Package ‘denoiseR’

October 13, 2022
Version 1.0.2
Date 2020-02-23
Type Package
Title Regularized Low Rank Matrix Estimation
Author Julie Josse, Sylvain Sardy, Stefan Wager
Maintainer Julie Josse <julie. josserennes@gmail.com>
Imports irlba, Matrix, FactoMineR, stats
Suggests missMDA

Description Estimate a low rank matrix from noisy data using singular values
thresholding and shrinking functions. Impute missing values with matrix comple-
tion. The method is described in <arXiv:1602.01206>.

License GPL (>=2)

RoxygenNote 5.0.1

Depends R(>=2.10)

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-26 07:10:09 UTC

R topics documented:

denoiseR-package 2
adashrink 2
estim_delta e 5
ESHM_SIZMA o it e e e e e e e e e e 6
impactfactor e 7
imputeada L 8
IMPULECOUNt o ottt e e e e e 10
ISA e 11
LRsimo 13
optishrink 14
Presidents 15
11803010 16

https://arxiv.org/abs/1602.01206

2 adashrink

Index 17

denoiseR-package Regularized Low Rank Matrix Estimation

Description

The methods implemented allow to recover a low-rank structure from noisy data. In addition, they
may be used to estimate the underlying rank and to impute missing values.

Details
Package: denoiseR
Type: Package
Version: 1.0
Date: 2016-07-09
License: GPL (>=2)
Author(s)

Julie Josse, Sylvain Sardy, Stefan Wager
Maintainer: Julie Josse <julie.josserennes @ gmail.com>

References

Julie Josse, Sylvain Sardy, Stefan Wager. denoiseR a package for low rank matrix estimation.

See Also

URL: http://juliejosse.com/
http://web.stanford.edu/~swager/research.html
http://www.unige.ch/math/folks/sardy

adashrink Adaptive Shrinkage

adashrink 3

Description

This function estimates a low-rank signal from Gaussian noisy data using the Adaptive Shrinker of
the singular values. More precisely, the singular values are transformed using a function indexed
by two parameters lambda and gamma as dl = dl * max(1-(lambda/dl)*gamma,0). This estimator is
very flexible and adapts to the data whatever the noise regime. The parameters lambda and gamma
are estimated by minimizing a Stein unbiased risk estimate (SURE) when the variance sigma”2
of the noise is known or a generalized SURE (GSURE) otherwise. A method using an universal
threshold for lambda is also available. The estimator can be seen as a compromise between hard and
soft thresholding. Singular value soft thresholding is a particular case of the method when gamma
is equal to 1. It is possible to enforce the method to use soft-thresholding by setting gamma to 1.

Usage

adashrink(X, sigma = NA, method = c("GSURE", "QUT", "SURE"),
gamma.seq = seq(1, 5, by = 0.1), nbsim = 500, method.optim = "BFGS",
center = "TRUE", lambda@® = NA)

Arguments

X a data frame or a matrix with numeric entries

sigma integer, standard deviation of the Gaussian noise. By default sigma is estimated
using the estim_sigma function with the MAD option

method to select the two tunning parameters lambda and gamma. By default by mini-
mizing GSURE

gamma. seq a vector for the sequence of gamma. (not used when method is QUT). The
values must be greater than 1. If gamma.seq is set to 1 then soft singular values
soft thresholding is used.

nbsim integer, number of replications used to calculate the universal threshold lambda

when method is QUT
method.optim the method used in the optim function. By default BFGS
center boolean, to center the data. By default "TRUE"

lambda@ integer, the initial value for lambda used to optimize SURE and GSURE. By
default the median of the singular values (must be in log scale)

