
Package ‘facmodTS’
November 9, 2023

Type Package

Title Time Series Factor Models for Asset Returns

Version 1.0

Date 2023-10-27

Description Supports teaching methods of estimating and testing time series
factor models for use in robust portfolio construction and analysis. Unique
in providing not only classical least squares, but also modern robust model
fitting methods which are not much influenced by outliers. Includes
returns and risk decompositions, with user choice of standard deviation,
value-at-risk, and expected shortfall risk measures. ``Robust Statistics
Theory and Methods (with R)'', R. A. Maronna, R. D. Martin, V. J. Yohai,
M. Salibian-Barrera (2019) <doi:10.1002/9781119214656>.

License GPL-2

Depends R (>= 3.5)

Imports boot, data.table, lars, lattice, leaps, PerformanceAnalytics,
PortfolioAnalytics, R.cache, corpcor, methods, quadprog,
RobStatTM, robustbase, sandwich, sn, xts, zoo

Suggests corrplot, HH, lmtest, R.rsp, rugarch, strucchange, tinytest

URL https://github.com/robustport/facmodTS

RoxygenNote 7.2.3

Encoding UTF-8

NeedsCompilation no

Author Doug Martin [cre, aut],
Eric Zivot [aut],
Sangeetha Srinivasan [aut],
Avinash Acharya [ctb],
Yi-An Chen [ctb],
Kirk Li [ctb],
Lingjie Yi [ctb],
Justin Shea [ctb],
Mido Shammaa [ctb],
Jon Spinney [ctb]

1

https://doi.org/10.1002/9781119214656
https://github.com/robustport/facmodTS

2 fitTsfm

Maintainer Doug Martin <martinrd3d@gmail.com>

Repository CRAN

Date/Publication 2023-11-09 07:30:02 UTC

R topics documented:
fitTsfm . 2
fitTsfm.control . 6
fitTsfmLagLeadBeta . 11
fitTsfmMT . 13
fitTsfmUpDn . 15
fmCov . 17
fmEsDecomp . 19
fmSdDecomp . 22
fmVaRDecomp . 24
paFm . 26
plot.pafm . 28
plot.tsfm . 29
plot.tsfmUpDn . 31
predict.tsfm . 33
predict.tsfmUpDn . 34
print.pafm . 35
print.tsfm . 36
print.tsfmUpDn . 37
summary.pafm . 38
summary.tsfm . 39
summary.tsfmUpDn . 40

Index 42

fitTsfm Fit a time series factor model using time series regression

Description

Fits a time series (a.k.a. macroeconomic) factor model for one or more asset returns or excess re-
turns using time series regression. Users can choose between ordinary least squares-LS, discounted
least squares-DLS (or) robust regression. Several variable selection options including Stepwise,
Subsets, Lars are available as well. An object of class "tsfm" is returned.

Usage

fitTsfm(
asset.names,
factor.names,
mkt.name = NULL,

fitTsfm 3

rf.name = NULL,
data = data,
fit.method = c("LS", "DLS", "Robust"),
variable.selection = c("none", "stepwise", "subsets", "lars"),
control = fitTsfm.control(),
...

)

S3 method for class 'tsfm'
coef(object, ...)

S3 method for class 'tsfm'
fitted(object, ...)

S3 method for class 'tsfm'
residuals(object, ...)

Arguments

asset.names vector of syntactically valid asset names, whose returns are the dependent vari-
able in the factor model.

factor.names vector containing syntactically valid names of the factors.

mkt.name syntactically valid name of the column for market returns. Default is NULL.

rf.name syntactically valid name of the column for the risk free rate; if excess returns
should be calculated for all assets and factors. Default is NULL.

data vector, matrix, data.frame, xts, timeSeries or zoo object containing the columns
asset.names, factor.names, and optionally, mkt.name and rf.name.

fit.method the estimation method, one of "LS", "DLS" or "Robust". See details. Default is
"LS".

variable.selection

the variable selection method, one of "none", "stepwise","subsets","lars". See
details. Default is "none".

control list of control parameters. Refer to fitTsfm.control for details.

... arguments passed to fitTsfm.control

object a fit object of class tsfm which is returned by fitTsfm

Details

Typically, factor models are fit using excess returns. rf.name gives the option to supply a risk free
rate variable to subtract from each asset return and factor to compute excess returns.

Estimation method "LS" corresponds to ordinary least squares using lm, "DLS" is discounted least
squares (weighted least squares with exponentially declining weights that sum to unity), and, "Ro-
bust" is robust regression (using lmrobdetMM).

If variable.selection="none", uses all the factors and performs no variable selection. Whereas,
"stepwise" performs traditional stepwise LS or Robust regression (using step or step.lmrobdetMM),
that starts from the initial set of factors and adds/subtracts factors only if the regression fit, as

4 fitTsfm

measured by the Bayesian Information Criterion (BIC) or Akaike Information Criterion (AIC), im-
proves. And, "subsets" enables subsets selection using regsubsets; chooses the best performing
subset of any given size or within a range of subset sizes. Different methods such as exhaustive
search (default), forward or backward stepwise, or sequential replacement can be employed. See
fitTsfm.control for more details on the control arguments.

variable.selection="lars" corresponds to least angle regression using lars with variants "lasso"
(default), "lar", "stepwise" or "forward.stagewise". Note: If variable.selection="lars", fit.method
will be ignored.

Argument mkt.name can be used to add market-timing factors to any of the above methods. Please
refer to fitTsfmMT, a wrapper to fitTsfm for details.

Data Processing:
Note about NAs: Before model fitting, incomplete cases are removed for every asset (return data
combined with respective factors’ return data) using na.omit. Otherwise, all observations in data
are included.
Note about asset.names and factor.names: Spaces in column names of data will be converted
to periods as fitTsfm works with xts objects internally and colnames won’t be left as they are.

Value

fitTsfm returns an object of class "tsfm" for which print, plot, predict and summary methods
exist.

The generic functions coef, fitted and residuals extract various useful features of the fit object.
Additionally, fmCov computes the covariance matrix for asset returns based on the fitted factor
model.

An object of class "tsfm" is a list containing the following components:

asset.fit list of fitted objects for each asset. Each object is of class lm if fit.method="LS"
or "DLS", class lmrobdetMM if the fit.method="Robust", or class lars if
variable.selection="lars".

alpha N x 1 data.frame of estimated alphas.

beta N x K data.frame of estimated betas.

r2 length-N vector of R-squared values.

resid.sd length-N vector of residual standard deviations.

fitted xts data object of fitted values; iff variable.selection="lars"

call the matched function call.

data xts data object containing the asset(s) and factor(s) returns.

asset.names syntactically valid asset.names as input.

factor.names syntactically valid factor.names as input.

mkt.name syntactically valid mkt.name as input

fit.method fit.method as input.
variable.selection

variable.selection as input.

Where N is the number of assets, K is the number of factors and T is the number of time periods.

fitTsfm 5

Author(s)

Eric Zivot, Sangeetha Srinivasan and Yi-An Chen.

References

Christopherson, J. A., Carino, D. R., & Ferson, W. E. (2009). Portfolio performance measurement
and benchmarking. McGraw Hill Professional.

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of
statistics, 32(2), 407-499.

Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., & Tibshirani, R. (2009). The
elements of statistical learning (Vol. 2, No. 1). New York: Springer.

See Also

The tsfm methods for generic functions: plot.tsfm, predict.tsfm, print.tsfm and summary.tsfm.

And, the following extractor functions: coef, fitted, residuals, fmCov, fmSdDecomp, fmVaRDecomp
and fmEsDecomp.

paFm for Performance Attribution.

Examples

load data
data(managers, package = 'PerformanceAnalytics')

fit <- fitTsfm(asset.names = colnames(managers[,(1:6)]),
factor.names = colnames(managers[,(7:9)]),
data=managers)

summary(fit)
fitted(fit)

example using "subsets" variable selection
fit.sub <- fitTsfm(asset.names=colnames(managers[,(1:6)]),

factor.names=colnames(managers[,(7:9)]),
data=managers,
variable.selection="subsets",
method="exhaustive",
nvmin=2)

example using "lars" variable selection and subtracting risk-free rate
fit.lar <- fitTsfm(asset.names=colnames(managers[,(1:6)]),

factor.names=colnames(managers[,(7:9)]),
rf.name="US 3m TR",
data=managers,
variable.selection="lars",
lars.criterion="cv")

6 fitTsfm.control

fitTsfm.control List of control parameters for fitTsfm

Description

Creates a list of control parameters for fitTsfm. All control parameters that are not passed to this
function are set to default values. This function is meant for internal use only!!

