Package 'damAOI'

February 7, 2024

Title Create an 'Area of Interest' Around a Constructed Dam for Comparative Impact Evaluations

Version 0.0

Description Define a spatial 'Area of Interest' (AOI) around a constructed dam using hydrology data.

Dams have environmental and social impacts, both positive and negative.

Current analyses of dams have no consistent way to specify at what spatial extent we should evaluate these impacts.

'damAOI' implements methods to adjust reservoir polygons to match satellite-observed surface water areas, plot upstream and downstream rivers using elevation data and accumulated river flow, and draw buffers clipped by river basins around reservoirs and relevant rivers. This helps to consistently determine the areas which could be impacted by dam construction, facilitating comparative analysis and informed infrastructure investments.

License GPL (>= 3)

Depends R (>= 4.0)

Imports dplyr, FNN, magrittr, sf, units, smoothr, terra, tibble, tidyr, shiny, leaflet, shinydashboard

Suggests ggplot2, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Chris Littleboy [aut, cre] (https://orcid.org/0000-0002-3293-7987), Isabel Jones [ctb, fnd]

Maintainer Chris Littleboy <chris.littleboy@stir.ac.uk>

Repository CRAN

Date/Publication 2024-02-07 18:00:02 UTC

10

R topics documented:

djustreservoirpolygon		2
lqueva		3
utogetpourpoints		3
asinandbuffers		4
asins_alqueva		4
asins_tehri		5
etimpactedarea		5
etriverpoints		7
etshinyparams		8
ointstolines		9
ehri		9

adjustreservoirpolygon

adjust polygon of reservoir to reference surface water extent map

Description

adjust polygon of reservoir to reference surface water extent map

Usage

Index

```
adjustreservoirpolygon(
  reservoir,
  water_bodies,
  dem,
  poss_expand = 20000,
  wbjc = 0
)
```

Arguments

reservoir An sf polygon, with an unstandardised raw reservoir

water_bodies A rast, where 1 indicates water, NA otherwise

dem A rast, showing elevation

poss_expand A number, indicating the number of meters away from the raw reservoir the reservoir may expand to. Default is 20000 (20km).

wbjc A number, the water body join correction. This indicates the buffer zone for the reservoir, to ensure that it is contiguous (important where there are small channels connecting different parts of the same water body). Default is 0, but is necessary for some dams depending on the context.

alqueva 3

Value

An sf polygon with an adjusted reservoir polygon

alqueva

Polygon for alqueva dam in Spain

Description

This data gives the reservoir area for Alqueva dam in Spain

Usage

alqueva

Format

An sf polygon

Source

GRanD v1.3

autogetpourpoints

autogetpourpoints

Description

autogetpourpoints

Usage

```
autogetpourpoints(reservoir, fac)
```

Arguments

reservoir An sf polygon, with an unstandardised raw reservoir fac A rast, showing accumulated water flow along river

Value

An sf multipoint where rivers flow into and out of the reservoir

4 basins_alqueva

basinandbuffers

Buffers the reservoir and the river, and clips to basin areas

Description

Buffers the reservoir and the river, and clips to basin areas

Usage

```
basinandbuffers(
  reservoir,
  upstream,
  downstream,
  basins,
  streambuffersize,
  reservoirbuffersize)
```

Arguments

reservoir

An sf polygon, with an unstandardised raw reservoir

upstream

An sf line, following the river upstream of the reservoir

downstream

An sf line, following the river downstream of the reservoir

basins

An sf multipolygon, with the basins in the area around the dam

streambuffersize

A number indicating the distance around the upstream and downstream river to consider as impacted. Defaults to 2000 (2km).

reservoirbuffersize

A number indicating the distance around the reserviur to consider as impacted. Defaults to 5000 (5km)

Value

A two element list. Element 1 is an sf multipolygon with the reservoir buffer, upstream and down-stream areas. Element 2 is the same, but clipped to river basin polygons.

basins_alqueva

Polygon for river basins around alqueva dam

Description

Polygon for river basins around alqueva dam

Usage	
basins_alqueva	
Format	
An sf polygon	
Source	
HydroBasins	
basins_tehri	Polygon for river basins around tehri dam
Decomination	
Description Polygon for river basi	ins around alquva dam
1 01/8011 101 11/01 04/	
Usage	
basins_tehri	
Format	
An sf polygon	
Source	
HydroBasins	
getimpactedarea	getimpactedarea

5

Description

basins_tehri

Performs 1) standardisation of reservoir extent, 2) calculation of river course upstream and down-stream and 3) clipping to river basins

6 getimpactedarea

Usage

```
getimpactedarea(
  reservoir,
 water_bodies,
  dem,
  fac,
  basins,
  pourpoints,
  tocrop = TRUE,
  toadjust = FALSE,
  poss_expand = 20000,
  river_distance = 1e+05,
  nn = 100,
  ac_{tolerance} = 2,
  e_tolerance = 5,
  streambuffersize = 2000,
  reservoirbuffersize = 5000,
  wbjc = 0
)
```

