Package 'fdaSP'

October 5, 2023

Type Package

Title Sparse Functional Data Analysis Methods
Version 1.1.1
Date 2023-09-12
Author Mauro Bernardi [aut, cre],
Marco Stefanucci [aut],
Antonio Canale [ctb]
Maintainer Mauro Bernardi mauro.bernardi@unipd.it
Description Provides algorithms to fit linear regression models under several popular penalization techniques and functional linear regression models based on MajorizingMinimizing (MM) and Alternating Direction Method of Multipliers (ADMM) techniques. See Boyd et al (2010) doi:10.1561/2200000016 for complete introduction to the method.
License GPL (>= 3)
Suggests RColorBrewer, gglasso, glmnet, latex2exp, utils
Imports Rcpp, Rdpack, grDevices, graphics, stats, parallel, doParallel, foreach, splines, ks, pracma
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
RoxygenNote 7.2.3.9000
RdMacros Rdpack
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-10-05 18:00:02 UTC

R topics documented:

fdaSP-package . 2
confband . 3
f2fSP . 3
f2fSP_cv . 7
f2sSP 11
f2sSP_cv 15
1 mSP 19
lmSP_cv 24
softhresh 31
Index 32
fdaSP-package Sparse Functional Data Analysis Methods

Description

Provides algorithms to fit linear regression models under several popular penalization techniques and functional linear regression models based on Majorizing-Minimizing (MM) and Alternating Direction Method of Multipliers (ADMM) techniques. See Boyd et al (2010) doi:10.1561/22000000016 for complete introduction to the method.

Package Content

Index of help topics:
\(\left.$$
\begin{array}{ll}\text { confband } & \begin{array}{l}\text { Function to plot the confidence bands } \\
\text { f2fSP } \\
\text { Overlap Group Least Absolute Shrinkage and } \\
\text { felection Operator for function-on-function }\end{array}
$$

regression model\end{array}\right]\)| Cross-validation for Overlap Group Least |
| :--- |
| Absolute Shrinkage and Selection Operator for |
| function-on-function regression model |

Maintainer

Mauro Bernardi mauro.bernardi@unipd.it

Author(s)

Mauro Bernardi [aut, cre], Marco Stefanucci [aut], Antonio Canale [ctb]
confband Function to plot the confidence bands

Description

Function to plot the confidence bands

Usage

confband(xV, yVmin, yVmax)

Arguments

$x V \quad$ the values for the x-axis.
y Vmin the minimum values for the y-axis.
$y V \max \quad$ the maximum values for the y-axis.

Value

a polygon.
f2fSP

Overlap Group Least Absolute Shrinkage and Selection Operator for
function-on-function regression model

Description

Overlap Group-LASSO for function-on-function regression model solves the following optimization problem

$$
\min _{\psi} \frac{1}{2} \sum_{i=1}^{n} \int\left(y_{i}(s)-\int x_{i}(t) \psi(t, s) d t\right)^{2} d s+\lambda \sum_{g=1}^{G}\left\|S_{g} T \psi\right\|_{2}
$$

to obtain a sparse coefficient vector $\psi=\operatorname{vec}(\Psi) \in \mathbb{R}^{M L}$ for the functional penalized predictor $x(t)$, where the coefficient matrix $\Psi \in \mathbb{R}^{M \times L}$, the regression function $\psi(t, s)=\varphi(t)^{\top} \Psi \theta(s), \varphi(t)$ and $\theta(s)$ are two B-splines bases of order d and dimension M and L, respectively. For each group g, each row of the matrix $S_{g} \in \mathbb{R}^{d \times M L}$ has non-zero entries only for those bases belonging to that group. These values are provided by the arguments groups and group_weights (see below). Each basis function belongs to more than one group. The diagonal matrix $T \in \mathbb{R}^{M L \times M L}$ contains the basis-specific weights. These values are provided by the argument var_weights (see below). The regularization path is computed for the overlap group-LASSO penalty at a grid of values for the regularization parameter λ using the alternating direction method of multipliers (ADMM). See Boyd et al. (2011) and Lin et al. (2022) for details on the ADMM method.

```
Usage
    f2fSP(
        mY,
        mX,
        L,
        M,
        group_weights = NULL,
        var_weights = NULL,
        standardize.data = TRUE,
        splOrd = 4,
        lambda = NULL,
        lambda.min.ratio = NULL,
        nlambda = 30,
        overall.group = FALSE,
        control = list()
    )
```


Arguments

$m Y$
$\mathrm{mX} \quad$ an $\left(n \times r_{x}\right)$ matrix of observations of the functional covariate.
$\mathrm{L} \quad$ number of elements of the B -spline basis vector $\theta(s)$.
M number of elements of the B-spline basis vector $\varphi(t)$.
group_weights a vector of length G containing group-specific weights. The default is square root of the group cardinality, see Bernardi et al. (2022).
var_weights a vector of length $M L$ containing basis-specific weights. The default is a vector where each entry is the reciprocal of the number of groups including that basis. See Bernardi et al. (2022) for details.
standardize.data logical. Should data be standardized?
splOrd the order d of the spline basis.
lambda either a regularization parameter or a vector of regularization parameters. In this latter case the routine computes the whole path. If it is NULL values for lambda are provided by the routine.
lambda.min.ratio
smallest value for lambda, as a fraction of the maximum lambda value. If $n r_{y}>$ $L M$, the default is 0.0001 , and if $n r_{y}<L M$, the default is 0.01 .
nlambda the number of lambda values - default is 30 .
overall.group logical. If it is TRUE, an overall group including all penalized covariates is added.
control a list of control parameters for the ADMM algorithm. See 'Details'.

Value
A named list containing
sp.coefficients an $(M \times L)$ solution matrix for the parameters Ψ, which corresponds to the minimum in-sample MSE.
sp.coef.path an $\left(n_{\lambda} \times M \times L\right)$ array of estimated Ψ coefficients for each lambda.
sp.fun an $\left(r_{x} \times r_{y}\right)$ matrix providing the estimated functional coefficient for $\psi(t, s)$.
sp.fun.path an $\left(n_{\lambda} \times r_{x} \times r_{y}\right)$ array providing the estimated functional coefficients for $\psi(t, s)$ for each lambda.
lambda sequence of lambda.
lambda.min value of lambda that attains the minimum in-sample MSE.
mse in-sample mean squared error.
min.mse minimum value of the in-sample MSE for the sequence of lambda.
convergence logical. 1 denotes achieved convergence.
elapsedTime elapsed time in seconds.
iternum number of iterations.
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,
objval objective function value.
r_norm norm of primal residual.
s_norm norm of dual residual.
eps_pri feasibility tolerance for primal feasibility condition.
eps_dual feasibility tolerance for dual feasibility condition.
Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

Details

The control argument is a list that can supply any of the following components:
adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is TRUE. See Boyd et al. (2011) for details.
rho an augmented Lagrangian parameter. The default value is 1.
tau.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 2 . See Boyd et al. (2011) and Lin et al. (2022) for details.
mu.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 10 . See Boyd et al. (2011) and Lin et al. (2022) for details.
abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine\$double.eps)). reltol relative tolerance stopping criterion. The default value is sqrt(.Machine\$double.eps).
maxit maximum number of iterations. The default value is 100 .
print.out logical. If it is TRUE, a message about the procedure is printed. The default value is TRUE.

References

Bernardi M, Canale A, Stefanucci M (2022). "Locally Sparse Function-on-Function Regression."
Journal of Computational and Graphical Statistics, 0(0), 1-15. doi:10.1080/10618600.2022.2130926, https://doi.org/10.1080/10618600.2022.2130926.
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011). "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers." Foundations and Trends® in Machine Learning, 3(1), 1-122. ISSN 1935-8237, doi:10.1561/2200000016, http://dx.doi.org/ 10.1561/2200000016.