Usage

fitTsfm.control(
decay = 0.95,
weights,
model = TRUE,
x = FALSE,
y = FALSE,
qr = TRUE,
nrep = NULL,
bb = 0.5,
efficiency = 0.95,
family = "mopt",
tuning.psi,
tuning.chi,
compute.rd = FALSE,
corr.b = TRUE,
split.type = "f",
initial = "S",
max.it = 100,
refine.tol = 1e-07,
rel.tol = 1e-07,
refine.PY = 10,
solve.tol = 1e-07,
trace.lev = 0,
psc_keep = 0.5,
resid_keep_method = "threshold",
resid_keep_thresh = 2,
resid_keep_prop = 0.2,
py_maxit = 20,
py_eps = 1e-05,
mscale_maxit = 50,
mscale_tol = 1e-06,
mscale_rho_fun = "bisquare",
scope,
scale,
direction,
steps = 1000,
k = 2,

fitTsfm.control 7

nvmin = 1,
nvmax = 8,
force.in = NULL,
force.out = NULL,
method,
really.big = FALSE,
type,
normalize = TRUE,
eps = .Machine$double.eps,
max.steps,
plot.it = FALSE,
lars.criterion = "Cp",
K = 10

)

Arguments

decay a scalar in (0, 1] to specify the decay factor for "DLS". Default is 0.95.

weights an optional vector of weights to be used in the fitting process for fit.method="LS","Robust",
or variable.selection="subsets". Should be NULL or a numeric vector. The
length of weights must be the same as the number of observations. The weights
must be nonnegative and it is strongly recommended that they be strictly posi-
tive.

model, x, y, qr logicals passed to lm for fit.method="LS". If TRUE the corresponding com-
ponents of the fit (the model frame, the model matrix, the response, the QR
decomposition) are returned.

nrep the number of random subsamples to be drawn for fit.method="Robust". If
the data set is small and "Exhaustive" resampling is being used, the value of
nrep is ignored.

bb tuning constant (between 0 and 1/2) for the M-scale used to compute the initial
S-estimator. It determines the robustness (breakdown point) of the resulting
MM-estimator, which is bb. Defaults to 0.5.

efficiency desired asymptotic efficiency of the final regression M-estimator. Defaults to
0.85.

family string specifying the name of the family of loss function to be used (current valid
options are "bisquare", "optimal" and "modopt" from the RobStatTM package).
Incomplete entries will be matched to the current valid options.

tuning.psi tuning parameters for the regression M-estimator computed with a rho function
as specified with argument family. If missing, it is computed inside lmrobdet.control
to match the value of efficiency according to the family of rho functions spec-
ified in family. Appropriate values for tuning.psi for a given desired effi-
ciency for Gaussian errors can be constructed using the functions bisquare,
mopt and opt.

tuning.chi tuning constant for the function used to compute the M-scale used for the initial
S-estimator. If missing, it is computed inside lmrobdet.control to match the
value of bb according to the family of rho functions specified in family.

8 fitTsfm.control

compute.rd logical value indicating whether robust leverage distances need to be computed.

corr.b logical value indicating whether a finite-sample correction should be applied to
the M-scale parameter bb.

split.type determines how categorical and continuous variables are split. See splitFrame.

initial string specifying the initial value for the M-step of the MM-estimator. Valid
options are 'S', for an S-estimator and 'MS' for an M-S estimator which is
appropriate when there are categorical explanatory variables in the model.

max.it maximum number of IRWLS iterations for the MM-estimator

refine.tol relative convergence tolerance for the S-estimator

rel.tol relative convergence tolerance for the IRWLS iterations for the MM-estimator

refine.PY number of refinement steps for the Pen~a-Yohai candidates

solve.tol relative tolerance for inversion

trace.lev positive values (increasingly) provide details on the progress of the MM-algorithm

psc_keep For pyinit, proportion of observations to remove based on PSCs. The effective
proportion of removed observations is adjusted according to the sample size to
be prosac*(1-p/n). See pyinit.

resid_keep_method

For pyinit, how to clean the data based on large residuals. If "threshold",
all observations with scaled residuals larger than C.res will be removed, if
"proportion", observations with the largest prop residuals will be removed.
See pyinit.

resid_keep_thresh

See parameter resid_keep_method above. See pyinit.
resid_keep_prop

See parameter resid_keep_method above. See pyinit.

py_maxit Maximum number of iterations. See pyinit.

py_eps Relative tolerance for convergence. See pyinit.

mscale_maxit Maximum number of iterations for the M-scale algorithm. See pyinit.

mscale_tol Convergence tolerance for the M-scale algorithm. See pyinit.

mscale_rho_fun String indicating the loss function used for the M-scale. See pyinit.

scope defines the range of models examined in the "stepwise" search. This should be
either a single formula, or a list containing components upper and lower, both
formulae. See step for how to specify the formulae and usage.

scale optional parameter for variable.selection="stepwise". The argument is
passed to step or step.lmrobdetMM as appropriate.

direction the mode of "stepwise" search, can be one of "both", "backward", or "for-
ward", with a default of "both". If the scope argument is missing the default for
direction is "backward".

steps the maximum number of steps to be considered for "stepwise". Default is 1000
(essentially as many as required). It is typically used to stop the process early.

k the multiple of the number of degrees of freedom used for the penalty in "stepwise".
Only k = 2 gives the genuine AIC. k = log(n) is sometimes referred to as BIC
or SBC. Default is 2.

fitTsfm.control 9

nvmin minimum size of subsets to examine for "subsets". Default is 1.

nvmax maximum size of subsets to examine for "subsets". Default is 8.

force.in index to columns of design matrix that should be in all models for "subsets".
Default is NULL.

force.out index to columns of design matrix that should be in no models for "subsets".
Default is NULL.

method one of "exhaustive", "forward", "backward" or "seqrep" (sequential replace-
ment) to specify the type of subset search/selection. Required if variable
selection="subsets" is chosen. Default is "exhaustive".

really.big option for "subsets"; Must be TRUE to perform exhaustive search on more than
50 variables.

type option for "lars". One of "lasso", "lar", "forward.stagewise" or "stepwise".
The names can be abbreviated to any unique substring. Default is "lasso".

normalize option for "lars". If TRUE, each variable is standardized to have unit L2 norm,
otherwise they are left alone. Default is TRUE.

eps option for "lars"; An effective zero.

max.steps Limit the number of steps taken for "lars"; the default is 8 * min(m, n-intercept),
with m the number of variables, and n the number of samples. For type="lar"
or type="stepwise", the maximum number of steps is min(m,n-intercept).
For type="lasso" and especially type="forward.stagewise", there can be
many more terms, because although no more than min(m,n-intercept) vari-
ables can be active during any step, variables are frequently droppped and added
as the algorithm proceeds. Although the default usually guarantees that the al-
gorithm has proceeded to the saturated fit, users should check.

plot.it option to plot the output for cv.lars. Default is FALSE.

lars.criterion an option to assess model selection for the "lars" method; one of "Cp" or "cv".
See details. Default is "Cp".

K number of folds for computing the K-fold cross-validated mean squared predic-
tion error for "lars". Default is 10.

trace If positive (or, not FALSE), info is printed during the running of step, lars or
cv.lars as relevant. Larger values may give more detailed information. Default
is FALSE.

Details

This control function is used to process optional arguments passed via ... to fitTsfm. These
arguments are validated and defaults are set if necessary before being passed internally to one
of the following functions: lm, lmrobdetMM, step, regsubsets, lars and cv.lars. See their
respective help files for more details. The arguments to each of these functions are listed above in
approximately the same order for user convenience.