Details

When sigma is known, lambda and gamma can be estimated by minimizing SURE. To do this, a
grid for gamma is defined in gamma.seq (gammas must be greater than 1) and the SURE function is
optimized on lambda using the optim function of the package stats (?optim) with the optimization
method by default sets to "BFGS". The initial lambda can be modified in the argument lambda0. If
gamma.seq is set to 1, then the SURE function is optimized in lambda only. A value for sigma has
to be provided. When sigma is not known, it can be estimated using the function estim_sigma. An
alternative which does not require to know or estimate sigma is estimate the two tuning parameters
by minimizing GSURE. QUT consists in generating nbsim matrices of size n * p of Gaussian
random variables with mean O and variance sigma”2 and computing the first singular value on
each matrix. Then, the universal threshold lambda is calculated as the 1-alpha quantile of the null

4 adashrink

distribution (alpha is here sqrt(log(max(n,p)))). Then, gamma is estimated by minimizing a 1-dim
SURE. This method is recommended when one is particularly interested in estimating the rank of
the signal. The estimated low rank matrix is given in the output mu.hat. adashrink automatically
estimates the rank of the signal. Its value is given in the output nb.eigen corresponding to the
number of non-zero eigenvalues.

Value

mu.hat the estimator of the signal

nb.eigen the number of non-zero singular values

gamma the optimal gamma selected by minimizing SURE or GSURE
lambda the optimal lambda selected by minimizing SURE or GSURE
singval the singular values of the estimator

low.rank the results of the SVD of the estimator

References

Josse, J. & Sardy, S. (2015). Adaptive shrinkage of singular values. Statistics and Computing.

Candes, E. J., Sing-Long C. A. and Trzasko, J. D (2012). Unbiased risk estimates for singular value
thresholding and spectral estimators. IEEE Transactions on Signal Processing 61(19), 4643-4657.

See Also

estim_sigma

LRsim

Examples

Xsim <- LRsim(200, 500, 100, 1)

Not run: ada.gsure <- adashrink(Xsim$X, method = "GSURE")
ada.gsure$nb.eigen

ada.gsure$singval

ada.gsure$lambda

ada.gsure$gamma

Xsim <- LRsim(200, 500, 10, 4)

sig <- estim_sigma(Xsim$X)

ada.sure <- adashrink(Xsim$X, method = "SURE"”, sigma = sig)

soft.sure <- adashrink(Xsim$X, gamma.seq = 1, method = "SURE", sigma = sig)
End(Not run)

estim_delta

estim_delta

Estimates delta for Iterated Stable Autoencoder

Description

This function uses cross-validation to estimate delta for the Iterated Stable Autoencoder when con-
sidering Binomial noise. delta is the probability of deletion of each cell of the data matrix

Usage

estim_delta(X, delta = seq(0.1, 0.9, length.out = 9), nbsim =
noise = "Binomial”, transformation = c(”"None”, "CA"), pNA

n 1
S =
LN]
—_ .

maxiter = 1000, threshold = 1e-08)

Arguments

X
delta

nbsim
noise

transformation

pNA
maxiter

threshold

Details

a data frame or a matrix with count

vector, a sequence of values for the probability of deletion of each cell of the
data matrix

number of times that pNA values are inserted and predicted in the data
noise model assumed for the data. By default and only available "Binomial”

estimates a transformation of the original matrix; currently, only correspondence
analysis CA is available

percentage of missing values added in the data set
integer, maximum number of iterations of the iterative imputation algorithm

for assessing convergence of the iterative imputation algorithm (difference be-
tween two successive iterations)

For each value delta, repeated learning cross-validation consists in inserting pNA percentage of
missing values in the data set and predicting them with the Iterative Stable Autoencoder. More
precisely, the prediction is obtained using the iterative imputation algorithm (imputecount) which
alternates steps of imputation of the missing entries and estimation of the low-rank signal. This
process is repeated nbsim times for all the deltas. The mean squared error of prediction is kept for
each simulation and value of delta. The value of delta leading to the smallest MSEP on average
over the simulations is given.