Jenatton R, Audibert J, Bach F (2011). "Structured variable selection with sparsity-inducing norms." J. Mach. Learn. Res., 12, 2777-2824. ISSN 1532-4435.

Lin Z, Li H, Fang C (2022). Alternating direction method of multipliers for machine learning. Springer, Singapore. ISBN 978-981-16-9839-2; 978-981-16-9840-8, doi:10.1007/9789811698408, With forewords by Zongben Xu and Zhi-Quan Luo.

Examples

```
## generate sample data
set.seed(4321)
s <- seq(0, 1, length.out = 100)
t <- seq(0, 1, length.out = 100)
p1 <- 5
p2 <- 6
r <- 10
n <- 50
beta_basis1 <- splines::bs(s, df = p1, intercept = TRUE) # first basis for beta
beta_basis2 <- splines::bs(s, df = p2, intercept = TRUE) # second basis for beta
data_basis <- splines::bs(s, df = r, intercept = TRUE) # basis for X
x_0 <- apply(matrix(rnorm(p1 * p2, sd = 1), p1, p2), 1,
    fdaSP::softhresh, 1.5) # regression coefficients
x_fun <- beta_basis2 %*% x_0 %*% t(beta_basis1)
fun_data <- matrix(rnorm(n*r), n, r) %*% t(data_basis)
b <- fun_data %*% x_fun + rnorm(n * 100, sd = sd(fun_data %*% x_fun )/3)
## set the hyper-parameters
maxit <- 1000
rho_adaptation <- FALSE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5
## fit functional regression model
mod <- f2fSP(mY = b, mX = fun_data, L = p1, M = p2,
    group_weights = NULL, var_weights = NULL, standardize.data = FALSE, splOrd = 4,
        lambda = NULL, nlambda = 30, lambda.min.ratio = NULL,
        control = list("abstol" = abstol,
```

```
    "reltol" = reltol,
    "maxit" = maxit,
    "adaptation" = rho_adaptation,
    rho = rho,
```

"print.out" = FALSE))
mycol <- function (n) \{
palette <- colorRampPalette(RColorBrewer::brewer.pal(11, "Spectral"))
palette(n)
\}
cols <- mycol(1000)
oldpar <- par (mfrow = $c(1,2)$)
image(x_0, col = cols)
image(mod\$sp.coefficients, col = cols)
par (oldpar)
oldpar <- par(mfrow = c(1, 2))
image(x_fun, col = cols)
contour (x_fun, add = TRUE)
image(beta_basis2 \%*\% mod\$sp.coefficients \%*\% t(beta_basis1), col = cols)
contour(beta_basis2 \%*\% mod\$sp.coefficients \%*\% t(beta_basis1), add = TRUE)
par(oldpar)
f2fSP_cv Cross-validation for Overlap Group Least Absolute Shrinkage and Selection Operator for function-on-function regression model

Description

Overlap Group-LASSO for function-on-function regression model solves the following optimization problem

$$
\min _{\psi} \frac{1}{2} \sum_{i=1}^{n} \int\left(y_{i}(s)-\int x_{i}(t) \psi(t, s) d t\right)^{2} d s+\lambda \sum_{g=1}^{G}\left\|S_{g} T \psi\right\|_{2}
$$

to obtain a sparse coefficient vector $\psi=\operatorname{vec}(\Psi) \in \mathbb{R}^{M L}$ for the functional penalized predictor $x(t)$, where the coefficient matrix $\Psi \in \mathbb{R}^{M \times L}$, the regression function $\psi(t, s)=\varphi(t)^{\top} \Psi \theta(s), \varphi(t)$ and $\theta(s)$ are two B -splines bases of order d and dimension M and L, respectively. For each group g, each row of the matrix $S_{g} \in \mathbb{R}^{d \times M L}$ has non-zero entries only for those bases belonging to that group. These values are provided by the arguments groups and group_weights (see below). Each basis function belongs to more than one group. The diagonal matrix $T \in \mathbb{R}^{M L \times M L}$ contains the basis-specific weights. These values are provided by the argument var_weights (see below). The regularization path is computed for the overlap group-LASSO penalty at a grid of values for the regularization parameter λ using the alternating direction method of multipliers (ADMM). See Boyd et al. (2011) and Lin et al. (2022) for details on the ADMM method.

```
Usage
    f2fSP_cv(
        mY,
        mX,
        L,
        M,
        group_weights = NULL,
        var_weights = NULL,
        standardize.data = FALSE,
        splOrd = 4,
        lambda = NULL,
        lambda.min.ratio = NULL,
        nlambda = NULL,
        cv.fold = 5,
        overall.group = FALSE,
        control = list()
)
```


Arguments

mY
mX
L
M
group_weights a vector of length G containing group-specific weights. The default is square root of the group cardinality, see Bernardi et al. (2022).
var_weights a vector of length $M L$ containing basis-specific weights. The default is a vector where each entry is the reciprocal of the number of groups including that basis. See Bernardi et al. (2022) for details.
standardize.data logical. Should data be standardized?
splord the order d of the spline basis.
lambda either a regularization parameter or a vector of regularization parameters. In this latter case the routine computes the whole path. If it is NULL values for lambda are provided by the routine.
lambda.min.ratio
smallest value for lambda, as a fraction of the maximum lambda value. If $n r_{y}>$ $L M$, the default is 0.0001 , and if $n r_{y}<L M$, the default is 0.01 .
nlambda the number of lambda values - default is 30 .
cv .fold the number of folds - default is 5 .
overall.group logical. If it is TRUE, an overall group including all penalized covariates is added.
control a list of control parameters for the ADMM algorithm. See 'Details'.

Value
A named list containing
sp.coefficients an $(M \times L)$ solution matrix for the parameters Ψ, which corresponds to the minimum cross-validated MSE.
sp.fun an $\left(r_{x} \times r_{y}\right)$ matrix providing the estimated functional coefficient for $\psi(t, s)$ corresponding to the minimum cross-validated MSE.
lambda sequence of lambda.
lambda.min value of lambda that attains the cross-validated minimum mean squared error.
indi.min.mse index of the lambda sequence corresponding to lambda.min.
mse cross-validated mean squared error.
min.mse minimum value of the cross-validated MSE for the sequence of lambda.
mse.sd standard deviation of the cross-validated mean squared error.
convergence logical. 1 denotes achieved convergence.
elapsedTime elapsed time in seconds.
iternum number of iterations.
Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

Details

The control argument is a list that can supply any of the following components:
adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is TRUE. See Boyd et al. (2011) for details.
rho an augmented Lagrangian parameter. The default value is 1.
tau.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 2. See Boyd et al. (2011) and Lin et al. (2022) for details.
mu.ada an adaptation parameter greater than one. Only needed if adaptation $=$ TRUE. The default value is 10 . See Boyd et al. (2011) and Lin et al. (2022) for details.
abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine\$double.eps)).
reltol relative tolerance stopping criterion. The default value is sqrt(.Machine\$double.eps).
maxit maximum number of iterations. The default value is 100 .
print.out logical. If it is TRUE, a message about the procedure is printed. The default value is TRUE.

References

Bernardi M, Canale A, Stefanucci M (2022). "Locally Sparse Function-on-Function Regression." Journal of Computational and Graphical Statistics, 0(0), 1-15. doi:10.1080/10618600.2022.2130926, https://doi.org/10.1080/10618600.2022.2130926.

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011). "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers." Foundations and Trends ${ }^{\circledR}$ in Machine Learning, 3(1), 1-122. ISSN 1935-8237, doi:10.1561/2200000016, http://dx.doi.org/ 10.1561/2200000016.