The scalar decay is used by fitTsfm to compute exponentially decaying weights for fit.method="DLS".
Alternately, one can directly specify weights, a weights vector, to be used with "LS" or "Robust".
Especially when fitting multiple assets, care should be taken to ensure that the length of the weights
vector matches the number of observations (excluding cases ignored due to NAs).

10 fitTsfm.control

lars.criterion selects the criterion (one of "Cp" or "cv") to determine the best fitted model for
variable.selection="lars". The "Cp" statistic (defined in page 17 of Efron et al. (2004)) is
calculated using summary.lars. While, "cv" computes the K-fold cross-validated mean squared
prediction error using cv.lars.

Value

A list of the above components. This is only meant to be used by fitTsfm.

Author(s)

Sangeetha Srinivasan

References

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of
statistics, 32(2), 407-499.

See Also

fitTsfm, lm, lmrobdetMM, step, regsubsets, lars and cv.lars

Examples

check argument list passed by fitTsfm.control
tsfm.ctrl <- fitTsfm.control(method="exhaustive", nvmin=2)
print(tsfm.ctrl)

used internally by fitTsfm in the example below
load data

data(managers, package = 'PerformanceAnalytics')
Make syntactically valid column names

colnames(managers)
colnames(managers) <- make.names(colnames(managers))
colnames(managers)

fit <- fitTsfm(asset.names=colnames(managers[,(1:6)]),
factor.names=colnames(managers[,(7:9)]),
data=managers, variable.selection="subsets",
method="exhaustive", nvmin=2)

fitTsfmLagLeadBeta 11

fitTsfmLagLeadBeta Fit a lagged and lead Betas factor model using time series regression

Description

This is a wrapper function to fits a time series lagged Betas factor model for one or more asset
returns or excess returns using time series regression. Users can choose between ordinary least
squares-LS, discounted least squares-DLS (or) robust regression like fitTsfm.An object of class
"tsfm" is returned.

Usage

fitTsfmLagLeadBeta(
asset.names,
mkt.name,
rf.name = NULL,
data = data,
fit.method = c("LS", "DLS", "Robust"),
LagLeadBeta = 1,
LagOnly = FALSE,
control = fitTsfm.control(),
...

)

Arguments

asset.names vector containing names of assets, whose returns or excess returns are the de-
pendent variable.

mkt.name name of the column for market returns. It is required for a lagged Betas factor
model.

rf.name name of the column of risk free rate variable to calculate excess returns for all
assets (in asset.names) and the market factor (in mkt.name).Default is NULL,
and no action is taken.

data vector, matrix, data.frame, xts, timeSeries or zoo object containing column(s)
named in asset.names, factor.names and optionally, mkt.name and rf.name.

fit.method the estimation method, one of "LS", "DLS" or "Robust". See details. Default is
"LS".

LagLeadBeta A integer number to specify numbers of lags (and leads when LagOnly is FALSE)
of Betas to include in the model. The Default is 1.

LagOnly Flag variable to only include the lags (or have both lags and leads). The Default
is FALSE (both lags and leads).

control list of control parameters. The default is constructed by the function fitTsfm.control.
See the documentation for fitTsfm.control for details.

... arguments passed to fitTsfm.control

12 fitTsfmLagLeadBeta

Details

The lagged and lead returns model estimates lagged and lead market Beta. Specifically,

rt = α+β0MKTt+β
−
1 MKTt−1+. . .+β−

K+1MKTt−K+β+
1 MKTt+1+. . .+β+

KMKTt+Kεt, t = 1 . . . T

where rt is the asset returns, and MKT is the market factor. It is usually needed for illiquid securities
with stale prices. One can also report the sum of the lagged and lead Betas:

β = β0 + β+
1 + β+

1 + . . .+ β+
K + β−

1 + . . .+ β−
K

Value

fitTsfmLagLeadBeta also returns an object of class "tsfm" like fitTsfm. The generic function
such as print, plot, predict and summary methods exist. Also, the generic accessor functions
coef, fitted, residuals and fmCov can be applied as well.

An object of class "tsfm" is a list containing the following components:

asset.fit list of fitted objects for each asset. Each object is of class lm if fit.method="LS"
or "DLS", class lmRob if the fit.method="Robust".

alpha length-N vector of estimated alphas.

beta N x (L+1) matrix of estimated betas.

r2 length-N vector of R-squared values.

resid.sd length-N vector of residual standard deviations.

call the matched function call.

data xts data object containing the assets and factors.

asset.names asset.names as input.

fit.method fit.method as input.

Where N is the number of assets, L is the number of lagged and lead market Betas and T is the
number of time periods.

Author(s)

Yi-An Chen.

References

Scholes, M. and Williams, J. T. (1977). Estimating betas from non-synchronous data, Journal of
Financial Economics, vol. 5, 1977, pp. 309-327

See Also

The original time series function fitTsfm and its generic functions application.

fitTsfmMT 13

Examples

A lagged Betas model with LS fit

load data
data(managers, package = 'PerformanceAnalytics')

fit <- fitTsfmLagLeadBeta(asset.names = names(managers[,(1:6)]),
mkt.name = "SP500 TR", rf.name = "US 3m TR",
data = managers, LagLeadBeta = 2, LagOnly = TRUE)

summary(fit)
fitted(fit)

fitTsfmMT Fit a market timing time series factor model

Description

This is a wrapper function to fit a market timing time series factor model for one or more asset
returns or excess returns using time series regression. Users can choose between ordinary least
squares-LS, discounted least squares-DLS (or) robust regression. An object of class "tsfm" is
returned.

Usage

fitTsfmMT(
asset.names,
mkt.name,
rf.name = NULL,
data = data,
fit.method = c("LS", "DLS", "Robust"),
control = fitTsfm.control(...),
...

)

Arguments

asset.names vector containing syntactically valid names of assets, whose returns or excess
returns are the dependent variable.

mkt.name syntactically valid name of the column for market returns (required).

rf.name syntactically valid name of the column of risk free rate variable to calculate ex-
cess returns for all assets (in asset.names) and the market factor (in mkt.name).
Default is NULL, and no action is taken.

data vector, matrix, data.frame, xts, timeSeries or zoo object containing column(s)
named in asset.names, factor.names and optionally, mkt.name and rf.name.

fit.method the estimation method, one of "LS", "DLS" or "Robust". See details. Default is
"LS".

14 fitTsfmMT

control list of control parameters passed to fitTsfm. Refer to fitTsfm.control for
details.

... arguments passed to fitTsfm.control

Details

Market timing accounts for the price movement of the general stock market relative to fixed income
securities. A market-timing factor is added to the time series regression, following Henriksson &
Merton (1981). Here, we use down.market = max(0, R_f-R_m), where Rm is the (excess) return on
the market. The coefficient of this down-market factor can be interpreted as the number of "free"
put options on the market provided by the manager’s market-timings skills.

Value

Similar to fitTsfm, fitTsfmMT also returns an object of class "tsfm", for which print, plot,
predict and summary methods exist. The generic accessor functions coef, fitted, residuals
and fmCov can be applied as well.

An object of class "tsfm" is a list containing the following components:

asset.fit list of fitted objects for each asset. Each object is of class lm if fit.method="LS"
or "DLS", class lmRob if the fit.method="Robust".

alpha length-N vector of estimated alphas.

beta N x 2 matrix of estimated betas.

r2 length-N vector of R-squared values.

resid.sd length-N vector of residual standard deviations.

call the matched function call.

data xts data object containing the asset(s) and factor(s) returns.

asset.names asset.names as input.

factor.names vector containing the names of the market-timing factor and the market factor

mkt.name mkt.name as input

fit.method fit.method as input.

Where N is the number of assets and T is the number of time periods.

Author(s)

Yi-An Chen, Sangeetha Srinivasan.

References

Christopherson, J. A., Carino, D. R., & Ferson, W. E. (2009). Portfolio performance measurement
and benchmarking. McGraw Hill Professional. pp.127-133

Henriksson, R. D., & Merton, R. C. (1981). On market timing and investment performance. II.
Statistical procedures for evaluating forecasting skills. Journal of business, 513-533.

Treynor, J., & Mazuy, K. (1966). Can mutual funds outguess the market. Harvard business review,
44(4), 131-136.

fitTsfmUpDn 15

See Also

The original time series factor model fitting function fitTsfm and related methods.

