Package 'deform'

October 19, 2023

Type Package

Title Spatial Deformation and Dimension Expansion Gaussian Processes
Version 1.0.0
Date 2023-10-18
Maintainer Ben Youngman b.youngman@exeter.ac.uk
Description Methods for fitting nonstationary Gaussian process models by spatial deformation, as introduced by Sampson and Guttorp (1992) doi:10.1080/01621459.1992.10475181, and by dimension expansion, as intro-
duced by Bornn et al. (2012) doi:10.1080/01621459.2011.646919. Low-rank thin-plate regression splines, as developed in Wood, S.N. (2003) doi:10.1111/14679868.00374, are used to either transform co-ordinates or create new latent dimensions.

License GPL-3
Encoding UTF-8
RoxygenNote 7.2.1
Imports Rcpp (>= 1.0.10), MASS
LinkingTo Rcpp, RcppArmadillo
Suggests lattice, gridExtra
Depends R (>= 3.5.0)
NeedsCompilation yes
Author Ben Youngman [aut, cre] (https://orcid.org/0000-0003-0215-8189)
Repository CRAN
Date/Publication 2023-10-19 08:10:02 UTC

R topics documented:

aniso 2
cencov 3
deform 4
expand 6
plot.deform 7
predict.deform 9
simulate.deform 11
solar 12
variogram 12
Index 14

aniso

Fitting anisotropic spatial Gaussian process models

Description

Function aniso fits a conventional 2-dimensional anisotropic Gaussian process, i.e. just with scalings in the x and y coordinates.

Usage

aniso(x, z, n, correlation = FALSE, cosine = FALSE, standardise = "together")

Arguments

$x \quad$ a 2-column matrix comprising x and y coordinates column-wise, respectively, or a list; see Details for the latter
z
a variance-covariance matrix
$n \quad$ an integer number of data
correlation a logical defining whether z should be assumed to be a correlation matrix; defaults to FALSE
cosine a logical defining whether the powered exponential covariance function should be multiplied by the cosine of scaled distances, i.e. giving a damped oscillation; defaults to FALSE
standardise a character string that governs whether dimensions are scaled by a common ("together") or dimension-specific factor; defaults to "together"

Details

If x is a list, then it wants elements " x ", " z " and " n " as described above.

Value

An object of class deform and then of class anisotropic

References

Sampson, P. D. and Guttorp, P. (1992) Nonparametric Estimation of Nonstationary Spatial Covariance Structure, Journal of the American Statistical Association, 87:417, 108-119, doi:10.1080/ 01621459.1992.10475181’

Examples

```
data(solar)
aniso(solar$x, solar$z, solar$n)
# equivalent to aniso(solar)
```

```
cencov Correlation and covariance matrices from censored data
```


Description

Correlation and covariance matrices from censored data

Usage

$\operatorname{cencov}(x, u)$
cencor (x, u)

Arguments

X
u

a numeric matrix

a numeric matrix giving corresponding points of left-censoring

Details

For cencov() a covariance matrix is returned and for $\operatorname{cencor}()$ a correlation matrix is returned. Note that cencov() calls cencor (). Estimates are based on assuming values are from a multivariate Gaussian distribution.

Value

a matrix

See Also

cov and cor for uncensored estimates.

Examples

\# generate some correlated data
$n<-1 e 2$
$x<-\operatorname{rnorm}(n)$
$y<-0.25 * x+\operatorname{sqrt}(0.75) * \operatorname{rnorm}(n)$
$x y<-\operatorname{cbind}(x, y)$
\# threshold of zero for left-censoring

```
u <- matrix(0, n, 2)
# left-censored correlation matrix
cencor(xy, u) # could check with cor(xy)
# left-censored covariance matrix
cencov(xy, u)
```

deform

Fitting low-rank nonstationary spatial Gaussian process models through spatial deformation

Description

Function deform fits a 2-dimensional deformation model, where typically x and y coordinates in geographic (G-) space will be provided and then deformed to give new coordinates in deformed (D-) space in which isotropy of a Gaussian process is optimally achieved.

Usage

deform(
x ,
z,
n,
$\mathrm{k}=\mathrm{c}(10,10)$,
lambda $=c(-1,-1)$,
lambda0 $=\operatorname{rep}(\exp (3)$, length(k)),
correlation = FALSE,
cosine = FALSE,
bijective = FALSE,
bijective.args = NULL,
trace = 0,
standardise = "together"
)

Arguments

x
z
n
k
lambda
lambda0
correlation
a 2-column matrix comprising x and y coordinates column-wise, respectively, or a list; see Details for the latter
a variance-covariance matrix
an integer number of data
an integer vector of ranks
specified lambda values; see Details
initial lambda values
a logical defining whether z should be assumed to be a correlation matrix; defaults to FALSE

cosine	a logical defining whether the powered exponential covariance function should be multiplied by the cosine of scaled distances, i.e. giving a damped oscillation; defaults to FALSE
bijective	a logical for whether a bijective deformation should be imposed; defaults to FALSE
bijective.args	
trace	a list specifying quantities to ensure bijectivity, if bijective == TRUE; see Details an integer specifying the amount to report on optimisation (0, default, is nothing; 1 gives a bit)
standardise \quada character string that governs whether dimensions are scaled by a common ("together") or dimension-specific factor; defaults to "together"	