Jenatton R, Audibert J, Bach F (2011). "Structured variable selection with sparsity-inducing norms." J. Mach. Learn. Res., 12, 2777-2824. ISSN 1532-4435.

Lin Z, Li H, Fang C (2022). Alternating direction method of multipliers for machine learning. Springer, Singapore. ISBN 978-981-16-9839-2; 978-981-16-9840-8, doi:10.1007/9789811698408, With forewords by Zongben Xu and Zhi-Quan Luo.

Examples

```
## generate sample data
set.seed(4321)
s <- seq(0, 1, length.out = 100)
t <- seq(0, 1, length.out = 100)
p1 <- 5
p2 <- 6
r <- 10
n <- 50
beta_basis1 <- splines::bs(s, df = p1, intercept = TRUE) # first basis for beta
beta_basis2 <- splines::bs(s, df = p2, intercept = TRUE) # second basis for beta
data_basis <- splines::bs(s, df = r, intercept = TRUE) # basis for X
x_0 <- apply(matrix(rnorm(p1 * p2, sd = 1), p1, p2), 1,
                    fdaSP::softhresh, 1.5) # regression coefficients
x_fun <- beta_basis2 %*% x_0 %*% t(beta_basis1)
fun_data <- matrix(rnorm(n*r), n, r) %*% t(data_basis)
b <- fun_data %*% x_fun + rnorm(n * 100, sd = sd(fun_data %*% x_fun )/3)
## set the hyper-parameters
maxit <- 1000
rho_adaptation <- FALSE
rho <- 0.01
reltol <- 1e-5
abstol <- 1e-5
## fit functional regression model
mod_cv <- f2fSP_cv(mY = b, mX = fun_data, L = p1, M = p2,
    group_weights = NULL, var_weights = NULL,
    standardize.data = FALSE, splOrd = 4,
    lambda = NULL, nlambda = 30, cv.fold = 5,
    lambda.min.ratio = NULL,
    control = list("abstol" = abstol,
    "reltol" = reltol,
    "maxit" = maxit,
    "adaptation" = rho_adaptation,
```

$$
\begin{aligned}
& \text { "rho" = rho, } \\
& \text { "print.out" = FALSE)) }
\end{aligned}
$$

\#\#\# graphical presentation
plot(log(mod_cv\$lambda), mod_cv\$mse, type = "l", col = "blue", lwd = 2, bty = "n",
xlab = latex2exp::TeX("\$
log(
lambda)\$"), ylab = "Prediction Error",
ylim = range(mod_cv\$mse - mod_cv\$mse.sd, mod_cv\$mse + mod_cv\$mse.sd),
main = "Cross-validated Prediction Error")
fdaSP::confband(xV = log(mod_cv\$lambda), yVmin = mod_cv\$mse - mod_cv\$mse.sd,
yVmax = mod_cv\$mse + mod_cv\$mse.sd)
abline(v = log(mod_cv\$lambda[which(mod_cv\$lambda == mod_cv\$lambda.min)]), col = "red", lwd =1.0)
\#\#\# comparison with oracle error
$\bmod <-\operatorname{f2fSP}(m Y=b, m X=$ fun_data, $L=p 1, M=p 2$,
group_weights = NULL, var_weights = NULL,
standardize.data $=$ FALSE, splOrd $=4$,
lambda $=$ NULL, nlambda $=30$, lambda.min.ratio $=$ NULL,
control = list("abstol" = abstol,
"reltol" = reltol,
"maxit" = maxit,
"adaptation" = rho_adaptation,
"rho" = rho,
"print. out" = FALSE))
err_mod <- apply(mod\$sp.coef.path, 1, function(x) sum((x-x_0)^2))
plot(log(mod\$lambda), err_mod, type = "l", col = "blue", lwd = 2,
xlab = latex2exp::TeX("\$
log(
lambda)\$"),
ylab = "Estimation Error", main = "True Estimation Error", bty = "n")
abline $\left(v=\log \left(\bmod \$ l a m b d a\left[w h i c h\left(e r r _m o d==\min \left(e r r _m o d\right)\right)\right]\right), c o l=" r e d ", \quad l w d=1.0\right)$
abline($v=\log ($ mod_cv\$lambda[which(mod_cv\$lambda == mod_cv\$lambda.min)]),
col = "red", lwd = 1.0, lty = 2)
f2sSP Overlap Group Least Absolute Shrinkage and Selection Operator for scalar-on-function regression model

Description

Overlap Group-LASSO for scalar-on-function regression model solves the following optimization problem

$$
\min _{\psi, \gamma} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\int x_{i}(t) \psi(t) d t-z_{i}^{\top} \gamma\right)^{2}+\lambda \sum_{g=1}^{G}\left\|S_{g} T \psi\right\|_{2}
$$

to obtain a sparse coefficient vector $\psi \in \mathbb{R}^{M}$ for the functional penalized predictor $x(t)$ and a coefficient vector $\gamma \in \mathbb{R}^{q}$ for the unpenalized scalar predictors z_{1}, \ldots, z_{q}. The regression function is $\psi(t)=\varphi(t)^{\top} \psi$ where $\varphi(t)$ is a B-spline basis of order d and dimension M. For each group g, each row of the matrix $S_{g} \in \mathbb{R}^{d \times M}$ has non-zero entries only for those bases belonging to that group. These values are provided by the arguments groups and group_weights (see below). Each basis function belongs to more than one group. The diagonal matrix $T \in \mathbb{R}^{M \times M}$ contains
the basis-specific weights. These values are provided by the argument var_weights (see below). The regularization path is computed for the overlap group-LASSO penalty at a grid of values for the regularization parameter λ using the alternating direction method of multipliers (ADMM). See Boyd et al. (2011) and Lin et al. (2022) for details on the ADMM method.

```
Usage
    f2sSP(
    vY,
    mX,
    mZ = NULL,
    M,
    group_weights = NULL,
    var_weights = NULL,
    standardize.data = TRUE,
    splOrd = 4,
    lambda = NULL,
    nlambda = 30,
    lambda.min.ratio = NULL,
    intercept = FALSE,
    overall.group = FALSE,
    control = list()
)
```


Arguments

vY
$m X$
$\mathrm{mZ} \quad$ an $(n \times q)$ full column rank matrix of scalar predictors that are not penalized.
M
number of elements of the B-spline basis vector $\varphi(t)$.
group_weights a vector of length G containing group-specific weights. The default is square root of the group cardinality, see Bernardi et al. (2022).
var_weights a vector of length M containing basis-specific weights. The default is a vector where each entry is the reciprocal of the number of groups including that basis. See Bernardi et al. (2022) for details.
standardize.data logical. Should data be standardized?
splord the order d of the spline basis.
lambda either a regularization parameter or a vector of regularization parameters. In this latter case the routine computes the whole path. If it is NULL values for lambda are provided by the routine.
nlambda the number of lambda values - default is 30 .
lambda.min.ratio
smallest value for lambda, as a fraction of the maximum lambda value. If $n>$ M, the default is 0.0001 , and if $n<M$, the default is 0.01 .
intercept logical. If it is TRUE, a column of ones is added to the design matrix.
overall.group logical. If it is TRUE, an overall group including all penalized covariates is added.
control a list of control parameters for the ADMM algorithm. See 'Details'.