Examples

load data
data(managers, package = 'PerformanceAnalytics')

example: Market-timing time series factor model with LS fit
fit <- fitTsfmMT(asset.names=colnames(managers[,(1:6)]),

mkt.name="SP500 TR", rf.name="US 3m TR",
data=managers)

summary(fit)

fitTsfmUpDn Fit a up and down market factor model using time series regression

Description

This is a wrapper function to fits a up and down market model for one or more asset returns or
excess returns using time series regression. Users can choose between ordinary least squares-LS,
discounted least squares-DLS (or) robust regression. An object of class "tsfmUpDn" is returned.

Usage

fitTsfmUpDn(
asset.names,
mkt.name,
rf.name = NULL,
data = data,
fit.method = c("LS", "DLS", "Robust"),
control = fitTsfm.control(...),
...

)

Arguments

asset.names Vector containing syntactically valid names of assets, whose returns or excess
returns are the dependent variable.

mkt.name Syntactically valid name for market returns. Required for an up/down market
model.

rf.name Syntactically valid name of the risk free rate to calculate excess returns for all
assets (in asset.names) and the market factor (in mkt.name). Default is NULL,
and no action is taken.

data vector, matrix, data.frame, xts, timeSeries or zoo object containing column(s)
named in asset.names, factor.names and optionally, mkt.name and rf.name.

16 fitTsfmUpDn

fit.method the estimation method, one of "LS", "DLS" or "Robust". See details. Default is
"LS".

control list of control parameters. The default is constructed by the function fitTsfm.control.
See the documentation for fitTsfm.control for details.

... arguments passed to fitTsfm.control

Details

fitTsfmUpDn will use fitTsfm to fit a time series model for up and down market respectively. If
risk free rate is provided, the up market is the excess market returns which is no less than 0. The
goal of up and down market model is to capture two different market Betas in the up and down
markets.

Value

fitTsfmUpDn returns an object tsfmUpDn. It supports generic function such as summary, predict,
plot and print.

It is also a list object containing Up and Dn. Both Up and Dn are class of "tsfm". As a result, for
each list object, The generic function such as print, plot, predict and summary methods exist for
both Up and Dn. Also, the generic accessor functions coef, fitted, residuals and fmCov can be
applied as well.

An object of class "tsfmUpDn" is a list containing Up and Dn:

Up An object of tsfm fitted by fitTsfm for the up market;

Dn An object of tsfm fitted by fitTsfm for the down market;

and others useful items:

call Function call.

data Original data used but converted to xts class.

Each object of tsfm contains :

asset.fit list of fitted objects for each asset. Each object is of class lm if fit.method="LS"
or "DLS", class lmRob if the fit.method="Robust"

alpha length-N vector of estimated alphas.

beta N x 1 matrix of estimated betas.

r2 length-N vector of R-squared values.

resid.sd length-N vector of residual standard deviations.

call the matched function call.

data xts data object containing the assets and factors.

asset.names asset.names as input.

factor.names factor.names as input.

fit.method fit.method as input.

Where N is the number of assets and T is the number of time periods.

fmCov 17

Author(s)

Yi-An Chen.

References

Christopherson, J. A., Carino, D. R., & Ferson, W. E. (2009). Portfolio performance measurement
and benchmarking. McGraw Hill Professional.

See Also

The tsfmUpDn methods for generic functions: plot.tsfmUpDn, predict.tsfmUpDn, print.tsfmUpDn
and summary.tsfmUpDn.

The original time series function fitTsfm and its generic functions application.

Examples

load data
data(managers, package = 'PerformanceAnalytics')

example: Up and down market factor model with LS fit
fitUpDn <- fitTsfmUpDn(asset.names = colnames(managers[,(1:6)]),

mkt.name = "SP500 TR",
data = managers,
fit.method = "LS")

print(fitUpDn)
summary(fitUpDn)

A list object
fitUpDn
summary(fitUpDn$Up)
summary(fitUpDn$Dn)

fmCov Covariance Matrix for assets’ returns from fitted factor model.

Description

Computes the covariance matrix for assets’ returns based on a fitted factor model. This is a generic
function with methods for classes tsfm, sfm and ffm.

Usage

fmCov(object, ...)

S3 method for class 'tsfm'
fmCov(object, factor.cov, use = "pairwise.complete.obs", ...)

18 fmCov

S3 method for class 'sfm'
fmCov(object, use = "pairwise.complete.obs", ...)

S3 method for class 'ffm'
fmCov(object, use = "pairwise.complete.obs", ...)

Arguments

object fit object of class tsfm, sfm or ffm.

... optional arguments passed to cov.

factor.cov factor covariance matrix (optional); defaults to the sample covariance matrix.

use method for computing covariances in the presence of missing values; one of "ev-
erything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs".
Default is "pairwise.complete.obs".

Details

R(i, t), the return on asset i at time t, is assumed to follow a factor model of the form,

R(i,t) = alpha(i) + beta(i)*f(t) + e(i,t),

where, alpha(i) is the intercept, f(t) is a K x 1 vector of factor returns at time t, beta(i) is
a 1 x K vector of factor exposures and the error terms e(i,t) are serially uncorrelated across time
and contemporaneously uncorrelated across assets so that e(i,t) ~ iid(0,sig(i)^2). Thus, the
variance of asset i’s return is given by

var(R(i)) = beta(i)*cov(F)*tr(beta(i)) + sig(i)^2.

And, the N x N covariance matrix of asset returns is

var(R) = B*cov(F)*tr(B) + D,

where, B is the N x K matrix of factor betas and D is a diagonal matrix with sig(i)^2 along the
diagonal.

The method for computing covariance can be specified via the . . . argument. Note that the default
of use="pairwise.complete.obs" for handling NAs restricts the method to "pearson".

Value

The computed N x N covariance matrix for asset returns based on the fitted factor model.

Author(s)

Eric Zivot, Yi-An Chen and Sangeetha Srinivasan.

fmEsDecomp 19

References

Zivot, E., & Jia-hui, W. A. N. G. (2006). Modeling Financial Time Series with S-Plus Springer-
Verlag.

See Also

fitTsfm

cov for more details on arguments use and method.

Examples

Time Series Factor model example
load data

data(managers, package = 'PerformanceAnalytics')
Make syntactically valid column names

colnames(managers)
colnames(managers) <- make.names(colnames(managers))
colnames(managers)

fit <- fitTsfm(asset.names = colnames(managers[, (1:6)]),
factor.names = c("EDHEC.LS.EQ","SP500.TR"),
data = managers)

fmCov(fit)

fmEsDecomp Decompose ES into individual factor contributions

Description

Compute the factor contributions to Expected Tail Loss or Expected Shortfall (ES) of assets’ returns
based on Euler’s theorem, given the fitted factor model. The partial derivative of ES with respect
to factor beta is computed as the expected factor return given fund return is less than or equal to its
value-at-risk (VaR). Option to choose between non-parametric and Normal.

Usage

fmEsDecomp(object, ...)

S3 method for class 'tsfm'
fmEsDecomp(
object,
factor.cov,
p = 0.05,
type = c("np", "normal"),
use = "pairwise.complete.obs",
...

)

20 fmEsDecomp

S3 method for class 'sfm'
fmEsDecomp(
object,
factor.cov,
p = 0.05,
type = c("np", "normal"),
use = "pairwise.complete.obs",
...

)

S3 method for class 'ffm'
fmEsDecomp(
object,
factor.cov,
p = 0.05,
type = c("np", "normal"),
use = "pairwise.complete.obs",
...

)

Arguments

object fit object of class tsfm, sfm or ffm.

... other optional arguments passed to quantile.

factor.cov optional user specified factor covariance matrix with named columns; defaults
to the sample covariance matrix.

p tail probability for calculation. Default is 0.05.

type one of "np" (non-parametric) or "normal" for calculating VaR. Default is "np".

use method for computing covariances in the presence of missing values; one of "ev-
erything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs".
Default is "pairwise.complete.obs".

