-6.

Value

An S3 object of class cptpath, which contains the following fields:

solutions.nested

TRUE, i.e., the change-point outputs are nested

solution.path Locations of possible change-points, arranged in decreasing order of change-
point importance

solution.set Empty list

x Input vector x

type The input parameter type

sol.not 19

cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-
points of the detection intervals of the corresponding possible change-point lo-
cation in the third column. The fourth column is a measure of strength of the
corresponding possible change-point. The order of the rows is the same as the
order returned in solution.path

method The method used, which has value "idetect_seq" here

References

A. Anastasiou & P. Fryzlewicz (2022). Detecting multiple generalized change-points by isolating
single ones. Metrika, https://doi.org/10.1007/s00184-021-00821-6.

See Also

sol.idetect, sol.not, sol.wbs, sol.wbs2, sol.tguh

Examples

r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.idetect_seq(r3)

sol.not Solution path generation via the Narrowest-Over-Threshold method

Description

This function arranges all possible features (e.g. change in the mean, change in the slope, etc) of
the input vector in the order of importance, via the Narrowest-Over-Threshold (NOT) method.

Usage

sol.not(x, type = "const", M = 10000, systematic.intervals = TRUE, seed = NULL)

Arguments

x A numeric vector containing the data to be processed
type The model type considered. type = "const" means the signals are the piece-

wise constant, type = "lin.cont" means the signals are the piecewise linear
and continuous, and type = "lin.discont" means the signals are the piece-
wise linear but not necessarily continuous. If not given, the default is type =
"const"

M The maximum number of all data sub-samples at the beginning of the algorithm.
The default is M = 10000

systematic.intervals

When drawing the sub-intervals, whether to use a systematic (and fixed) or ran-
dom scheme. The default is systematic.intervals = TRUE

seed If a random scheme is used, a random seed can be provided so that every time
the same sets of random sub-intervals would be drawn. The default is seed =
NULL, which means that this option is not taken

20 sol.not

Details

The Narrowest-Over-Threshold method and its algorithm is described in "Narrowest-over-threshold
detection of multiple change points and change-point-like features", R. Baranowski, Y. Chen and P.
Fryzlewicz (2019), Journal of Royal Statistical Society: Series B, 81(3), 649–672.

Value

An S3 object of class cptpath, which contains the following fields:

solutions.nested

FALSE, i.e., the change-point outputs are not nested

solution.path Empty list

solution.set Locations of possible change-points in the mean of x for each threshold level (in
the decreasing order), arranged in the form of a list of lists

solution.set.th

A list that contains threshold levels corresponding to the detections in solution.set

x Input vector x

type The model type used, which is given in the input. If not given, the default is
type="const"

M Input parameter M

cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-
points of the detection intervals of the corresponding possible change-point loca-
tion in the third column resulted from applying NOT to all threshold levels. The
fourth column is a measure of strength of the corresponding possible change-
point. The order of the rows reflect the strength of each detection in decreasing
order. To avoid repetition, each possible location would appear at most once in
the matrix (with the sub-interval that carries its highest possible strength)

method The method used, which has value "not" here

References

R. Baranowski, Y. Chen & P. Fryzlewicz (2019). Narrowest-over-threshold detection of multiple
change points and change-point-like features. Journal of the Royal Statistical Society: Series B,
81(3), 649–672.

See Also

sol.idetect, sol.idetect_seq, sol.tguh, sol.wbs, sol.wbs2

Examples

r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.not(r3)

sol.tguh 21

sol.tguh Solution path generation via the Tail-Greedy Unbalanced Haar
method

Description

This function arranges all possible change-points in the mean of the input vector in the order of
importance, via the Tail-Greedy Unbalanced Haar method.

Usage

sol.tguh(x, type = "const", p = 0.01)

Arguments

x A numeric vector containing the data to be processed

type The model type considered. type = "const" means piecewise-constant; this is
the only type currently supported in sol.tguh

p Specifies the number of region pairs merged in each pass through the data, as
the proportion of all remaining region pairs. The default is p = 0.01

Details

The Tail-Greedy Unbalanced Haar decomposition algorithm is described in "Tail-greedy bottom-up
data decompositions and fast multiple change-point detection", P. Fryzlewicz (2018), The Annals
of Statistics, 46, 3390–3421.