Value

A named list containing
sp.coefficients a length- M solution vector for the parameters ψ, which corresponds to the minimum in-sample MSE.
sp.coef.path an $\left(n_{\lambda} \times M\right)$ matrix of estimated ψ coefficients for each lambda.
sp.fun a length- r vector providing the estimated functional coefficient for $\psi(t)$.
sp.fun.path an $\left(n_{\lambda} \times r\right)$ matrix providing the estimated functional coefficients for $\psi(t)$ for each lambda.
coefficients a length q solution vector for the parameters γ, which corresponds to the minimum in-sample MSE. It is provided only when either the matrix Z in input is not NULL or the intercept is set to TRUE.
coef.path an $\left(n_{\lambda} \times q\right)$ matrix of estimated γ coefficients for each lambda. It is provided only when either the matrix Z in input is not NULL or the intercept is set to TRUE.
lambda sequence of lambda.
lambda.min value of lambda that attains the minimum in-sample MSE.
mse in-sample mean squared error.
min.mse minimum value of the in-sample MSE for the sequence of lambda.
convergence logical. 1 denotes achieved convergence.
elapsedTime elapsed time in seconds.
iternum number of iterations.
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,
objval objective function value.
r_norm norm of primal residual.
s_norm norm of dual residual.
eps_pri feasibility tolerance for primal feasibility condition.
eps_dual feasibility tolerance for dual feasibility condition.
Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

Details

The control argument is a list that can supply any of the following components:
adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is TRUE. See Boyd et al. (2011) for details.
rho an augmented Lagrangian parameter. The default value is 1.
tau.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 2. See Boyd et al. (2011) and Lin et al. (2022) for details.
mu.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 10. See Boyd et al. (2011) and Lin et al. (2022) for details.
abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine\$double.eps)).
reltol relative tolerance stopping criterion. The default value is sqrt(.Machine\$double.eps).
maxit maximum number of iterations. The default value is 100 .
print.out logical. If it is TRUE, a message about the procedure is printed. The default value is TRUE.

References

Bernardi M, Canale A, Stefanucci M (2022). "Locally Sparse Function-on-Function Regression." Journal of Computational and Graphical Statistics, 0(0), 1-15. doi:10.1080/10618600.2022.2130926, https://doi.org/10.1080/10618600.2022.2130926.
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011). "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers." Foundations and Trends ${ }^{\circledR}$ in Machine Learning, 3(1), 1-122. ISSN 1935-8237, doi:10.1561/2200000016, http://dx.doi.org/ 10.1561/2200000016.

Jenatton R, Audibert J, Bach F (2011). "Structured variable selection with sparsity-inducing norms." J. Mach. Learn. Res., 12, 2777-2824. ISSN 1532-4435.

Lin Z, Li H, Fang C (2022). Alternating direction method of multipliers for machine learning. Springer, Singapore. ISBN 978-981-16-9839-2; 978-981-16-9840-8, doi:10.1007/9789811698408, With forewords by Zongben Xu and Zhi-Quan Luo.

Examples

```
## generate sample data
set.seed(1)
n <- 40
p <- 18 # number of basis to GENERATE beta
r <- 100
s <- seq(0, 1, length.out = r)
beta_basis <- splines::bs(s, df = p, intercept = TRUE) # basis
coef_data <- matrix(rnorm(n*floor(p/2)), n, floor(p/2))
fun_data <- coef_data %*% t(splines::bs(s, df = floor(p/2), intercept = TRUE))
x_0 <- apply(matrix(rnorm(p, sd=1),p,1), 1, fdaSP::softhresh, 1) # regression coefficients
x_fun <- beta_basis %*% x_0
b <- fun_data %*% x_fun + rnorm(n, sd = sqrt(crossprod(fun_data %*% x_fun ))/10)
l <- 10^seq(2, -4, length.out = 30)
maxit <- 1000
```

```
## set the hyper-parameters
maxit <- 1000
rho_adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5
mod <- f2sSP(vY = b, mX = fun_data, M = p,
        group_weights = NULL, var_weights = NULL, standardize.data = FALSE, splOrd = 4,
            lambda = NULL, nlambda = 30, lambda.min = NULL, overall.group = FALSE,
            control = list("abstol" = abstol,
                    "reltol" = reltol,
                    "adaptation" = rho_adaptation,
                    "rho" = rho,
                    "print.out" = FALSE))
# plot coefficiente path
matplot(log(mod$lambda), mod$sp.coef.path, type = "l",
        xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "", bty = "n", lwd = 1.2)
```


Description

Overlap Group-LASSO for scalar-on-function regression model solves the following optimization problem

$$
\min _{\psi, \gamma} \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\int x_{i}(t) \psi(t) d t-z_{i}^{\top} \gamma\right)^{2}+\lambda \sum_{g=1}^{G}\left\|S_{g} T \psi\right\|_{2}
$$

to obtain a sparse coefficient vector $\psi \in \mathbb{R}^{M}$ for the functional penalized predictor $x(t)$ and a coefficient vector $\gamma \in \mathbb{R}^{q}$ for the unpenalized scalar predictors z_{1}, \ldots, z_{q}. The regression function is $\psi(t)=\varphi(t)^{\top} \psi$ where $\varphi(t)$ is a B-spline basis of order d and dimension M. For each group g, each row of the matrix $S_{g} \in \mathbb{R}^{d \times M}$ has non-zero entries only for those bases belonging to that group. These values are provided by the arguments groups and group_weights (see below). Each basis function belongs to more than one group. The diagonal matrix $T \in \mathbb{R}^{M \times M}$ contains the basis specific weights. These values are provided by the argument var_weights (see below). The regularization path is computed for the overlap group-LASSO penalty at a grid of values for the regularization parameter λ using the alternating direction method of multipliers (ADMM). See Boyd et al. (2011) and Lin et al. (2022) for details on the ADMM method.

Usage

f2sSP_cv(
vY,
mX ,

```
    mZ = NULL,
    M,
    group_weights = NULL,
    var_weights = NULL,
    standardize.data = FALSE,
    splOrd = 4,
    lambda = NULL,
    lambda.min.ratio = NULL,
    nlambda = NULL,
    cv.fold = 5,
    intercept = FALSE,
    overall.group = FALSE,
    control = list()
)
```


Arguments

vY a length $-n$ vector of observations of the scalar response variable.
$\mathrm{mX} \quad \mathrm{a}(n \times r)$ matrix of observations of the functional covariate.
$\mathrm{mZ} \quad$ an $(n \times q)$ full column rank matrix of scalar predictors that are not penalized.
M
number of elements of the B-spline basis vector $\varphi(t)$.
group_weights a vector of length G containing group-specific weights. The default is square root of the group cardinality, see Bernardi et al. (2022).
var_weights a vector of length M containing basis-specific weights. The default is a vector where each entry is the reciprocal of the number of groups including that basis. See Bernardi et al. (2022) for details.
standardize.data
logical. Should data be standardized?
splord the order d of the spline basis.
lambda either a regularization parameter or a vector of regularization parameters. In this latter case the routine computes the whole path. If it is NULL values for lambda are provided by the routine.
lambda.min.ratio
smallest value for lambda, as a fraction of the maximum lambda value. If $n>$ M, the default is 0.0001 , and if $n<M$, the default is 0.01 .
nlambda the number of lambda values - default is 30 .
cv .fold the number of folds - default is 5 .
intercept logical. If it is TRUE, a column of ones is added to the design matrix.
overall.group logical. If it is TRUE, an overall group including all penalized covariates is added.
control a list of control parameters for the ADMM algorithm. See 'Details'.