Details

The factor model for an asset’s return at time t has the form

R(t) = beta'f(t) + e(t) = beta.star'f.star(t)

where, beta.star=(beta,sig.e) and f.star(t)=[f(t)',z(t)]'. By Euler’s theorem, the ES
of the asset’s return is given by:

ES.fm = sum(cES_k) = sum(beta.star_k*mES_k)

where, summation is across the K factors and the residual, cES and mES are the component and
marginal contributions to ES respectively. The marginal contribution to ES is defined as the ex-
pected value of F.star, conditional on the loss being less than or equal to VaR.fm. This is estimated
as a sample average of the observations in that data window.

fmEsDecomp 21

Refer to Eric Zivot’s slides (referenced) for formulas pertaining to the calculation of Normal ES
(adapted from a portfolio context to factor models).

Value

A list containing

ES.fm length-N vector of factor model ES of N-asset returns.

mES N x (K+1) matrix of marginal contributions to VaR.

cES N x (K+1) matrix of component contributions to VaR.

pcES N x (K+1) matrix of percentage component contributions to VaR.

Where, K is the number of factors and N is the number of assets.

Author(s)

Eric Zviot, Sangeetha Srinivasan and Yi-An Chen

References

Epperlein, E., & Smillie, A. (2006). Portfolio risk analysis Cracking VAR with kernels. RISK-
LONDON-RISK MAGAZINE LIMITED-, 19(8), 70.

Hallerback (2003). Decomposing Portfolio Value-at-Risk: A General Analysis. The Journal of
Risk, 5(2), 1-18.

Meucci, A. (2007). Risk contributions from generic user-defined factors. RISK-LONDON-RISK
MAGAZINE LIMITED-, 20(6), 84.

Yamai, Y., & Yoshiba, T. (2002). Comparative analyses of expected shortfall and value-at-risk: their
estimation error, decomposition, and optimization. Monetary and economic studies, 20(1), 87-121.

See Also

fitTsfm for the different factor model fitting functions.

fmSdDecomp for factor model SD decomposition. fmVaRDecomp for factor model VaR decomposi-
tion.

Examples

Time Series Factor Model
load data

data(managers, package = 'PerformanceAnalytics')

fit.macro <- fitTsfm(asset.names=colnames(managers[,(1:6)]),
factor.names=colnames(managers[,(7:8)]),
data=managers)

ES.decomp <- fmEsDecomp(fit.macro)

get the component contributions
ES.decomp$cES

22 fmSdDecomp

fmSdDecomp Decompose standard deviation into individual factor contributions

Description

Compute the factor contributions to standard deviation (SD) of assets’ returns based on Euler’s
theorem, given the fitted factor model.

Usage

fmSdDecomp(object, ...)

S3 method for class 'tsfm'
fmSdDecomp(object, factor.cov, use = "pairwise.complete.obs", ...)

S3 method for class 'sfm'
fmSdDecomp(object, factor.cov, use = "pairwise.complete.obs", ...)

S3 method for class 'ffm'
fmSdDecomp(object, factor.cov, ...)

Arguments

object fit object of class tsfm or ffm.

... optional arguments passed to cov.

factor.cov optional user specified factor covariance matrix with named columns; defaults
to the sample covariance matrix.

use method for computing covariances in the presence of missing values; one of "ev-
erything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs".
Default is "pairwise.complete.obs".

Details

The factor model for an asset’s return at time t has the form

R(t) = beta'f(t) + e(t) = beta.star'f.star(t)

where, beta.star=(beta,sig.e) and f.star(t)=[f(t)',z(t)]'.

By Euler’s theorem, the standard deviation of the asset’s return is given as:

Sd.fm = sum(cSd_k) = sum(beta.star_k*mSd_k)

fmSdDecomp 23

where, summation is across the K factors and the residual, cSd and mSd are the component and
marginal contributions to SD respectively. Computing Sd.fm and mSd is very straight forward. The
formulas are given below and details are in the references. The covariance term is approximated by
the sample covariance.

Sd.fm = sqrt(beta.star''cov(F.star)beta.star)
mSd = cov(F.star)beta.star / Sd.fm

Value

A list containing

Sd.fm length-N vector of factor model SDs of N-asset returns.

mSd N x (K+1) matrix of marginal contributions to SD.

cSd N x (K+1) matrix of component contributions to SD.

pcSd N x (K+1) matrix of percentage component contributions to SD.

Where, K is the number of factors and N is the number of assets.

Author(s)

Eric Zivot, Yi-An Chen and Sangeetha Srinivasan

References

Hallerback (2003). Decomposing Portfolio Value-at-Risk: A General Analysis. The Journal of
Risk, 5(2), 1-18.

Meucci, A. (2007). Risk contributions from generic user-defined factors. RISK-LONDON-RISK
MAGAZINE LIMITED-, 20(6), 84.

Yamai, Y., & Yoshiba, T. (2002). Comparative analyses of expected shortfall and value-at-risk: their
estimation error, decomposition, and optimization. Monetary and economic studies, 20(1), 87-121.

See Also

fitTsfm for the different factor model fitting functions.

fmCov for factor model covariance. fmVaRDecomp for factor model VaR decomposition. fmEsDecomp
for factor model ES decomposition.

Examples

Time Series Factor Model

load data
data(managers, package = 'PerformanceAnalytics')
colnames(managers)
Make syntactically valid column names

colnames(managers) <- make.names(colnames(managers))
colnames(managers)

24 fmVaRDecomp

fit.macro <- fitTsfm(asset.names=colnames(managers[,(1:6)]),
factor.names=colnames(managers[,(7:9)]),
rf.name="US.3m.TR", data=managers)

decomp <- fmSdDecomp(fit.macro)
get the percentage component contributions
decomp$pcSd

fmVaRDecomp Decompose VaR into individual factor contributions

Description

Compute the factor contributions to Value-at-Risk (VaR) of assets’ returns based on Euler’s theorem,
given the fitted factor model. The partial derivative of VaR w.r.t. factor beta is computed as the
expected factor return given fund return is equal to its VaR and approximated by a kernel estimator.
Option to choose between non-parametric and Normal.

Usage

fmVaRDecomp(object, ...)

S3 method for class 'tsfm'
fmVaRDecomp(
object,
factor.cov,
p = 0.05,
type = c("np", "normal"),
use = "pairwise.complete.obs",
...

)

S3 method for class 'sfm'
fmVaRDecomp(
object,
factor.cov,
p = 0.05,
type = c("np", "normal"),
use = "pairwise.complete.obs",
...

)

S3 method for class 'ffm'
fmVaRDecomp(
object,
factor.cov,
p = 0.05,

fmVaRDecomp 25

type = c("np", "normal"),
use = "pairwise.complete.obs",
...

)

Arguments

object fit object of class tsfm, sfm or ffm.

... other optional arguments passed to quantile.

factor.cov optional user specified factor covariance matrix with named columns; defaults
to the sample covariance matrix.

p tail probability for calculation. Default is 0.05.

type one of "np" (non-parametric) or "normal" for calculating VaR. Default is "np".

use method for computing covariances in the presence of missing values; one of "ev-
erything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs".
Default is "pairwise.complete.obs".

Details

The factor model for an asset’s return at time t has the form

R(t) = beta'f(t) + e(t) = beta.star'f.star(t)

where, beta.star=(beta,sig.e) and f.star(t)=[f(t)',z(t)]'. By Euler’s theorem, the VaR
of the asset’s return is given by:

VaR.fm = sum(cVaR_k) = sum(beta.star_k*mVaR_k)

where, summation is across the K factors and the residual, cVaR and mVaR are the component and
marginal contributions to VaR respectively. The marginal contribution to VaR is defined as the
expectation of F.star, conditional on the loss being equal to VaR.fm. This is approximated as
described in Epperlein & Smillie (2006); a triangular smoothing kernel is used here.

Refer to Eric Zivot’s slides (referenced) for formulas pertaining to the calculation of Normal VaR
(adapted from a portfolio context to factor models)

Value

A list containing

VaR.fm length-N vector of factor model VaRs of N-asset returns.

n.exceed length-N vector of number of observations beyond VaR for each asset.

idx.exceed list of numeric vector of index values of exceedances.

mVaR N x (K+1) matrix of marginal contributions to VaR.

cVaR N x (K+1) matrix of component contributions to VaR.

pcVaR N x (K+1) matrix of percentage component contributions to VaR.