Details

If x is a list, then it wants elements " x ", " z " and " n " as described above.
Values of lambda multiply the penalties placed on the wiggliness of the smooths that form the deformations. Larger values make things less wiggly. Values of lambda0 specify initial values for lambda, which are still optimised.
bijective.args() is a 4-element list: "mult" is a penalty placed on the numerical approximation to identifying non-bijectivity, where larger values impose bijectivity more strictly; "scl" is a scaling placed on the grid used to numerically identify non-bijectivity, where smaller values will typically impose bijectivity more strictly; " nx " and "ny" specify the x and y dimensions of the grid used to numerically identify bijectivity. Defaults are $m u l t=1 e 3, s c l=1, n x=40$ and $n y=40$. It is advisable to use "mult" and not "scl" to control bijectivity, in the first instance.

Value

An object of class deform and then of class deformation

References

Sampson, P. D. and Guttorp, P. (1992) Nonparametric Estimation of Nonstationary Spatial Covariance Structure, Journal of the American Statistical Association, 87:417, 108-119, doi:10.1080/ 01621459.1992.10475181

Wood, S.N. (2003), Thin plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65: 95-114. doi:10.1111/14679868.00374

Examples

```
data(solar)
deform(solar$x, solar$z, solar$n)
# equivalent to deform(solar)
# bijective deformation
deform(solar, bijective = TRUE)
```

\# deformation with specified rank
deform(solar, $k=c(10,8))$

expand \quad| Fitting low-rank nonstationary spatial Gaussian process models |
| :--- |
| through dimension expansion |

Description

Function exapnd fits a multi-dimensional dimension expansion model, where typically x and y coordinates in geographic (G-) space will be provided and then scaled and combined with new latent dimensions (that a functions of x and y) to give new coordinates in deformed (D-) space in which isotropy of a Gaussian process is optimally achieved.

Usage

expand(
x ,
z,
n,
$\mathrm{k}=10$,
lambda $=\operatorname{rep}(-1$, length(k)),
lambda0 $=$ rep(exp(3), length(k)),
correlation = FALSE,
cosine = FALSE,
trace $=0$,
z0 = NULL,
standardise = "together"
)

Arguments

x
z
n
$k \quad$ an integer vector of ranks
lambda
lambda0
correlation or a list; see Details for the latter
a variance-covariance matrix
an integer number of data
specified lambda values
initial lambda values
a 2-column matrix comprising x and y coordinates column-wise, respectively,
a logical defining whether z should be assumed to be a correlation matrix; defaults to FALSE

cosine	a logical defining whether the powered exponential covariance function should be multiplied by the cosine of scaled distances, i.e. giving a damped oscillation; defaults to FALSE
trace	an integer specifying the amount to report on optimisation (0 , default, is nothing; 1 gives a bit)
$z 0$	a scalar giving initial values (which alternate $z 0,-z 0, z 0, \ldots$ for latent di- mensions
standardise \quada character string that governs whether dimensions are scaled by a common ("together") or dimension-specific factor; defaults to "together"	

Details

If x is a list, then it wants elements " x ", " z " and " n " as described above.

Value

An object of class deform and then of class expansion

References

Bornn, L., Shaddick, G., \& Zidek, J. V. (2012). Modeling nonstationary processes through dimension expansion. Journal of the American Statistical Association, 107(497), 281-289. doi:10.1080/ 01621459.2011.646919.

Examples

```
# one-dimensional expansion
data(solar)
expand(solar$x, solar$z, solar$n)
# equivalent to expand(solar)
# two-dimensional expansion with rank-8 and rank-5 dimensions
expand(solar$x, solar$z, solar$n, c(8, 5))
```


Description

Plot a fitted deform object

Usage

```
\#\# S3 method for class 'deform'
plot
        x ,
        start = 1,
        graphics = "base",
        breaks = NULL,
        pal = function(n) hcl.colors(n, "YlOrRd", rev = TRUE),
        onepage \(=\) FALSE,
        \(n x=10\),
        ny \(=10\),
        xp = NULL,
        yp = NULL,
        xlab = NULL,
        ylab = NULL,
    )
```


Arguments

x
start
graphics
breaks
pal
onepage
$n x$
ny
xp
yp
xlab
ylab
... extra arguments to pass to plot()

Details

If breaks is an integer then it specifies the number of breaks to use for colour scales; if it's a vector, then it's the breaks themselves; and if it's a list then it's different breaks for each dimension.