Value

A named list containing
sp.coefficients a length- M solution vector solution vector for the parameters ψ, which corresponds to the minimum cross-validated MSE.
sp.fun a length r vector providing the estimated functional coefficient for $\psi(t)$ corresponding to the minimum cross-validated MSE.
coefficients a length q solution vector for the parameters γ, which corresponds to the minimum cross-validated MSE. It is provided only when either the matrix Z in input is not NULL or the intercept is set to TRUE.
lambda sequence of lambda.
lambda.min value of lambda that attains the minimum cross-validated MSE.
mse cross-validated mean squared error.
min.mse minimum value of the cross-validated MSE for the sequence of lambda.
convergence logical. 1 denotes achieved convergence.
elapsedTime elapsed time in seconds.
iternum number of iterations.
Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

Details

The control argument is a list that can supply any of the following components:
adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is TRUE. See Boyd et al. (2011) for details.
rho an augmented Lagrangian parameter. The default value is 1.
tau.ada an adaptation parameter greater than one. Only needed if adaptation $=$ TRUE. The default value is 2. See Boyd et al. (2011) and Lin et al. (2022) for details.
mu.ada an adaptation parameter greater than one. Only needed if adaptation $=$ TRUE. The default value is 10. See Boyd et al. (2011) and Lin et al. (2022) for details.
abstol absolute tolerance stopping criterion. The default value is $\operatorname{sqrt}(\mathrm{sqrt}(. \mathrm{Machine}$ double.eps)).
reltol relative tolerance stopping criterion. The default value is sqrt(.Machine\$double.eps).
maxit maximum number of iterations. The default value is 100 .
print.out logical. If it is TRUE, a message about the procedure is printed. The default value is TRUE.

References

Bernardi M, Canale A, Stefanucci M (2022). "Locally Sparse Function-on-Function Regression." Journal of Computational and Graphical Statistics, 0(0), 1-15. doi:10.1080/10618600.2022.2130926, https://doi.org/10.1080/10618600.2022.2130926.

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011). "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers." Foundations and Trends ${ }^{\circledR}$ in Machine Learning, 3(1), 1-122. ISSN 1935-8237, doi:10.1561/2200000016, http://dx.doi.org/ 10.1561/2200000016.

Jenatton R, Audibert J, Bach F (2011). "Structured variable selection with sparsity-inducing norms." J. Mach. Learn. Res., 12, 2777-2824. ISSN 1532-4435.

Lin Z, Li H, Fang C (2022). Alternating direction method of multipliers for machine learning. Springer, Singapore. ISBN 978-981-16-9839-2; 978-981-16-9840-8, doi:10.1007/9789811698408, With forewords by Zongben Xu and Zhi-Quan Luo.

Examples

```
## generate sample data and functional coefficients
set.seed(1)
n <- 40
p <- 18
r <- 100
s <- seq(0, 1, length.out = r)
beta_basis <- splines::bs(s, df = p, intercept = TRUE) # basis
coef_data <- matrix(rnorm(n*floor(p/2)), n, floor(p/2))
fun_data <- coef_data %*% t(splines::bs(s, df = floor(p/2), intercept = TRUE))
x_0 <- apply(matrix(rnorm(p, sd=1),p,1), 1, fdaSP::softhresh, 1)
x_fun <- beta_basis %*% x_0
b <- fun_data %*% x_fun + rnorm(n, sd = sqrt(crossprod(fun_data %*% x_fun ))/10)
l <- 10^seq(2, -4, length.out = 30)
maxit <- 1000
## set the hyper-parameters
maxit <- 1000
rho_adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5
## run cross-validation
mod_cv <- f2sSP_cv(vY = b, mX = fun_data, M = p,
    group_weights = NULL, var_weights = NULL, standardize.data = FALSE, splOrd = 4,
    lambda = NULL, lambda.min = 1e-5, nlambda = 30, cv.fold = 5, intercept = FALSE,
                control = list("abstol" = abstol,
                        "reltol" = reltol,
                        "adaptation" = rho_adaptation,
                        "rho" = rho,
                        "print.out" = FALSE))
```

\#\#\# graphical presentation
plot(log(mod_cv\$lambda), mod_cv\$mse, type = "l", col = "blue", lwd = 2, bty = "n",

```
    xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "Prediction Error",
    ylim = range(mod_cv$mse - mod_cv$mse.sd, mod_cv$mse + mod_cv$mse.sd),
    main = "Cross-validated Prediction Error")
fdaSP::confband(xV = log(mod_cv$lambda), yVmin = mod_cv$mse - mod_cv$mse.sd,
            yVmax = mod_cv$mse + mod_cv$mse.sd)
abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),
        col = "red", lwd = 1.0)
### comparison with oracle error
mod <- f2sSP(vY = b, mX = fun_data, M = p,
    group_weights = NULL, var_weights = NULL,
    standardize.data = FALSE, splOrd = 4,
    lambda = NULL, nlambda = 30,
    lambda.min = 1e-5, intercept = FALSE,
    control = list("abstol" = abstol,
                            "reltol" = reltol,
                            "adaptation" = rho_adaptation,
                            "rho" = rho,
                            "print.out" = FALSE))
```

err_mod <- apply(mod\$sp.coef.path, 1, function(x) sum((x - x_0)^2))
plot(log(mod\$lambda), err_mod, type = "l", col = "blue",
lwd = 2, xlab = latex2exp::TeX("\$
log(
lambda)\$"),
ylab = "Estimation Error", main = "True Estimation Error", bty = "n")
abline(v = log(mod\$lambda[which(err_mod == min(err_mod))]), col = "red", lwd = 1.0)
abline(v = log(mod_cv\$lambda[which(mod_cv\$lambda == mod_cv\$lambda.min)]),
col = "red", lwd = 1.0, lty = 2)

Sparse Adaptive Overlap Group Least Absolute Shrinkage and Selection Operator

Description

Sparse Adaptive overlap group-LASSO, or sparse adaptive group L_{2}-regularized regression, solves the following optimization problem

$$
\min _{\beta, \gamma} \frac{1}{2}\|y-X \beta-Z \gamma\|_{2}^{2}+\lambda\left[(1-\alpha) \sum_{g=1}^{G}\left\|S_{g} T \beta\right\|_{2}+\alpha\left\|T_{1} \beta\right\|_{1}\right]
$$

to obtain a sparse coefficient vector $\beta \in \mathbb{R}^{p}$ for the matrix of penalized predictors X and a coefficient vector $\gamma \in \mathbb{R}^{q}$ for the matrix of unpenalized predictors Z. For each group g, each row of the matrix $S_{g} \in \mathbb{R}^{n_{g} \times p}$ has non-zero entries only for those variables belonging to that group. These values are provided by the arguments groups and group_weights (see below). Each variable can belong to more than one group. The diagonal matrix $T \in \mathbb{R}^{p \times p}$ contains the variable-specific weights. These values are provided by the argument var_weights (see below). The diagonal matrix $T_{1} \in \mathbb{R}^{p \times p}$ contains the variable-specific L_{1} weights. These values are provided by the argument var_weights_L1 (see below). The regularization path is computed for the sparse adaptive overlap
group-LASSO penalty at a grid of values for the regularization parameter λ using the alternating direction method of multipliers (ADMM). See Boyd et al. (2011) and Lin et al. (2022) for details on the ADMM method. The regularization is a combination of L_{2} and L_{1} simultaneous constraints. Different specifications of the penalty argument lead to different models choice:

LASSO The classical Lasso regularization (Tibshirani, 1996) can be obtained by specifying $\alpha=1$ and the matrix T_{1} as the $p \times p$ identity matrix. An adaptive version of this model (Zou, 2006) can be obtained if T_{1} is a $p \times p$ diagonal matrix of adaptive weights. See also Hastie et al. (2015) for further details.

GLASSO The group-Lasso regularization (Yuan and Lin, 2006) can be obtained by specifying $\alpha=0$, non-overlapping groups in S_{g} and by setting the matrix T equal to the $p \times p$ identity matrix. An adaptive version of this model can be obtained if the matrix T is a $p \times p$ diagonal matrix of adaptive weights. See also Hastie et al. (2015) for further details.
spGLASSO The sparse group-Lasso regularization (Simon et al., 2011) can be obtained by specifying $\alpha \in(0,1)$, non-overlapping groups in S_{g} and by setting the matrices T and T_{1} equal to the $p \times p$ identity matrix. An adaptive version of this model can be obtained if the matrices T and T_{1} are $p \times p$ diagonal matrices of adaptive weights.