Where, K is the number of factors and N is the number of assets.

26 paFm

Author(s)

Eric Zivot, Yi-An Chen and Sangeetha Srinivasan

References

Hallerback (2003). Decomposing Portfolio Value-at-Risk: A General Analysis. The Journal of
Risk, 5(2), 1-18.

Meucci, A. (2007). Risk contributions from generic user-defined factors. RISK-LONDON-RISK
MAGAZINE LIMITED-, 20(6), 84.

Yamai, Y., & Yoshiba, T. (2002). Comparative analyses of expected shortfall and value-at-risk: their
estimation error, decomposition, and optimization. Monetary and economic studies, 20(1), 87-121.

See Also

fitTsfm for the different factor model fitting functions.

fmSdDecomp for factor model SD decomposition. fmEsDecomp for factor model ES decomposition.

Examples

Time Series Factor Model

load data
data(managers, package = 'PerformanceAnalytics')
colnames(managers)
Make syntactically valid column names
colnames(managers) <- make.names(colnames(managers))
colnames(managers)

fit.macro <- fitTsfm(asset.names=colnames(managers[,(1:6)]),
factor.names=colnames(managers[,(7:8)]),
data=managers)

VaR.decomp <- fmVaRDecomp(fit.macro)

get the component contributions
VaR.decomp$cVaR

paFm Compute cumulative mean attribution for factor models

Description

Decompose total returns into returns attributed to factors and specific returns. An object of class
"pafm" is generated, with methods for generic functions plot, summary and print.

paFm 27

Usage

paFm(fit, ...)

Arguments

fit an object of class tsfm, sfm or ffm.

... other arguments/controls passed to the fit methods.

Details

Total returns can be decomposed into returns attributed to factors and specific returns.
Rt =

∑
bk ∗ fkt+ ut, t = 1...T

b_k is exposure to factor k and f_kt is factor k’s return at time t. The return attributed to factor k is
b_k * f_kt and specific return is u_t.

Value

The returned object is of class "pafm" containing

cum.ret.attr.f N X K matrix of cumulative return attributed to factors.

cum.spec.ret length-N vector of cumulative specific returns.

attr.list list of time series of attributed returns for every portfolio.

Author(s)

Yi-An Chen and Sangeetha Srinivasan

References

Grinold, R. and Kahn, R. (1999) Active Portfolio Management: A Quantitative Approach for Pro-
ducing Superior Returns and Controlling Risk. McGraw-Hill.

See Also

fitTsfm for the factor model fitting functions.

The pafm methods for generic functions: plot.pafm, print.pafm and summary.pafm.

Examples

data(managers, package = 'PerformanceAnalytics')
fit <- fitTsfm(asset.names=colnames(managers[, (1:6)]),

factor.names=c("EDHEC LS EQ","SP500 TR"),
data=managers)

without benchmark
paFm(fit)

28 plot.pafm

plot.pafm plot "pafm" object

Description

Generic function of plot method for paFm. Either plot all assets or choose a single asset to plot.

Usage

S3 method for class 'pafm'
plot(
x,
which.plot = c("none", "1L", "2L", "3L"),
max.show = 6,
date = NULL,
plot.single = FALSE,
fundName,
which.plot.single = c("none", "1L", "2L", "3L"),
...

)

Arguments

x object of class "pafm" created by paFm.

which.plot Integer indicates which plot to create: "none" will create a menu to choose.
Defualt is none.
1 = attributed cumulative returns,
2 = attributed returns on date selected by user,
3 = time series of attributed returns

max.show Maximum assets to plot. Default is 6.

date Indicates for attributed returns, the date format should be xts compatible.

plot.single Plot a single asset of lm class. Defualt is FALSE.

fundName Name of the portfolio to be plotted.
which.plot.single

Integer indicates which plot to create: "none" will create a menu to choose.
Defualt is none.
1 = attributed cumulative returns,
2 = attributed returns on date selected by user,
3 = time series of attributed returns

... more arguements for chart.TimeSeries used for plotting time series

Value

plot.pafm returns a plot for an object of class pafm.

plot.tsfm 29

Author(s)

Yi-An Chen.

plot.tsfm Plots from a fitted time series factor model

Description

Generic plot method for object of class tsfm. Plots chosen characteristic(s) for one or more assets.

Usage

S3 method for class 'tsfm'
plot(
x,
which = NULL,
f.sub = 1:2,
a.sub = 1:6,
plot.single = FALSE,
asset.name,
colorset = c("royalblue", "dimgray", "olivedrab", "firebrick", "goldenrod",
"mediumorchid", "deepskyblue", "chocolate", "darkslategray"),

legend.loc = "topleft",
las = 1,
lwd = 2,
maxlag = 15,
...

)

Arguments

x an object of class tsfm produced by fitTsfm.

which a number to indicate the type of plot. If a subset of the plots is required, specify
a subset of the numbers 1:12 for group plots and 1:19 for individual plots. If
which=NULL (default), the following menu appears:

For plots of a group of assets:
1 = Factor model coefficients: Alpha,
2 = Factor model coefficients: Betas,
3 = Actual and fitted,
4 = R-squared,
5 = Residual volatility,
6 = Scatterplot matrix of residuals, with histograms, density overlays, correla-
tions and significance stars,
7 = Factor model residual correlation
8 = Factor model return correlation,

30 plot.tsfm

9 = Factor contribution to SD,
10 = Factor contribution to ES,
11 = Factor contribution to VaR,
12 = Asset returns vs factor returns (single factor model)

For individual asset plots:
1 = Actual and fitted,
2 = Actual vs fitted,
3 = Residuals vs fitted,
4 = Sqrt. of modified residuals vs fitted,
5 = Residuals with standard error bands,
6 = Time series of squared residuals,
7 = Time series of absolute residuals,
8 = SACF and PACF of residuals,
9 = SACF and PACF of squared residuals,
10 = SACF and PACF of absolute residuals,
11 = Non-parametric density of residuals with normal overlaid,
12 = Non-parametric density of residuals with skew-t overlaid,
13 = Histogram of residuals with non-parametric density and normal overlaid,
14 = QQ-plot of residuals,
15 = CUSUM test-Recursive residuals, requires strucchange package,
16 = CUSUM test-LS residuals, requires strucchange package,
17 = Recursive estimates (RE) test of LS regression coefficients, requires struc-
change package,
18 = Rolling regression over a 24-period observation window,
19 = Asset returns vs factor returns (single factor model)

f.sub numeric/character vector; subset of indexes/names of factors to include for group
plots. Default is 1:2.

a.sub numeric/character vector; subset of indexes/names of assets to include for group
plots. At least 2 assets must be selected. Default is 1:6.

plot.single logical; If TRUE plots the characteristics of an individual asset’s factor model.
The type of plot is given by which. Default is FALSE.

asset.name name of the individual asset to be plotted. Is necessary if x contains multiple
asset fits and plot.single=TRUE.

colorset color palette to use for all the plots. The 1st element will be used for individual
time series plots or the 1st object plotted, the 2nd element for the 2nd object in
the plot and so on.

legend.loc places a legend into one of nine locations on the chart: "bottomright", "bottom",
"bottomleft", "left", "topleft", "top", "topright", "right", or "center". Default is
"bottomright". Use legend.loc=NULL to suppress the legend.

las one of 0, 1, 2, 3 to set the direction of axis labels, same as in plot. Default is
1.

lwd set the line width, same as in plot. Default is 2.

maxlag optional number of lags to be calculated for ACF. Default is 15.

... further arguments to be passed to other plotting functions.

plot.tsfmUpDn 31

Details

The function can be used for group plots and individual plots. User can select the type of plot either
from the menu prompt (default) or directly via argument which.

In case multiple plots are needed, the menu is repeated after each plot (enter 0 to exit). User can
also input a numeric vector of plot options via which.

Group plots are the default. The selected assets in a.sub and selected factors in f.sub are plotted
depending on the characteristic chosen. The default is to show the first 2 factors and first 6 assets.

Setting plot.single=TRUE enables individual plots. If there is more than one asset fit by x,
asset.name should be specified. In case the tsfm object x contains only a single asset fit, plot.tsfm
can infer asset.name without user input.