Value

msep, matrix with the MSEP obtained for each simulation and each value of delta

delta, value giving in average the smallest MSEP over the nbsim simulations

6 estim_sigma

See Also

imputecount

ISA

Examples

A regularized Correspondence Analysis

Not run: library(FactoMineR)

perfume <- read.table("http://factominer.free.fr/docs/perfume.txt”,header=TRUE,
sep="\t", row.names=1)

rownames(perfume)[4] <- "Cinema”

isa.delt <- estim_delta(perfume, nbsim = 10, transformation = "CA")

isa.ca <- ISA(perfume, delta = isa.delt$delta, noise = "Binomial”, transformation = "CA")
rownames(isa.ca$mu.hat) <- rownames(perfume)

colnames(isa.ca$mu.hat) <- colnames(perfume)

res.isa.ca <- CA(isa.ca$mu.hat, graph = FALSE)

plot(res.isa.ca, title = "Regularized CA", cex = 0.6, selectCol = "contrib 20")
End(Not run)

estim_sigma Estimate sigma

Description

This function estimates the standard deviation sigma of the noise of the model where the data are
generated from a signal of rank k corrupted by homoscedastic Gaussian noise. Two estimators are
implemented. The first one, named LN, is asymptotically unbiased for sigma in the asymptotic
framework where both the number of rows and the number of columns are fixed while the noise
variance tends to zero (Low Noise). It is calculated by computing the residuals sum of squares
(using the truncated SVD at order k as an estimator) divided by the number of data minus the
number of estimated parameters. Thus, it requires as an input the rank k. The second one, MAD
(mean absolute deviation) is a robust estimator defined as the ratio of the median of the singular
values of X over the square root of the median of the Marcenko-Pastur distribution. It can be useful
when the signal can be considered of low-rank (the rank is very small in comparison to the matrix
size).

Usage

estim_sigma(X, k = NA, method = c("LN", "MAD"), center = "TRUE")

Arguments
X a data frame or a matrix with numeric entries
k integer specifying the rank of the signal only if method = "LN". By default k is

estimated using the estim_ncp function of the FactoMineR package

impactfactor 7

method LN for the low noise asymptotic estimate (it requires to specify the rank k) or
MAD for mean absolute deviation
center boolean, to center the data. By default "TRUE".
Details

In the low noise (LN) asymptotic framework, the estimator requires providing the rank k. Different
methods are available in the litterature and if by default the user does not provide any value, we use
of the function estim_ncp of the FactoMineR package with the option GCV (see ?estim_ncp).

Value

sigma the estimated value

References

Josse, J & Husson, F. (2012). Selecting the number of components in principal component analysis
using cross-validation approximations. Computational Statistics & Data Analysis, 6 (56).

Gavish, M & Donoho, D. L. Optimal Shrinkage of Singular Values.

Gavish, M & Donoho, D. L. (2014). The Optimal Hard Threshold for Singular Values is 4/sqrt(3).
IEEE Transactions on Information Theory, 60 (8), 5040-5053.

Josse, J. & Husson, F. (2011). Selecting the number of components in PCA using cross-validation
approximations.Computational Statististics and Data Analysis. 56 (6), pp. 1869-1879.

See Also

estim_ncp

LRsim

Examples

Xsim <- LRsim(100, 30, 2, 4)
res.sig <- estim_sigma(Xsim$X, k = 2)

impactfactor Data set on metrics for scientific journals:

Description

A subset of 443 journals of the sections Computer Science Software, Decision Sciences Statistics,
Probability and Uncertainty and Mathematics Statistics and Probability and their scores for 3 met-
rics recorded each year from 1999 to 2013: IPP impact per publication, SNIP source normalized
impact per paper (tries to weight by the number of citations per subject fieeld to adjust for dif-
ferent citation cultures) and the SJR SCImago journal rank (tries to capture average prestige per
publication). This data contains 31 percent of missing values.