OVGLASSO The overlap group-Lasso regularization (Jenatton et al., 2011) can be obtained by specifying $\alpha=0$, overlapping groups in S_{g} and by setting the matrix T equal to the $p \times p$ identity matrix. An adaptive version of this model can be obtained if the matrix T is a $p \times p$ diagonal matrix of adaptive weights.
spOVGLASSO The sparse overlap group-Lasso regularization (Jenatton et al., 2011) can be obtained by specifying $\alpha \in(0,1)$, overlapping groups in S_{g} and by setting the matrices T and T_{1} equal to the $p \times p$ identity matrix. An adaptive version of this model can be obtained if the matrices T and T_{1} are $p \times p$ diagonal matrices of adaptive weights.

```
Usage
    lmSP(
    X,
    Z = NULL,
    y,
    penalty = c("LASSO", "GLASSO", "spGLASSO", "OVGLASSO", "spOVGLASSO"),
    groups,
    group_weights = NULL,
    var_weights = NULL,
    var_weights_L1 = NULL,
    standardize.data = TRUE,
    intercept = FALSE,
    overall.group = FALSE,
    lambda = NULL,
    alpha = NULL,
    lambda.min.ratio = NULL,
    nlambda = 30,
    control = list()
)
```


Arguments

$\left.\begin{array}{ll}\text { X } \\ \text { Z } \\ \text { y } \\ \text { penalty } & \begin{array}{l}\text { an }(n \times p) \text { matrix of penalized predictors. } \\ \text { an }(n \times q) \text { full column rank matrix of predictors that are not penalized. } \\ \text { a length- } n \text { response vector. } \\ \text { choose one from the following options: 'LASSO', for the or adaptive-Lasso } \\ \text { penalties, 'GLASSO', for the group-Lasso penalty, 'spGLASSO', for the sparse } \\ \text { group-Lasso penalty, 'OVGLASSO', for the overlap group-Lasso penalty and } \\ \text { 'spOVGLASSO', for the sparse overlap group-Lasso penalty. }\end{array} \\ \text { either a vector of length } p \text { of consecutive integers describing the grouping of the } \\ \text { coefficients, or a list with two elements: the first element is a vector of length } \\ \sum_{g=1} n_{g} \text { containing the variables belonging to each group, where } n_{g} \text { is the }\end{array}\right\}$

Value

A named list containing
sp.coefficients a length- p solution vector for the parameters β. If $n_{\lambda}>1$ then the provided vector corresponds to the minimum in-sample MSE.
coefficients a length- q solution vector for the parameters γ. If $n_{\lambda}>1$ then the provided vector corresponds to the minimum in-sample MSE. It is provided only when either the matrix Z in input is not NULL or the intercept is set to TRUE.
sp.coef.path an $\left(n_{\lambda} \times p\right)$ matrix of estimated β coefficients for each lambda of the provided sequence.
coef.path an $\left(n_{\lambda} \times q\right)$ matrix of estimated γ coefficients for each lambda of the provided sequence. It is provided only when either the matrix Z in input is not NULL or the intercept is set to TRUE.
lambda sequence of lambda.
lambda.min value of lambda that attains the minimum in sample MSE.
mse in-sample mean squared error.
min.mse minimum value of the in-sample MSE for the sequence of lambda.
convergence logical. 1 denotes achieved convergence.
elapsedTime elapsed time in seconds.
iternum number of iterations.
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates:
objval objective function value
r_norm norm of primal residual
s_norm norm of dual residual
eps_pri feasibility tolerance for primal feasibility condition
eps_dual feasibility tolerance for dual feasibility condition.
Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

Details

The control argument is a list that can supply any of the following components:
adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is TRUE. See Boyd et al. (2011) for details.
rho an augmented Lagrangian parameter. The default value is 1.
tau.ada an adaptation parameter greater than one. Only needed if adaptation $=$ TRUE. The default value is 2. See Boyd et al. (2011) for details.
mu.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 10 . See Boyd et al. (2011) for details.
abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine\$double.eps)).
reltol relative tolerance stopping criterion. The default value is sqrt(.Machine\$double.eps).
maxit maximum number of iterations. The default value is 100 .
print.out logical. If it is TRUE, a message about the procedure is printed. The default value is TRUE.

References

Bernardi M, Canale A, Stefanucci M (2022). "Locally Sparse Function-on-Function Regression." Journal of Computational and Graphical Statistics, 0(0), 1-15. doi:10.1080/10618600.2022.2130926, https://doi.org/10.1080/10618600.2022.2130926.
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011). "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers." Foundations and Trends® in Machine Learning, 3(1), 1-122. ISSN 1935-8237, doi:10.1561/2200000016, http://dx.doi.org/ 10.1561/2200000016.

Hastie T, Tibshirani R, Wainwright M (2015). Statistical learning with sparsity: the lasso and generalizations, number 143 in Monographs on statistics and applied probability. CRC Press, Taylor \& Francis Group, Boca Raton. ISBN 978-1-4987-1216-3.
Jenatton R, Audibert J, Bach F (2011). "Structured variable selection with sparsity-inducing norms." J. Mach. Learn. Res., 12, 2777-2824. ISSN 1532-4435.

Lin Z, Li H, Fang C (2022). Alternating direction method of multipliers for machine learning. Springer, Singapore. ISBN 978-981-16-9839-2; 978-981-16-9840-8, doi:10.1007/9789811698408, With forewords by Zongben Xu and Zhi-Quan Luo.
Simon N, Friedman J, Hastie T, Tibshirani R (2013). "A sparse-group lasso." J. Comput. Graph. Statist., 22(2), 231-245. ISSN 1061-8600, doi:10.1080/10618600.2012.681250.
Yuan M, Lin Y (2006). "Model selection and estimation in regression with grouped variables." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1), 49-67.

Zou H (2006). "The adaptive lasso and its oracle properties." J. Amer. Statist. Assoc., 101(476), 1418-1429. ISSN 0162-1459, doi:10.1198/016214506000000735.

Examples

```
### generate sample data
set.seed(2023)
n <- 50
p <- 30
X <- matrix(rnorm(n*p), n, p)
### Example 1, LASSO penalty
beta <- apply(matrix(rnorm(p, sd = 1), p, 1), 1, fdaSP::softhresh, 1.5)
y <- X %*% beta + rnorm(n, sd = sqrt(crossprod(X %*% beta)) / 20)
### set regularization parameter grid
lam <- 10^seq(0, -2, length.out = 30)
### set the hyper-parameters of the ADMM algorithm
maxit <- 1000
adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5
### run example
```

```
mod <- lmSP(X = X, y = y, penalty = "LASSO", standardize.data = FALSE, intercept = FALSE,
    lambda = lam, control = list("adaptation" = adaptation, "rho" = rho,
        "maxit" = maxit, "reltol" = reltol,
        "abstol" = abstol, "print.out" = FALSE))
### graphical presentation
matplot(log(lam), mod$sp.coef.path, type = "l", main = "Lasso solution path",
    bty = "n", xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "")
### Example 2, sparse group-LASSO penalty
beta <- c(rep(4, 12), rep(0, p - 13), -2)
y <- X %*% beta + rnorm(n, sd = sqrt(crossprod(X %*% beta)) / 20)
### define groups of dimension 3 each
group1 <- rep(1:10, each = 3)
### set regularization parameter grid
lam <- 10^seq(1, -2, length.out = 30)
### set the alpha parameter
alpha <- 0.5
### set the hyper-parameters of the ADMM algorithm
maxit <- 1000
adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5
### run example
mod <- lmSP(X = X, y = y, penalty = "spGLASSO", groups = group1, standardize.data = FALSE,
    intercept = FALSE, lambda = lam, alpha = 0.5,
    control = list("adaptation" = adaptation, "rho" = rho,
    "maxit" = maxit, "reltol" = reltol, "abstol" = abstol,
    "print.out" = FALSE))
```