CUSUM plots (individual asset plot options 15, 16 and 17) are applicable only for fit.method="LS".

Modified residuals, rolling regression and single factor model plots (individual asset plot options 4,
18 and 19) are not applicable for variable.selection="lars".

The last option for plotting asset returns vs. factor returns (individual asset plot option 19 and group
plot 12) are only applicable for single factor models.

Value

plot.tsfm returns a plot for an object of class tsfm.

Author(s)

Eric Zivot, Sangeetha Srinivasan and Yi-An Chen

See Also

fitTsfm, residuals.tsfm, fitted.tsfm, fmCov.tsfm and summary.tsfm for time series factor
model fitting and related S3 methods. Refer to fmSdDecomp, fmEsDecomp, fmVaRDecomp for factor
model risk measures.

Here is a list of plotting functions used. (I=individual, G=Group) I(1,5,6,7), G(3) - chart.TimeSeries,
I(2,3,4,19), G(12) - plot.default, I(3,4) - panel.smooth, I(8,9,10) - chart.ACFplus, I(11,12) -
plot.density, I(13) - chart.Histogram, I(14) - chart.QQPlot, I(15,16,17) - plot.efp (requires
strucchange package), I(18) - plot.zoo, G(1,2,4,5,9,10,11) - barchart, G(6) - chart.Correlation
and G(7,8) - corrplot.mixed (requires corrplot package).

plot.tsfmUpDn Plot actual against fitted values of up and down market time series
factor model

Description

Generic plot method for object of class tsfmUpDn.

32 plot.tsfmUpDn

Usage

S3 method for class 'tsfmUpDn'
plot(
x,
asset.name = NULL,
SFM.line = FALSE,
LSandRob = FALSE,
line.color = c("blue", "purple"),
line.type = c("dashed", "solid"),
line.width = c(1, 2),
sfm.line.type = "dashed",
add.legend = TRUE,
legend.loc = "topleft",
legend.cex = 0.9,
...

)

Arguments

x an object of class tsfmUpDn produced by fitTsfmUpDn.

asset.name A vector of character to show single or multiple assets names. The defualt if
NULL.

SFM.line A logic flag to add a fitted single factor model. The default is FALSE.

LSandRob A logic flag to add a comparison Up/Down factor model. If the original model is
"LS", the comparison model is "Robust" and vice versa. The default is FALSE.
The default is FALSE.

line.color A vector of color codes of up/dn fitted line. The first element is for the ob-
ject fitted line and the second for the comparison fitted line. The default is
c("blue","purple").

line.type A vector of line types of up/dn fitted line. The first is for the object fitted line and
the second for the comparison fitted line. The default is c("dashed","solid".

line.width A vector of line width of up/dn fitted line. The first element is for the object
fitted line and the second element for the comparison fitted line. The default is
c(1,2.

sfm.line.type SFM line type. The default is "dashed"

add.legend A logic flag to add a legend. The default is TRUE.

legend.loc The default is "topleft".

legend.cex cex of legend.

... Other arguments can be used in plot. Please refer to plot.

Details

This method plots actual values against fitted value of up and down market time series factor model.
The dots are actual values and the dashed lines are fitted values. Users can choose to add a single
market factor model and a robust up and down model for comaprsion.

predict.tsfm 33

For other types of plots, use the list objects Up and Dn of class tsfmUpDn. The plot.tsfm can be
applied.

Value

plot.tsfmUpDn returns a plot for an object of class tsfmUpDn.

Author(s)

Yi-An Chen

See Also

fitTsfmUpDn

predict.tsfm Predicts asset returns based on a fitted time series factor model

Description

S3 predict method for object of class tsfm. It calls the predict method for fitted objects of class
lm, lmRob or lars as appropriate.

Usage

S3 method for class 'tsfm'
predict(object, newdata = NULL, ...)

Arguments

object an object of class tsfm produced by fitTsfm.

newdata a vector, matrix, data.frame, xts, timeSeries or zoo object containing the vari-
ables with which to predict.

... optional arguments passed to predict.lm or predict.lmrob, such as se.fit,
or, to predict.lars such as mode.

Value

predict.tsfm produces a matrix of return predictions, if all assets have equal history. If not, a list
of predicted return vectors of unequal length is produced.

Author(s)

Yi-An Chen and Sangeetha Srinivasan

See Also

fitTsfm, summary.tsfm

34 predict.tsfmUpDn

Examples

load data from the database
data(managers, package = 'PerformanceAnalytics')

fit the factor model with LS
fit <- fitTsfm(asset.names = colnames(managers[,(1:6)]),

factor.names = c("EDHEC LS EQ","SP500 TR"),
data = managers)

predict_fit <- predict(fit)

newdata <- data.frame(rnorm(n=NROW(fit$data)), rnorm(n=NROW(fit$data)))
colnames(newdata) <- c("EDHEC LS EQ", "SP500 TR")
rownames(newdata) <- zoo::index(fit$data)

predict_fit_2 <- predict(fit, newdata, interval = "confidence")

predict.tsfmUpDn Predicts asset returns based on a fitted up and down market time series
factor model

Description

S3 predict method for object of class tsfmUpDn. It calls the predict.tsfm method for a list object
of Up and Dn

Usage

S3 method for class 'tsfmUpDn'
predict(object, ...)

Arguments

object an object of class tsfmUpDn produced by fitTsfmUpDn.

... optional arguments passed to predict.lm or predict.lmrob, such as se.fit,
or, to predict.lars such as mode.

Value

predict.tsfmUpDm produces a list of Up and Dn. Both Up and Dn contain a vector or a matrix of
predictions.

Author(s)

Yi-An Chen and Sangeetha Srinivasan

print.pafm 35

See Also

predict.tsfm,fitTsfmUpDn, summary.tsfmUpDn

Examples

load data
data(managers, package = 'PerformanceAnalytics')

fit the factor model with LS. example: Up and down market factor model with LS fit
fitUpDn <- fitTsfmUpDn(asset.names = colnames(managers[,(1:6)]),

mkt.name = "SP500 TR",
data = managers,
fit.method = "LS")

predict(fitUpDn)

print.pafm Print object of class "pafm".

Description

Generic function of print method for paFm.

Usage

S3 method for class 'pafm'
print(x, ...)

Arguments

x object of class "pafm" created by paFm.

... Other arguments for print methods.

Value

print.pafm prints a brief summary of an object of class pafm.

Author(s)

Yi-An Chen.

36 print.tsfm

Examples

load data from the database
data(managers, package = 'PerformanceAnalytics')

fit the factor model with LS
fit <- fitTsfm(asset.names=colnames(managers[,(1:6)]),

factor.names=c("EDHEC LS EQ", "SP500 TR"),
data=managers)

fm.attr <- paFm(fit)
print(fm.attr)

print.tsfm Prints a fitted time series factor model

Description

S3 print method for object of class tsfm. Prints the call, factor model dimension, regression
coefficients, r-squared and residual volatilities from the fitted object.

Usage

S3 method for class 'tsfm'
print(x, digits = max(3, .Options$digits - 3), ...)

Arguments

x an object of class tsfm produced by fitTsfm.

digits an integer value, to indicate the required number of significant digits. Default is
3.

... optional arguments passed to the print method.

Value

print.tsfm prints a brief summary of an object of class tsfm.

Author(s)

Yi-An Chen and Sangeetha Srinivasan

See Also

fitTsfm, summary.tsfm

print.tsfmUpDn 37

Examples

data(managers, package = 'PerformanceAnalytics')
fit <- fitTsfm(asset.names=colnames(managers[,(1:6)]),

factor.names=colnames(managers[,7:9]),
mkt.name="SP500.TR", data=managers)

print(fit)

print.tsfmUpDn Prints out a fitted up and down market time series factor model object

Description

S3 print method for object of class tsfmUpDn. Prints the call, factor model dimension, regression
coefficients, r-squared and residual volatilities from the fitted object.

Usage

S3 method for class 'tsfmUpDn'
print(x, digits = max(3, .Options$digits - 3), ...)

Arguments

x an object of class tsfmUpDn produced by fitTsfmUpDn.

digits an integer value, to indicate the required number of significant digits. Default is
3.