Arguments

reservoir An sf polygon, with an unstandardised raw reservoir

water_bodies A rast, where 1 indicates water, NA otherwise

dem A rast, showing elevation

fac A rast, showing accumulated water flow along river

basins An sf multipolygon, with the basins in the area around the dam

pourpoints An sf multipoint, showing the points where rivers flow in and out of reservoirs

tocrop A true/false parameter whether crop all input rasters by the river distance

toadjust A true/false parameter whether to adjust the reservoir to surrounding water bod-

ies

poss_expand A number, indicating the number of meters away from the raw reservoir the

reservoir may expand to. Default is 20000 (20km).

river_distance A number, indicating the number of meters downstream and upstream for the

area of interest. Defaults to 100000 (100km)

nn A number, indicating the number of nearest neighbours to consider in the al-

gorithm to determine river course. Higher can be more accurate but is slower.

Default 100.

ac_tolerance A number, indicating the tolerance to changes in flow accumulation. Default 2,

which means that if accumulated flow changes by a factor of 2 (halved or doubled) the area of interest should not include any further downstream or upstream.

This is to account for confluences.

e_tolerance A number indicating the tolerance to changes in elevation. Rivers flow down-

stream. But DEMs can show downstream areas of the river as higher, due to averaging nearby pixels. This is particularly true when rivers run through gorges.

getriverpoints 7

If there is no downstream lower river point nearby, the elevation tolerance allows the algorithm to select a point at a higher elevation, up to the threshold defined here.

streambuffersize

A number indicating the distance around the upstream and downstream river to consider as impacted. Defaults to 2000 (2km).

reservoirbuffersize

A number indicating the distance around the reserviur to consider as impacted. Defaults to 5000 (5km)

wbjc

A number, the water body join correction. This indicates the buffer zone for the reservoir, to ensure that it is contiguous (important where there are small channels connecting different parts of the same water body). Default is 0, but is necessary for some dams depending on the context.

Value

An sf multipolygon with the reservoir buffer, upstream and downstream areas

getriverpoints

Calculation of river points

Description

Calculation of river points

Usage

```
getriverpoints(
  reservoir,
  pourpoints,
  ppid,
  river_distance,
  ac_tolerance,
  e_tolerance,
  nn,
  fac = fac,
  dem = dem
)
```

Arguments

reservoir An sf polygon, with an unstandardised raw reservoir

pourpoints An sf multipoint, showing the points where rivers flow in and out of reservoirs

ppid An integer to index through the pourpoints dataframe

river_distance A number, indicating the number of meters downstream and upstream for the

area of interest. Defaults to 100000 (100km)

8 getshinyparams

ac_tolerance A number, indicating the tolerance to changes in flow accumulation. Default 2,

which means that if accumulated flow changes by a factor of 2 (halved or doubled) the area of interest should not include any further downstream or upstream.

This is to account for confluences.

e_tolerance A number indicating the tolerance to changes in elevation. Rivers flow down-

stream. But DEMs can show downstream areas of the river as higher, due to averaging nearby pixels. This is particularly true when rivers run through gorges. If there is no downstream lower river point nearby, the elevation tolerance allows the algorithm to select a point at a higher elevation, up to the threshold defined

here.

nn A number, indicating the number of nearest neighbours to consider in the al-

gorithm to determine river course. Higher can be more accurate but is slower.

Default 100.

fac A rast, showing accumulated water flow along river

dem A rast, showing elevation

Value

A three-element list, where the first element contains the data produced by the algorithm for all points along the river, and the second element is the sf LINESTRING object for the river, and the third denotes whether the river goes upstream (0) or downstream (1)

getshinyparams getshinyparams

Description

getshinyparams

Usage

getshinyparams(res)

Arguments

res An sf polygon, with an unstandardised raw reservoir

Value

An parameters to start the shiny app for determining pour points manually for a given reservoir

pointstolines 9

pointstolines

pointstolines

Description

pointstolines

Usage

pointstolines(riverpoints)

Arguments

riverpoints

list of dataframes returned by the riverpoints function.

Value

An list of upstream lines (multilinestring) and downstream line (linestring)

tehri

Polygon for Tehri dam in India

Description

This data gives the reservoir area for tehri dam in India

Usage

tehri

Format

An sf polygon

Source

GRanD v1.3

Index

```
\ast datasets
    alqueva, 3
    basins_alqueva, 4
    basins_tehri, 5
    tehri, 9
{\it adjustreservoirpolygon, 2}\\
alqueva, 3
autoget pour points, \\ 3
basin and buffers, \\ 4
basins_alqueva, 4
basins\_tehri, 5
getimpactedarea, 5
getriverpoints, 7
{\it getshinyparams}, {\it 8}
pointstolines, 9
tehri, 9
```