Value

Plots representing all one- or two-dimensional smooths

Examples

```
# deformations
data(solar)
m0 <- deform(solar$x, solar$z, solar$n)
# plot representation of deformation
plot(m0)
# as above with specified x and y grid
xvals <- seq(-123.3, -122.25, by = .05)
yvals <- seq(49, 49.4, by = .05)
plot(m0, xp = xvals, yp = yvals)
# one-dimensional expansion
data(solar)
m1 <- expand(solar$x, solar$z, solar$n)
# plot its three dimensions
op <- par(mfrow = c(1, 3))
plot(m1)
par(op)
# or plot using lattice::levelplot
plot(m1, graphics = 'lattice')
# or as above, but on one page
plot(m1, graphics = 'lattice', onepage = TRUE)
# two-dimensional expansion
m2 <- expand(solar$x, solar$z, solar$n, c(8, 5))
# plot of its third and fourth dimensions for given x and y values
op <- par(mfrow = c(1, 2))
plot(m2, start = 3, xp = xvals, yp = yvals)
par(op)
# using lattice::levelplot with common breaks across dimensions with
# a palette that gives latent dimensions in white where near zero
plot(m2, onepage = TRUE, graphics = 'lattice', breaks = seq(-0.35, 0.35, by = 0.1),
    pal = function(n) hcl.colors(n, 'Blue-Red 3'))
```


Description

Predict from a fitted deform object

```
Usage
\#\# S3 method for class 'deform'
predict(object, newdata \(=\) NULL, ...)
```


Arguments

object	a fitted deform object
newdata	a 2-column matrix of x and y coordinates
\ldots	currently just a placeholder

Value
A 2-column matrix of predicted x and y points for deformations and $a(2+q)$-column matrix for q-dimensional expansions.

Examples

```
# fit a deformation model
data(solar)
m0 <- deform(solar$x, solar$z, solar$n)
# predict D-space points for original locations
predict(m0)
# predictions for one-dimensional expansion model with specified locations
# and standard error estimates
data(solar)
m1 <- expand(solar$x, solar$z, solar$n)
xvals <- seq(-123.3, -122.2, by = .1)
yvals <- seq(49, 49.4, by = .1)
xyvals <- expand.grid(xvals, yvals)
predict(m1, xyvals, se.fit = TRUE)
```


Description

Simulate from a fitted deform object

Usage

```
## S3 method for class 'deform'
simulate(object, nsim = 1, seed = NULL, newdata = NULL, ...)
```


Arguments

object	a fitted deform object
nsim	an integer giving the number of simulations
seed	an integer giving the seed for simulations
newdata	a 2-column matrix of x and y coordinates
\ldots	extra arguments to pass to predict.deform()

Value

Plots representing all one- or two-dimensional smooths

Examples

```
# deformations
data(solar)
m0 <- deform(solar$x, solar$z, solar$n)
# Gaussian process simulations based on fitted deformation model
simulate(m0)
# one-dimensional expansion model with five simulations and specified locations
data(solar)
m1 <- expand(solar$x, solar$z, solar$n)
xvals <- seq(-123.3, -122.25, by = .05)
yvals <- seq(49, 49.4, by = .05)
xyvals <- expand.grid(xvals, yvals)
simulate(m1, 5, newdata = xyvals)
```

solar Variance-covariance matrix for British Columbia solar radiation data

Description

Variance-covariance matrix for British Columbia solar radiation data

Format

A list with three elements, which are:
\mathbf{x} a 12-row 2-column matrix of longitude-latitude coordinates for 12 stations
z a 12-row 12-column variance-covariance matrix
\mathbf{n} an integer giving the original sample size

Source

These data were kindly provided by Alexandra Schmidt. They were originally published in Hay (1983) and then used in Sampson and Guttorp's (1992) pioneering deformation paper.

Hay, J. E. (1983) Solar energy system design: The impact of mesoscale variations in solar radiation, Atmosphere-Ocean, 21:2, 138-157, doi:10.1080/07055900.1983.9649161
Sampson, P. D. and Guttorp, P. (1992) Nonparametric Estimation of Nonstationary Spatial Covariance Structure, Journal of the American Statistical Association, 87:417, 108-119, doi:10.1080/ 01621459.1992.10475181

variogram Plot the variogram for a fitted deform object

Description

Plot the variogram for a fitted deform object

Usage

variogram(object, bins $=20$, bin.function $=" p r e t t y ", \operatorname{trim}=0, \ldots$)

Arguments

object
a fitted deform object
bins an integer specifying the number of bins for plotting
bin. function a character specifying a function to use to calculate bins; defaults to pretty ()
trim a scalar in [0, 0.5], which is passed to mean() when calculating binned variogram estimates; defaults to 0
... extra arguments to pass to plot()

Value

Plot of variogram

Examples

\# deformations
data(solar)
m0 <- deform(solar\$x, solar\$z, solar\$n)
\# empirical versus model-based variogram estimates against distance,
\# where distance is based on D-space
variogram(m0)
\# which is the default with approximately 20 bins, i.e. variogram(m0, bins $=20$)

```
# variogram for one-dimensional expansion without binning
data(solar)
m1 <- expand(solar$x, solar$z, solar$n)
variogram(m1, bins = 0)
```


Index

* data
solar, 12
aniso, 2
cencor (cencov), 3
cencov, 3
cor, 3
cov, 3
deform, 4
expand, 6
plot.deform, 7
predict.deform, 9
simulate.deform, 11
solar, 12
variogram, 12