... optional arguments passed to the print method.

Value

print.tsfmUpDn prints a brief summary of an object of class tsfmUpDn.

Author(s)

Yi-An Chen and Sangeetha Srinivasan

See Also

fitTsfmUpDn, summary.tsfmUpDn

38 summary.pafm

Examples

load data
data(managers, package = 'PerformanceAnalytics')
colnames(managers)
Make syntactically valid column names

colnames(managers) <- make.names(colnames(managers))
colnames(managers)

example: Up and down market factor model with LS fit
fitUpDn <- fitTsfmUpDn(asset.names=colnames(managers[,(1:6)]),

mkt.name="SP500.TR",
data=managers,
fit.method="LS")

print(fitUpDn)

summary.pafm summary "pafm" object.

Description

Generic function of summary method for paFm.

Usage

S3 method for class 'pafm'
summary(object, digits = max(3, .Options$digits - 3), ...)

Arguments

object "pafm" object created by paFm.

digits integer indicating the number of decimal places. Default is 3.

... Other arguments for print methods.

Value

Returns an object of class summary.pafm. The print method for class summary.pafm outputs the
means of the specific returns of the factors.

Author(s)

Yi-An Chen.

summary.tsfm 39

Examples

load data from the database
data(managers, package = 'PerformanceAnalytics')

fit the factor model with LS
fit.ts <- fitTsfm(asset.names = colnames(managers[,(1:6)]),

factor.names = c("EDHEC LS EQ","SP500 TR"),
data = managers)

fm.attr <- paFm(fit.ts)
summary(fm.attr)

summary.tsfm Summarizing a fitted time series factor model

Description

summary method for object of class tsfm. Returned object is of class summary.tsfm.

Usage

S3 method for class 'tsfm'
summary(object, se.type = c("Default", "HC", "HAC"), ...)

S3 method for class 'summary.tsfm'
print(x, digits = 3, labels = TRUE, ...)

Arguments

object an object of class tsfm returned by fitTsfm.
se.type one of "Default", "HC" or "HAC" option for computing HC/HAC standard er-

rors and t-statistics. Default is "Default". If "HC" or "HAC" options are selected,
you will need to first load the suggested ‘lmtest‘ package.

... futher arguments passed to or from other methods.
x an object of class summary.tsfm.
digits number of significant digits to use when printing. Default is 3.
labels option to print labels and legend in the summary. Default is TRUE. When FALSE,

only the coefficient matrx with standard errors is printed.

Details

The default summary method for a fitted lm object computes the standard errors and t-statistics under
the assumption of homoskedasticty. Argument se.type gives the option to compute heteroskedasticity-
consistent (HC) or heteroskedasticity-autocorrelation-consistent (HAC) standard errors and t-statistics
using coeftest. This option is meaningful only if fit.method = "LS" or "DLS".

Standard errors are currently not available for variable.selection="lars" as there seems to be
no consensus on a statistically valid method of calculating standard errors for the lasso predictions.

40 summary.tsfmUpDn

Value

Returns an object of class summary.tsfm. The print method for class summary.tsfm outputs the
call, coefficients (with standard errors and t-statistics), r-squared and residual volatilty (under the
homoskedasticity assumption) for all assets.

Object of class summary.tsfm is a list of length N + 2 containing:

call the function call to fitTsfm

se.type standard error type as input

sum.list list of summaries of the N fit objects (of class lm, lmRob or lars) for each asset
in the factor model.

Author(s)

Sangeetha Srinivasan & Yi-An Chen.

See Also

fitTsfm, summary.lm

Examples

load data
data(managers, package = 'PerformanceAnalytics')

fit for first 3 assets
fit <- fitTsfm(asset.names=colnames(managers[,1:3]),

factor.names=colnames(managers[,7:9]),
data=managers)

summary of factor model fit for all assets
summary(fit)

summary of factor model fit for the second of three
summary(fit$asset.fit[[2]])

summary.tsfmUpDn Summarizing a fitted up and down market time series factor model

Description

summary method for object of class tsfmUpDn. Returned object is of class summary.tsfmUpDn. This
function provides a summary method to an object returned by a wrapper function fitTsfmUpDn.

summary.tsfmUpDn 41

Usage

S3 method for class 'tsfmUpDn'
summary(object, ...)

S3 method for class 'summary.tsfmUpDn'
print(x, digits = 3, ...)

Arguments

object an object of class tsfmUpDn returned by fitTsfmUpDn.

... futher arguments passed to or from summary.tsfm methods.

x an object of class summary.tsfmUpDn.

digits number of significants digits to use when printing. Default is 3.

Details

Since fitTsfmUpDn fits both up market and down market, summary.tsfmUpDn applies summary.tsfm
for both markets fitted objects and combines the coefficients interested together.

Value

Returns an object of class summary.tsfmUpDn. This object contains a list object of Up and Dn for
up market and down market respectively.

The print method for class summary.tsfmUpDn outputs the call, coefficients (with standard errors
and t-statistics), r-squared and residual volatilty (under the homoskedasticity assumption) for all
assets in up and down market.

Object of class summary.tsfmUpDn is a list of 2 containing:

Up A list of the up market fitted object. It is a class of summary.tsfm

Dn A list of the down market fitted object. It is a class of summary.tsfm

Author(s)

Yi-An Chen and Sangeetha Srinivasan.

See Also

fitTsfmUpDn, summary.tsfm

Index

barchart, 31
bisquare, 7

chart.ACFplus, 31
chart.Correlation, 31
chart.Histogram, 31
chart.QQPlot, 31
chart.TimeSeries, 31
coef, 5
coef.tsfm (fitTsfm), 2
coeftest, 39
corrplot.mixed, 31
cov, 18, 19, 22
cv.lars, 9, 10

fitted, 5
fitted.tsfm, 31
fitted.tsfm (fitTsfm), 2
fitTsfm, 2, 6, 9, 10, 12, 14, 15, 17, 19, 21, 23,

26, 27, 31, 33, 36, 40
fitTsfm.control, 3, 4, 6, 11, 14, 16
fitTsfmLagLeadBeta, 11
fitTsfmMT, 4, 13
fitTsfmUpDn, 15, 33, 35, 37, 41
fmCov, 5, 17, 23
fmCov.tsfm, 31
fmEsDecomp, 5, 19, 23, 26, 31
fmSdDecomp, 5, 21, 22, 26, 31
fmVaRDecomp, 5, 21, 23, 24, 31

lars, 4, 9, 10
lm, 3, 9, 10
lmrobdetMM, 3, 9, 10

mopt, 7

na.omit, 4

opt, 7

paFm, 5, 26

panel.smooth, 31
plot, 30
plot.default, 31
plot.density, 31
plot.efp, 31
plot.pafm, 27, 28
plot.tsfm, 5, 29
plot.tsfmUpDn, 17, 31
plot.zoo, 31
predict.lars, 33, 34
predict.lmrob, 33, 34
predict.tsfm, 5, 33, 35
predict.tsfmUpDn, 17, 34
print.pafm, 27, 35
print.summary.tsfm (summary.tsfm), 39
print.summary.tsfmUpDn

(summary.tsfmUpDn), 40
print.tsfm, 5, 36
print.tsfmUpDn, 17, 37
pyinit, 8

quantile, 20, 25

regsubsets, 4, 9, 10
residuals, 5
residuals.tsfm, 31
residuals.tsfm (fitTsfm), 2

splitFrame, 8
step, 3, 8–10
step.lmrobdetMM, 3, 8
summary.lars, 10
summary.lm, 40
summary.pafm, 27, 38
summary.tsfm, 5, 31, 33, 36, 39, 41
summary.tsfmUpDn, 17, 35, 37, 40

42

	fitTsfm
	fitTsfm.control
	fitTsfmLagLeadBeta
	fitTsfmMT
	fitTsfmUpDn
	fmCov
	fmEsDecomp
	fmSdDecomp
	fmVaRDecomp
	paFm
	plot.pafm
	plot.tsfm
	plot.tsfmUpDn
	predict.tsfm
	predict.tsfmUpDn
	print.pafm
	print.tsfm
	print.tsfmUpDn
	summary.pafm
	summary.tsfm
	summary.tsfmUpDn
	Index