8 imputeada

Usage

data(impactfactor)

Format

A data frame with 443 observations and 45 continuous variables

Source

journalmetrics.com

Examples

data(impactfactor)

Not run: ada.NA <- imputeada(impactfactor, lambda = 4.46, gamma = 1.9)
impactfactorcomp <- ada.NA$completeObs

End(Not run)

imputeada Adaptive Shrinkage with missing values - Imputation

Description

This function estimates a low-rank signal from a noisy Gaussian incomplete data using the iterative
Adaptive Trace Norm (ATN) algorithm. It can be used to impute a data set. dl = dl * max(1-
(lambda/dl)*gamma,0). If, the parameters lambda and gamma are not specified, they are estimated
by minimizing a Missing Stein unbiased risk estimate (SURE) when the variance sigma”2 of the
noise is known or a generalized SURE (GSURE) otherwise. These SURE and GSURE for missing
values are implemented using finite differences.

Usage

imputeada(X, lambda = NA, gamma = NA, sigma = NA, method = c("GSURE",
"SURE"), gamma.seq = seq(1, 5, by = 0.1), method.optim = "BFGS",
center = "TRUE", scale = "FALSE", threshold = 1e-08, nb.init = 1,
maxiter = 1000, lambda®@ = NA)

Arguments
X a data frame or a matrix with numeric entries
lambda integer, value to be used in the iterative ATN algorithm
gamma integer, value to be used in the iterative ATN algorithm
sigma integer, standard deviation of the Gaussian noise.
method to select the two tunning parameters lambda and gamma. By default by mini-

mizing GSURE

gamma. seq a vector for the sequence of gamma. The values must be greater than 1

imputeada 9

method.optim the method used in the optim function. By default BFGS

center boolean, to center the data. By default "TRUE"

scale boolean, to scale the data. By default "FALSE"

threshold, for assessing convergence (difference between two successive iterations)

nb.init integer, to run the iterative ATN algorithm with nbinit different initialization. By
default 1.

maxiter integer, maximum number of iterations of the iterative imputation algorithm

lambda@ integer, the initial value for lambda used to optimize SURE and GSURE. By

default the median of the singular values (must be in log scale)

Details

The iterative ATN algorithm first consists in imputing missing values with initial values. Then,
adashrink is performed on the completed dataset with its regularization parameter lambda and
gamma. The missing entries are imputed with the estimated signal. These steps of estimation
of the signal via adashrink and imputation of the missing values are iterated until convergence. At
the end, both an estimation of the signal and a completed data set are provided. If lambda and
gamma are not known, they can be estimated by minimizing SURE when sigma”2 is known. To
do this, a grid for gamma is defined in gamma.seq (gammas must be greater than 1) and the Miss-
ing SURE function is optimized on lambda using the optim function of the package stats (?optim)
with the optimization method by default sets to "BFGS". The initial lambda can be modified in the
argument lambda0. When sigma is not known, it is possible to estimate the two tuning parameters
by minimizing Missing GSURE. Note that Missing SURE is defined using finite differences so it is
computationally costly. The estimated low rank matrix is given in the output mu.hat. imputeada au-
tomatically estimates the rank of the signal. Its value is given in the output nb.eigen corresponding
to the number of non-zero eigenvalues.

Value

mu.hat the estimator of the signal

completeObs the completed data set. Observed values are the same but missing values are replaced
by the estimated one in mu.hat

nb.eigen the number of non-zero singular values

gamma the given gamma or the optimal gamma selected by minimizing SURE or GSURE
lambda the given lambda or the optimal lambda selected by minimizing SURE or GSURE
singval the singular values of the estimator

low.rank the results of the SVD of the estimator

See Also

adashrink

LRsim

10 imputecount

Examples

don.NA <- LRsim(200, 500, 100, 4)$X

don.NA[sample(1:(200%500),20, replace = FALSE)] <- NA

Not run: adaNA <- imputeada(don.NA, lambda = 0.022, gamma = 2.3)
esti <- adaNA$mu.hat

comp <- adaNA$completeObs

End(Not run)

imputecount Imputation of count data with the Iterated Stable Autoencoder

Description

This function estimates a low-rank signal from a noisy count incomplete data using the Iterated
Stable Autoencoder. It can be used to impute a data set.