\#\#\# graphical presentation
matplot (log(lam), mod\$sp.coef.path, type = "l", main = "Sparse Group Lasso solution path",
bty = "n", xlab = latex2exp::TeX("\$
log(
lambda)\$"), ylab = "")

Description

Sparse Adaptive overlap group-LASSO, or sparse adaptive group L_{2}-regularized regression, solves the following optimization problem

$$
\min _{\beta, \gamma} \frac{1}{2}\|y-X \beta-Z \gamma\|_{2}^{2}+\lambda\left[(1-\alpha) \sum_{g=1}^{G}\left\|S_{g} T \beta\right\|_{2}+\alpha\left\|T_{1} \beta\right\|_{1}\right]
$$

to obtain a sparse coefficient vector $\beta \in \mathbb{R}^{p}$ for the matrix of penalized predictors X and a coefficient vector $\gamma \in \mathbb{R}^{q}$ for the matrix of unpenalized predictors Z. For each group g, each row of the matrix $S_{g} \in \mathbb{R}^{n_{g} \times p}$ has non-zero entries only for those variables belonging to that group. These values are provided by the arguments groups and group_weights (see below). Each variable can belong to more than one group. The diagonal matrix $T \in \mathbb{R}^{p \times p}$ contains the variable-specific weights. These values are provided by the argument var_weights (see below). The diagonal matrix $T_{1} \in \mathbb{R}^{p \times p}$ contains the variable-specific L_{1} weights. These values are provided by the argument var_weights_L1 (see below). The regularization path is computed for the sparse adaptive overlap group-LASSO penalty at a grid of values for the regularization parameter λ using the alternating direction method of multipliers (ADMM). See Boyd et al. (2011) and Lin et al. (2022) for details on the ADMM method. The regularization is a combination of L_{2} and L_{1} simultaneous constraints. Different specifications of the penalty argument lead to different models choice:

LASSO The classical Lasso regularization (Tibshirani, 1996) can be obtained by specifying $\alpha=1$ and the matrix T_{1} as the $p \times p$ identity matrix. An adaptive version of this model (Zou, 2006) can be obtained if T_{1} is a $p \times p$ diagonal matrix of adaptive weights. See also Hastie et al. (2015) for further details.

GLASSO The group-Lasso regularization (Yuan and Lin, 2006) can be obtained by specifying $\alpha=0$, non-overlapping groups in S_{g} and by setting the matrix T equal to the $p \times p$ identity matrix. An adaptive version of this model can be obtained if the matrix T is a $p \times p$ diagonal matrix of adaptive weights. See also Hastie et al. (2015) for further details.
spGLASSO The sparse group-Lasso regularization (Simon et al., 2011) can be obtained by specifying $\alpha \in(0,1)$, non-overlapping groups in S_{g} and by setting the matrices T and T_{1} equal to the $p \times p$ identity matrix. An adaptive version of this model can be obtained if the matrices T and T_{1} are $p \times p$ diagonal matrices of adaptive weights.
OVGLASSO The overlap group-Lasso regularization (Jenatton et al., 2011) can be obtained by specifying $\alpha=0$, overlapping groups in S_{g} and by setting the matrix T equal to the $p \times p$ identity matrix. An adaptive version of this model can be obtained if the matrix T is a $p \times p$ diagonal matrix of adaptive weights.
spOVGLASSO The sparse overlap group-Lasso regularization (Jenatton et al., 2011) can be obtained by specifying $\alpha \in(0,1)$, overlapping groups in S_{g} and by setting the matrices T and T_{1} equal to the $p \times p$ identity matrix. An adaptive version of this model can be obtained if the matrices T and T_{1} are $p \times p$ diagonal matrices of adaptive weights.

Usage

$$
\begin{aligned}
& \text { lmSP_cv(} \\
& \quad X, \\
& Z=N U L L, \\
& y,
\end{aligned}
$$

```
    penalty = c("LASSO", "GLASSO", "spGLASSO", "OVGLASSO", "spOVGLASSO"),
    groups,
    group_weights = NULL,
    var_weights = NULL,
    var_weights_L1 = NULL,
    cv.fold = 5,
    standardize.data = TRUE,
    intercept = FALSE,
    overall.group = FALSE,
    lambda = NULL,
    alpha = NULL,
    lambda.min.ratio = NULL,
    nlambda = 30,
    control = list()
)
```


Arguments

X	
Z	
y	
penalty	an $(n \times p)$ matrix of penalized predictors. an $(n \times q)$ full column rank matrix of predictors that are not penalized. a length- n response vector. choose one from the following options: 'LASSO', for the or adaptive-Lasso penalties, 'GLASSO', for the group-Lasso penalty, 'spGLASSO', for the sparse group-Lasso penalty, 'OVGLASSO', for the overlap group-Lasso penalty and 'spOVGLASSO', for the sparse overlap group-Lasso penalty.
either a vector of length p of consecutive integers describing the grouping of the	
coefficients, or a list with two elements: the first element is a vector of length	
$\sum_{g=1}^{G} n_{g}$ containing the variables belonging to each group, where n_{g} is the	
cardinality of the g-th group, while the second element is a vector of length G	
containing the group lengths (see example below).	

alpha the sparse overlap group-LASSO mixing parameter, with $0 \leq \alpha \leq 1$. This setting is only available for the sparse group-LASSO and the sparse overlap group-LASSO penalties, otherwise it is set to NULL. The LASSO and groupLASSO penalties are obtained by specifying $\alpha=1$ and $\alpha=0$, respectively.
lambda.min.ratio
smallest value for lambda, as a fraction of the maximum lambda value. If $n>p$, the default is 0.0001 , and if $n<p$, the default is 0.01 .
nlambda the number of lambda values - default is 30 .
control a list of control parameters for the ADMM algorithm. See 'Details'.

Value

A named list containing
sp.coefficients a length- p solution vector for the parameters β. If $n_{\lambda}>1$ then the provided vector corresponds to the minimum cross-validated MSE.
coefficients a length- q solution vector for the parameters γ. If $n_{\lambda}>1$ then the provided vector corresponds to the minimum cross-validated MSE. It is provided only when either the matrix Z in input is not NULL or the intercept is set to TRUE.
sp.coef.path an $\left(n_{\lambda} \times p\right)$ matrix of estimated β coefficients for each lambda of the provided sequence.
coef.path an $\left(n_{\lambda} \times q\right)$ matrix of estimated γ coefficients for each lambda of the provided sequence. It is provided only when either the matrix Z in input is not NULL or the intercept is set to TRUE.
lambda sequence of lambda.
lambda.min value of lambda that attains the minimum cross-validated MSE.
mse cross-validated mean squared error.
min.mse minimum value of the cross-validated MSE for the sequence of lambda.
convergence logical. 1 denotes achieved convergence.
elapsedTime elapsed time in seconds.
iternum number of iterations.
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates:
objval objective function value
r_norm norm of primal residual
s_norm norm of dual residual
eps_pri feasibility tolerance for primal feasibility condition
eps_dual feasibility tolerance for dual feasibility condition.
Iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

Details

The control argument is a list that can supply any of the following components:
adaptation logical. If it is TRUE, ADMM with adaptation is performed. The default value is TRUE. See Boyd et al. (2011) for details.
rho an augmented Lagrangian parameter. The default value is 1.
tau.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 2. See Boyd et al. (2011) for details.
mu.ada an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 10. See Boyd et al. (2011) for details.
abstol absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine\$double.eps)).
reltol relative tolerance stopping criterion. The default value is sqrt(.Machine\$double.eps).
maxit maximum number of iterations. The default value is 100 .
print.out logical. If it is TRUE, a message about the procedure is printed. The default value is TRUE.