Value

An S3 object of class cptpath, which contains the following fields:

solutions.nested

TRUE, i.e., the change-point outputs are nested

solution.path Locations of possible change-points in the mean of x, arranged in decreasing
order of change-point importance

solution.set Empty list

x Input vector x

type Input parameter type

p Input parameter p

cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-
points of the detection intervals of the corresponding possible change-point lo-
cation in the third column. The fourth column is a measure of strength of the
corresponding possible change-point. The order of the rows is the same as the
order returned in solution.path

method The method used, which has value "tguh" here

22 sol.wbs

References

P. Fryzlewicz (2018). Tail-greedy bottom-up data decompositions and fast multiple change-point
detection. The Annals of Statistics, 46, 3390–3421.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.wbs, sol.wbs2

Examples

r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.tguh(r3)

sol.wbs Solution path generation via the Wild Binary Segmentation method

Description

This function arranges all possible change-in-mean features of the input vector in the order of
importance, via the Wild Binary Segmentation (WBS) method.

Usage

sol.wbs(x, type = "const", M = 10000, systematic.intervals = TRUE, seed = NULL)

Arguments

x A numeric vector containing the data to be processed

type The model type considered. Currently type = "const" is the only accepted
value. This assumes that the mean of the input vector is piecewise-constant.

M The maximum number of all data sub-samples at the beginning of the algorithm.
The default is M = 10000

systematic.intervals

When drawing the sub-intervals, whether to use a systematic (and fixed) or ran-
dom scheme. The default is systematic.intervals = TRUE

seed If a random scheme is used, a random seed can be provided so that every time
the same sets of random sub-intervals would be drawn. The default is seed =
NULL, which means that this option is not set

Details

The Wild Binary Segmentation algorithm is described in "Wild binary segmentation for multiple
change-point detection", P. Fryzlewicz (2014), The Annals of Statistics, 42: 2243–2281.

sol.wbs2 23

Value

An S3 object of class cptpath, which contains the following fields:

solutions.nested

TRUE, i.e., the change-point outputs are nested

solution.path Locations of possible change-points in the mean of x, arranged in decreasing
order of change-point importance

solution.set Empty list

x Input vector x

type The input parameter type

M Input parameter M

cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-
points of the detection intervals of the corresponding possible change-point lo-
cation in the third column. The fourth column is a measure of strength of the
corresponding possible change-point. The order of the rows is the same as the
order returned in solution.path

method The method used, which has value "wbs" here

References

P. Fryzlewicz (2014). Wild binary segmentation for multiple change-point detection. The Annals of
Statistics, 42(6), 2243–2281.

R. Baranowski, Y. Chen & P. Fryzlewicz (2019). Narrowest-over-threshold detection of multiple
change points and change-point-like features. Journal of the Royal Statistical Society: Series B,
81(3), 649–672.

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs2

Examples

r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.wbs(r3)

sol.wbs2 Solution path generation via the Wild Binary Segmentation 2 method

Description

This function arranges all possible change-points in the mean of the input vector in the order of
importance, via the Wild Binary Segmentation 2 method.

Usage

sol.wbs2(x, type = "const", M = 1000, systematic.intervals = TRUE, seed = NULL)

24 sol.wbs2

Arguments

x A numeric vector containing the data to be processed.

type The model type considered. type = "const" means piecewise-constant; this is
the only type currently supported in sol.wbs2

M The maximum number of data sub-samples drawn at each recursive stage of the
algorithm. The default is M = 1000. Setting M = 0 executes the standard binary
segmentation.

systematic.intervals

Whether data sub-intervals for CUSUM computation are drawn systematically
(TRUE; start- and end-points taken from an approximately equispaced grid) or
randomly (FALSE; obtained uniformly with replacement). The default is TRUE.

seed If a random scheme is used, a random seed can be provided so that every time
the same sets of random sub-intervals would be drawn. The default is seed =
NULL, which means that this option is not set

Details

The Wild Binary Segmentation 2 algorithm is described in "Detecting possibly frequent change-
points: Wild Binary Segmentation 2 and steepest-drop model selection", P. Fryzlewicz (2020),
Journal of the Korean Statistical Society, 49, 1027-1070.

Value

An S3 object of class cptpath, which contains the following fields:

solutions.nested

TRUE, i.e., the change-point outputs are nested

solution.path Locations of possible change-points in the mean of x, arranged in decreasing
order of change-point importance

solution.set Empty list

x Input vector x

type Input parameter type

M Input parameter M

cands Matrix of dimensions length(x) - 1 by 4. The first two columns are (start, end)-
points of the detection intervals of the corresponding possible change-point lo-
cation in the third column. The fourth column is a measure of strength of the
corresponding possible change-point. The order of the rows is the same as the
order returned in solution.path

method The method used, which has value "wbs2" here

References

P. Fryzlewicz (2020). Detecting possibly frequent change-points: Wild Binary Segmentation 2 and
steepest-drop model selection. Journal of the Korean Statistical Society, 49, 1027-1070.

sol.wcm 25

See Also

sol.idetect, sol.idetect_seq, sol.not, sol.tguh, sol.wbs

Examples

r3 <- rnorm(1000) + c(rep(0,300), rep(2,200), rep(-4,300), rep(0,200))
sol.wbs2(r3)

sol.wcm Solution path generation via the Wild Contrast Maximisation method

Description

This function arranges all possible change-points in the mean of the input vector in the order of
importance, via the Wild Binary Segmentation 2 method.