Usage
imputecount (X, threshold = 1e-08, maxiter = 1000, delta = 0.5,
transformation = c(”"None”, "CA"))
Arguments
X a data frame or a matrix with count data containing missing values
threshold for assessing convergence (difference between two successive iterations)
maxiter integer, maximum number of iterations of the iterative imputation algorithm
delta numeric, probability of deletion of each cell of the data matrix. By default delta
=0.5

transformation estimate a transformation of the original matrix; currently, only correspondence
analysis CA is available

Details

Impute the missing entries of a count data set using the iterative ISA algorithm. The iterative ISA
algorithm first consists in imputing missing values with initial values. Then, ISA is performed on
the completed dataset with its regularization parameter delta. The missing entries are imputed with
the estimated signal. These steps of estimation of the signal via ISA and imputation of the missing
values are iterated until convergence.

Value

mu.hat the estimator of the signal

completeObs the completed data set. The observed values are kept for the non-missing entries and
the missing values are replaced by the predicted ones

ISA

See Also
ISA

Examples

#

11

ISA

Iterated Stable Autoencoder

Description

This function estimates a low-rank signal from noisy data using the Iterated Stable Autoencoder.
More precisely, it transforms a noise model into a regularization scheme using a parametric boot-
strap. In the Gaussian noise model, the procedure is equivalent to shrinking the singular values
of the data matrix (a non linear transformation of the singular values is applied) whereas it gives
other estimators with rotated singular vectors outside the Gaussian framework. Within the frame-
work of a Binomial or Poisson noise model, it is also possible to find the low-rank approximation
of a transformed version of the data matrix for instance such as the one used in Correspondence

Analysis.

Usage
ISA(X, sigma =

NA, delta = NA, noise = c("Gaussian”, "Binomial"),

transformation = c(”"None”, "CA"), svd.cutoff = 0.001, maxiter = 1000,
threshold = 1e-06, nu = min(nrow(X), ncol(X)), svdmethod = c("svd",
"irlba"), center = TRUE)

Arguments

X

sigma
delta

noise

transformation

svd.cutoff
maxiter
threshold

nu
svdmethod

center

a data frame or a matrix with numeric entries

numeric, standard deviation of the Gaussian noise. By default sigma is estimated
using the estim_sigma function with the MAD option

numeric, probability of deletion of each cell of the data matrix when considering
Binomial noise. By default delta = 0.5

noise model assumed for the data. By default "Gaussian"

estimate a transformation of the original matrix; currently, only correspondence
analysis is available

singular values smaller than this are treated as numerical error
integer, maximum number of iterations of ISA
for assessing convergence (difference between two successive iterations)

integer, number of singular values to be computed - may be useful for very large
matrices

svd by default. irlba can be specified to use a fast svd method. It can be useful
to deal with large matrix. In this case, nu may be specified

boolean, to center the data for the Gaussian noise model. By default "TRUE"

12 ISA

Details

When the data are continuous and assumed to be drawn from a Gaussian distribution with expecta-
tion of low-rank and variance sigma”2, then ISA performs a regularized SVD by corrupting the data
with an homoscedastic Gaussian noise (default choice) with variance sigma”2. A value for sigma
has to be provided. When sigma is not known, it can be estimated using the function estim_sigma.

For count data, the subsampling scheme used to draw X can be considered as Binomial or Poisson
(equivalent to Binomial, delta = 0.5). ISA regularizes the data by corrupting the data with Poisson
noise or by drawing from a Binomial distribution of parameters X_ij and 1-delta divided by 1-delta.
Thus it is necessary to give a value for delta. When, the data are transformed with Correspondence
Analysis (transfo = "CA"), this latter noising scheme is also applied but on the data transformed with
the CA weights. The estimated low rank matrix is given in the output mu.hat. ISA automatically
estimates the rank of the signal. Its value is given in the output nb.eigen corresponding to the
number of non-zero eigenvalues.