References

Bernardi M, Canale A, Stefanucci M (2022). "Locally Sparse Function-on-Function Regression." Journal of Computational and Graphical Statistics, 0(0), 1-15. doi:10.1080/10618600.2022.2130926, https://doi.org/10.1080/10618600.2022.2130926.

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011). "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers." Foundations and Trends® in Machine Learning, 3(1), 1-122. ISSN 1935-8237, doi:10.1561/2200000016, http://dx.doi.org/ 10.1561/2200000016.

Hastie T, Tibshirani R, Wainwright M (2015). Statistical learning with sparsity: the lasso and generalizations, number 143 in Monographs on statistics and applied probability. CRC Press, Taylor \& Francis Group, Boca Raton. ISBN 978-1-4987-1216-3.
Jenatton R, Audibert J, Bach F (2011). "Structured variable selection with sparsity-inducing norms." J. Mach. Learn. Res., 12, 2777-2824. ISSN 1532-4435.

Lin Z, Li H, Fang C (2022). Alternating direction method of multipliers for machine learning. Springer, Singapore. ISBN 978-981-16-9839-2; 978-981-16-9840-8, doi:10.1007/9789811698408, With forewords by Zongben Xu and Zhi-Quan Luo.
Simon N, Friedman J, Hastie T, Tibshirani R (2013). "A sparse-group lasso." J. Comput. Graph. Statist., 22(2), 231-245. ISSN 1061-8600, doi:10.1080/10618600.2012.681250.

Yuan M, Lin Y (2006). "Model selection and estimation in regression with grouped variables." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1), 49-67.
Zou H (2006). "The adaptive lasso and its oracle properties." J. Amer. Statist. Assoc., 101(476), 1418-1429. ISSN 0162-1459, doi:10.1198/016214506000000735.

Examples

\#\#\# generate sample data

```
set.seed(2023)
n <- 50
p <- 30
X <- matrix(rnorm(n * p), n, p)
### Example 1, LASSO penalty
beta <- apply(matrix(rnorm(p, sd = 1), p, 1), 1, fdaSP::softhresh, 1.5)
y <- X %*% beta + rnorm(n, sd = sqrt(crossprod(X %*% beta)) / 20)
### set the hyper-parameters of the ADMM algorithm
maxit <- 1000
adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5
### run cross-validation
mod_cv <- lmSP_cv(X = X, y = y, penalty = "LASSO",
standardize.data = FALSE, intercept = FALSE,
cv.fold = 5, nlambda = 30,
control = list("adaptation" = adaptation,
    "rho" = rho,
    "maxit" = maxit, "reltol" = reltol,
    "abstol" = abstol,
    "print.out" = FALSE))
### graphical presentation
plot(log(mod_cv$lambda), mod_cv$mse, type = "l", col = "blue", lwd = 2, bty = "n",
    xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "Prediction Error",
    ylim = range(mod_cv$mse - mod_cv$mse.sd, mod_cv$mse + mod_cv$mse.sd),
    main = "Cross-validated Prediction Error")
fdaSP::confband(xV = log(mod_cv$lambda), yVmin = mod_cv$mse - mod_cv$mse.sd,
    yVmax = mod_cv$mse + mod_cv$mse.sd)
abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),
    col = "red", lwd = 1.0)
### comparison with oracle error
mod <- lmSP(X = X, y = y, penalty = "LASSO",
    standardize.data = FALSE,
        intercept = FALSE,
        nlambda = 30,
        control = list("adaptation" = adaptation,
                            "rho" = rho,
        "maxit" = maxit, "reltol" = reltol,
        "abstol" = abstol,
        "print.out" = FALSE))
err_mod <- apply(mod$sp.coef.path, 1, function(x) sum((x - beta)^2))
plot(log(mod$lambda), err_mod, type = "l", col = "blue", lwd = 2,
    xlab = latex2exp::TeX("$\\log(\\lambda)$"),
    ylab = "Estimation Error", main = "True Estimation Error", bty = "n")
abline(v = log(mod$lambda[which(err_mod == min(err_mod))]), col = "red", lwd = 1.0)
```

```
abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),
    col = "red", lwd = 1.0, lty = 2)
### Example 2, sparse group-LASSO penalty
beta <- c(rep(4, 12), rep(0, p - 13), -2)
y <- X %*% beta + rnorm(n, sd = sqrt(crossprod(X %*% beta)) / 20)
### define groups of dimension 3 each
group1 <- rep(1:10, each = 3)
### set regularization parameter grid
lam <- 10^seq(1, -2, length.out = 30)
### set the alpha parameter
alpha <- 0.5
### set the hyper-parameters of the ADMM algorithm
maxit <- 1000
adaptation <- TRUE
rho <- 1
reltol <- 1e-5
abstol <- 1e-5
### run cross-validation
mod_cv <- lmSP_cv(X = X, y = y, penalty = "spGLASSO",
    groups = group1, cv.fold = 5,
    standardize.data = FALSE, intercept = FALSE,
    lambda = lam, alpha = 0.5,
    control = list("adaptation" = adaptation,
                            "rho" = rho,
                            "maxit" = maxit, "reltol" = reltol,
                            "abstol" = abstol,
                            "print.out" = FALSE))
### graphical presentation
plot(log(mod_cv$lambda), mod_cv$mse, type = "l", col = "blue", lwd = 2, bty = "n",
    xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "Prediction Error",
    ylim = range(mod_cv$mse - mod_cv$mse.sd, mod_cv$mse + mod_cv$mse.sd),
    main = "Cross-validated Prediction Error")
fdaSP::confband(xV = log(mod_cv$lambda), yVmin = mod_cv$mse - mod_cv$mse.sd,
            yVmax = mod_cv$mse + mod_cv$mse.sd)
abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),
    col = "red", lwd = 1.0)
### comparison with oracle error
mod <- lmSP(X = X, y = y,
    penalty = "spGLASSO",
    groups = group1,
    standardize.data = FALSE,
    intercept = FALSE,
    lambda = lam,
    alpha = 0.5,
```

```
            control = list("adaptation" = adaptation, "rho" = rho,
                        "maxit" = maxit, "reltol" = reltol, "abstol" = abstol,
                        "print.out" = FALSE))
    err_mod <- apply(mod$sp.coef.path, 1, function(x) sum((x - beta)^2))
    plot(log(mod$lambda), err_mod, type = "l", col = "blue", lwd = 2,
    xlab = latex2exp::TeX("$\\log(\\lambda)$"),
    ylab = "Estimation Error", main = "True Estimation Error", bty = "n")
abline(v = log(mod$lambda[which(err_mod == min(err_mod))]), col = "red", lwd = 1.0)
abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),
            col = "red", lwd = 1.0, lty = 2)
```

softhresh Function to solve the soft thresholding problem

Description

Function to solve the soft thresholding problem

Usage

softhresh(x, lambda)

Arguments

x	the data value.
lambda	the lambda value.

Value

the solution to the soft thresholding operator.

References

Hastie T, Tibshirani R, Wainwright M (2015). Statistical learning with sparsity: the lasso and generalizations, number 143 in Monographs on statistics and applied probability. CRC Press, Taylor \& Francis Group, Boca Raton. ISBN 978-1-4987-1216-3.

Index

```
* package
    fdaSP-package, 2
confband, 3
f2fSP, 3
f2fSP_cv, 7
f2sSP, 11
f2sSP_cv, 15
fdaSP(fdaSP-package),2
fdaSP-package, 2
lmSP, 19
lmSP_cv, 24
softhresh, 31
```