Usage

sol.wcm(
x,
type = "const",
M = 100,
min.d = NULL,
Q = floor(log(length(x))^1.9),
max.iter = 5

)

Arguments

x A numeric vector containing the data to be processed.

type The type of change-point models fitted to the data; currently the class of piece-
wise constant signals (type = "const") is supported.

M The maximum number of data sub-samples drawn at each recursive stage of the
algorithm. The default is M = 100.

min.d The minimum distance between candidate change-point estimators; if min.d =
NULL, it is set to be max(20, 10 + ceiling(log(length(x))^1.1).

Q The maximum number of allowable change-points. The default is Q = floor(log(length(x))^1.9).

max.iter The maximum number of candidate change-point models considered; if a model
with the number of change-point estimators exceeding Q is required to generate
the sequence of required candidate models, this argument is ignored. The default
is max.iter = 5.

26 sol.wcm

Details

The Wild Contrast Maximisation (WCM) algorithm generates a nested sequence of candidate mod-
els by identifying large gaps in the solution path generated by WBS2, which aids the model selection
step in the presence of large random fluctuations due to serial dependence. See Cho and Fryzlewicz
(2023) for further details.

Value

An S3 object of class cptpath, which contains the following fields:

solutions.nested

TRUE, i.e., the change-point outputs are nested

solution.path Locations of possible change-points in the mean of x, arranged in decreasing
order of change-point importance; this is not used by model.gsa

solution.set A list of candidate change-point models. Each model contains possible change-
points in the mean of x; this is used by model.gsa

x Input vector x

type The type of the change-point model considered, which has value "const" here

M Input parameter M

cands Matrix of dimensions Q by 4. The first two columns are (start, end)-points of the
detection intervals of the corresponding possible change-point location in the
third column. The fourth column is a measure of strength of the corresponding
possible change-point. The order of the rows is the same as the order returned
in solution.path

method The method used, which has value "wcm" here

References

H. Cho & P. Fryzlewicz (2024) Multiple change point detection under serial dependence: Wild
contrast maximisation and gappy Schwarz algorithm. Journal of Time Series Analysis, 45(3): 479–
494.

See Also

model.gsa

Examples

set.seed(111)
f <- rep(c(0, 5, 2, 8, 1, -2), c(100, 200, 200, 50, 200, 250))
x <- f + arima.sim(list(ar = c(.75, -.5), ma = c(.8, .7, .6, .5, .4, .3)), n = length(f), sd = 1)
sol.wcm(x)$solution.set

Index

breakfast, 2, 3, 3, 6, 9, 11, 13, 14
breakfast-package, 2

model.fixednum, 5
model.gsa, 2, 4, 7, 26
model.ic, 2, 4, 8
model.lp, 2, 4, 10
model.sdll, 2, 4, 10, 11
model.thresh, 2, 4, 13

plot.breakfast.cpts, 15
print.breakfast.cpts, 15
print.cptmodel, 16

sol.idetect, 2, 4, 6, 9, 11, 13, 14, 16, 19, 20,
22, 23, 25

sol.idetect_seq, 2, 4, 11, 13, 14, 17, 18, 20,
22, 23, 25

sol.not, 2, 4, 6, 9, 11, 13, 14, 17, 19, 19, 22,
23, 25

sol.tguh, 2, 4, 6, 9, 11, 13, 14, 17, 19, 20, 21,
23, 25

sol.wbs, 2, 4, 6, 9, 11, 13, 14, 17, 19, 20, 22,
22, 25

sol.wbs2, 2, 4, 6, 9, 11, 13, 14, 17, 19, 20, 22,
23, 23

sol.wcm, 2, 4, 6, 8, 25

27

	breakfast-package
	breakfast
	model.fixednum
	model.gsa
	model.ic
	model.lp
	model.sdll
	model.thresh
	plot.breakfast.cpts
	print.breakfast.cpts
	print.cptmodel
	sol.idetect
	sol.idetect_seq
	sol.not
	sol.tguh
	sol.wbs
	sol.wbs2
	sol.wcm
	Index