Value

mu.hat the estimator of the signal
nb.eigen the number of non-zero singular values

low.rank the results of the SVD of the estimator; for correspondence analysis, returns the SVD of
the CA transform

nb.iter number of iterations taken by the ISA algorithm

References

Josse, J. & Wager, S. (2016). Bootstrap-Based Regularization for Low-Rank Matrix Estimation.
Journal of Machine Learning Research.

See Also

estim_sigma

LRsim

Examples

Xsim <- LRsim(200, 500, 10, 4)
isa.gauss <- ISA(Xsim$X, sigma = 1/(4*sqrt(200%500)))
isa.gauss$nb.eigen

isa.bin <- ISA(X, delta = 0.7, noise = "Binomial")

A regularized Correspondence Analysis

Not run: library(FactoMineR)
perfume <- read.table("http://factominer.free.fr/docs/perfume.txt”,
header=TRUE, sep="\t", row.names=1)
rownames (perfume)[4] <- "Cinema”
isa.ca <- ISA(perfume, delta = 0.5, noise = "Binomial”, transformation = "CA")
rownames(isa.ca$mu.hat) <- rownames(perfume)
colnames(isa.ca$mu.hat) <- colnames(perfume)

LRsim 13

res.isa.ca <- CA(isa.ca$mu.hat, graph = FALSE)

plot(res.isa.ca, title = "Regularized CA", cex = 0.6, selectCol = "contrib 20")
res.ca <- CA(perfume, graph = FALSE)

plot(res.ca, title = "CA", cex = 0.6, selectCol = "contrib 20")

End(Not run)

LRsim Low Rank Simulation

Description

This function simulates a data set as a low-rank signal corrupted by Gaussian noise.

Usage

LRsim(n, p, k, SNR)

Arguments
n integer, number of rows
integer, number of columns
integer, rank of the signal
SNR numeric, signal to noise ratio
Details

A data set of size n*p and of rank k is simulated. More precisely, it is simulated as follows: A SVD
is performed on a n*p matrix generated from a standard multivariate normal distribution. Then,
the signal is computed using the first k singular vectors and singular values U_q D_q V_q’. The
signal is scaled in such a way that the variance of each column is 1 and then a Gaussian noise with
variance sigma”?2 is added. The SNR is calculated as 1/ sigma sqrt(np).

Value

X the simulated data
mu the true signal

sigma the standard deviation of the noise added to the signal
Examples

Xsim <- LRsim(100, 30, 2, 2)

14 optishrink

optishrink Optimal Shrinkage

Description

This function estimates a low-rank signal from Gaussian noisy data using the Optimal Shrinker of
the singular values. More precisely, in an asymptotic framework, the estimator which applies a
non-linear transformation of the singular values is the closest to the underlying signal in term of
mean squared error. Two asymptotic frameworks are considered: one where both the number of
rows and the number of columns are fixed while the noise variance tends to zero (Low Noise) and
one where both the number of rows and of columns tend to infinity (ASYMPT) while the rank of
the matrix stays fixed. In this latter, an optimal shrinker is given according to different norm losses
(Frobenius, Operator, Nuclear).

Usage
optishrink(X, sigma = NA, center = "TRUE", method = c("ASYMPT", "LN"),
loss = c("Frobenius"”, "Operator”, "Nuclear"”), k = NA)
Arguments
X a data frame or a matrix with numeric entries
sigma integer, standard deviation of the Gaussian noise. By default sigma is estimated
using the estim_sigma function
center boolean, to center the data. By default "TRUE"
method asymptotic framework used either low noise LN or ASYMPT. By default ASYMPT
loss by default Frobenius only if method = "ASYMPT"
k integer, specifying the rank of the signal only if method = "LN". By default k is

estimated using the estim_ncp function of the FactoMineR package

Details

In the low noise (LN) asymptotic framework, the estimator applies the following transformation on
the first k singular values dl = dl *(dI*2-sigma”2)/d1*2. Thus, it requires providing both the rank k
and a value for sigma. Concerning the rank k, different methods are available in the litterature and if
by default the user does not provide any value, we use of the function estim_ncp of the FactoMineR
package with the option GCV (see ?estim_ncp). The other asymptotic framework (ASYMPT) only
requires providing sigma. optishrink automatically estimates the rank of the signal. Its value is
given in the output nb.eigen corresponding to the number of non-zero eigenvalues. The estimated
low rank matrix is given in the output mu.hat.

Value

mu.hat the estimator of the signal

nb.eigen the number of non-zero singular values
singval the singular values of the estimator
low.rank the results of the SVD of the estimator

Presidents 15

References

Gavish, M & Donoho, D. L. (2014). Optimal Shrinkage of Singular Values.

Verbanck, M., Husson, F. & Josse, J. (2015). Regularised PCA to denoise and visualise data.
Statistics & Computing. 25 (2), 471-486

See Also

estim_sigma

LRsim

Examples

Xsim <- LRsim(200, 500, 10, 2)
opti.ln <- optishrink(Xsim$X, method = "LN", k = 10)
opti.asympt <- optishrink(Xsim$X, method = "ASYMPT")

Xsim <- LRsim(200, 500, 100, 1)

truesigma <- 1/(1*sqrt(200%500))

opti.asympt <- optishrink(Xsim$X, method = "ASYMPT", sigma = truesigma)
opti.asympt$nb.eigen

Presidents Contingency table with US Presidents speeches.

Description

A data set on US presidents inaugural speeches.

Usage

data(Presidents)

Format

A data frame with 13 rows and 836 columns. Rows represents the US presidents (from 1940 to
2009) and columns words used during their inaugural addresses. This is a contingency table.

Source

http://www.presidency.ucsb.edu and http://www.usa-presidents.info/union/ DtmVic software (Lebart
2015) http://www.dtmvic.com/

16 tumors

Examples

Not run:

data(Presidents)

isa.ca <- ISA(Presidents, delta = 0.1, transformation = "CA")
rownames(isa.ca$mu.hat) <- rownames(Presidents)
colnames(isa.ca$mu.hat) <- colnames(Presidents)

res.isa.ca <- CA(as.data.frame(isa.ca$mu.hat), graph = FALSE)
plot(res.isa.ca, title = "Regularized CA", cex = 0.8, selectRow
plot(res.isa.ca, title = "Regularized CA", cex = 0.6, invisible

"contrib 40")
"row”)

End(Not run)

tumors Brain tumors data.

Description
43 brain tumors and 356 continuous variables corresponding to the expression data and 1 categorical
variable corresponding to the type of tumors (4 types).

Usage

data(tumors)

Format

A data frame with 43 rows and 357 columns. Rows represent the tumors, columns represent the
expression and the type of tumor.

Details

A genetic data frame.

Source

M. de Tayrac, S. Le, M. Aubry, J. Mosser, and F. Husson. Simultaneous analysis of distinct omics
data sets with integration of biological knowledge: Multiple factor analysis approach. BMC Ge-
nomics, 10(1):32, 2009.

Examples

data(tumors)

Not run:

res.ada <- adashrink(tumors[, -ncol(tumors)], method = "SURE")

res.hcpc <- HCPC(as.data.frame(res.ada$mu.hat), graph=F, consol = FALSE)
plot.HCPC(res.hcpc, choice = "map"”, draw.tree = "FALSE")

End(Not run)

Index

+ datasets
impactfactor, 7
Presidents, 15
tumors, 16

+ package
denoiseR-package, 2

adashrink, 2, 9

denoiseR (denoiseR-package), 2
denoiseR-package, 2

estim_delta, 5
estim_ncp, 7
estim_sigma, 4,6, 12, 15

impactfactor, 7
imputeada, 8
imputecount, 6, 10
ISA6,11,11
LRsim, 4, 7,9, 12,13, 15
optishrink, 14

Presidents, 15

tumors, 16

17

	denoiseR-package
	adashrink
	estim_delta
	estim_sigma
	impactfactor
	imputeada
	imputecount
	ISA
	LRsim
	optishrink
	Presidents
	tumors
	Index

