
Package ‘hydroGOF’
January 21, 2024

Type Package

Title Goodness-of-Fit Functions for Comparison of Simulated and
Observed Hydrological Time Series

Version 0.5-4

Maintainer Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

Description
S3 functions implementing both statistical and graphical goodness-of-fit measures between ob-
served and simulated values, mainly oriented to be used during the calibration, validation, and ap-
plication of hydrological models. Missing values in observed and/or simulated values can be re-
moved before computations. Comments / questions / collaboration of any kind are very welcomed.

License GPL (>= 2)

Depends R (>= 2.10.0), zoo (>= 1.7-2)

Imports hydroTSM (>= 0.5-0), xts (>= 0.8-2), methods, stats

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/hzambran/hydroGOF

MailingList https://stat.ethz.ch/mailman/listinfo/r-sig-ecology

BugReports https://github.com/hzambran/hydroGOF/issues

LazyLoad yes

NeedsCompilation no

Repository CRAN

Author Mauricio Zambrano-Bigiarini [aut, cre, cph]
(<https://orcid.org/0000-0002-9536-643X>)

Date/Publication 2024-01-21 22:10:05 UTC

R topics documented:
hydroGOF-package . 2
br2 . 7

1

https://github.com/hzambran/hydroGOF
https://github.com/hzambran/hydroGOF/issues
https://orcid.org/0000-0002-9536-643X

2 hydroGOF-package

cp . 12
d . 17
dr . 21
EgaEnEstellaQts . 26
ggof . 27
gof . 32
KGE . 39
KGElf . 45
KGEnp . 51
mae . 56
md . 61
me . 64
mNSE . 68
mse . 72
nrmse . 76
NSE . 81
pbias . 85
pbiasfdc . 90
pfactor . 94
plot2 . 96
plotbands . 99
plotbandsonly . 102
R2 . 104
rd . 108
rfactor . 113
rmse . 115
rNSE . 119
rPearson . 123
rSD . 128
rSpearman . 132
rsr . 136
sKGE . 140
ssq . 146
ubRMSE . 149
valindex . 153
ve . 154
wNSE . 158

Index 164

hydroGOF-package Goodness-of-fit (GoF) functions for numerical and graphical compar-
ison of simulated and observed time series, mainly focused on hydro-
logical modelling.

hydroGOF-package 3

Description

S3 functions implementing both statistical and graphical goodness-of-fit measures between ob-
served and simulated values, to be used during the calibration, validation, and application of hy-
drological models.

Missing values in observed and/or simulated values can be removed before computations.

Details

Package: hydroGOF
Type: Package
Version: 0.5-3
Date: 2024-01-21
License: GPL >= 2
LazyLoad: yes
Packaged: Sun Jan 21 17:34:26 -03 2024 ; MZB
BuiltUnder: R version 4.3.2 (2023-10-31) ;x86_64-pc-linux-gnu (64-bit)

Quantitative statistics included in this package are:

me Mean Error
mae Mean Absolute Error
mse Mean Squared Error
rmse Root Mean Square Error
ubRMSE Unbiased Root Mean Square Error
nrmse Normalized Root Mean Square Error
pbias Percent Bias
rsr Ratio of RMSE to the Standard Deviation of the Observations
rSD Ratio of Standard Deviations
NSE Nash-Sutcliffe Efficiency
mNSE Modified Nash-Sutcliffe Efficiency
rNSE Relative Nash-Sutcliffe Efficiency
wNSE Weighted Nash-Sutcliffe Efficiency
d Index of Agreement
dr Refined Index of Agreement
md Modified Index of Agreement
rd Relative Index of Agreement
cp Persistence Index
rPearson Pearson correlation coefficient
R2 Coefficient of determination
br2 R2 multiplied by the coefficient of the regression line between sim and obs
KGE Kling-Gupta efficiency
KGElf Kling-Gupta Efficiency for low values
KGEnp Non-parametric version of the Kling-Gupta Efficiency
sKGE Split Kling-Gupta Efficiency

4 hydroGOF-package

VE Volumetric efficiency
rSpearman Spearman’s rank correlation coefficient
pbiasfdc PBIAS in the slope of the midsegment of the flow duration curve
———————————————————————————————————-

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

Maintainer: Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Box, G. E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407.

Bennett, N.D.; Croke, B.F.; Guariso, G.; Guillaume, J.H.; Hamilton, S.H.; Jakeman, A.J.; Marsili-
Libelli, S.; Newham, L.T.; Norton, J.P.; Perrin, C.; Pierce, S.A. (2013). Characterising performance
of environmental models. Environmental Modelling and Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011

Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward Improved Calibration of Hydrologic
Models: Combining the Strengths of Manual and Automatic Methods, Water Resources Research,
36(12), 3663-3674. doi:10.1029/2000WR900207

Criss, R. E. and Winston, W. E. (2008), Do Nash values have value? Discussion and alternate
proposals. Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072

Entekhabi, D., Reichle, R. H., Koster, R. D., Crow, W. T. (2010). Performance metrics for soil
moisture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840.
doi: 10.1175/2010JHM1223.1

Fenicia, F., D. P. Solomatine, H. H. G. Savenije, and P. Matgen. (2007) Soft combination of local
models in a multi-objective framework. Hydrological and Earth Systems Science, Vol. 4, pp. 91-
123. doi:10.5194/hessd-4-91-2007

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff mod-
els for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511

Gupta, Hoshin V., Harald Kling, Koray K. Yilmaz, Guillermo F. Martinez. Decomposition of the
mean squared error and NSE performance criteria: Implications for improving hydrological mod-
elling. (2009). Journal of Hydrology, Volume 377, Issues 1-2, 20, Pages 80-91. doi:10.1016/j.jhydrol.2009.08.003

Harmel, R.D.; Smith, P.K.; Migliaccio, K.W.; Chaubey, I.; Douglas-Mankin, K.R.; Benham, B.;
Shukla, S.; Munoz-Carpena, R.; Robson, B.J., 2014. Evaluating, interpreting, and communicating
performance of hydrologic/water quality models considering intended use: A review and recom-
mendations. Environmental modelling and software, 57, 40-51. doi:10.1016/j.envsoft.2014.02.013

hydroGOF-package 5

Krstic, G., Krstic, N.S., Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating
the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods,
15(2), 42. doi:10.22237/jmasm/1478004000

Kitanidis, P. K., and R. L. Bras (1980), Real-Time Forecasting With a Conceptual Hydrologic Model
2. Applications and Results, Water Resour. Res., 16(6), 1034-1044

Kling, H., M. Fuchs, and M. Paulin (2012), Runoff conditions in the upper Danube basin under
an ensemble of climate change scenarios. Journal of Hydrology, Volumes 424-425, 6 March 2012,
Pages 264-277, doi:10.1016/j.jhydrol.2012.01.011

Knoben, W. J.; Freer, J. E.; Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019

Krause, P., Boyle, D. P., and Base, F.: Comparison of different efficiency criteria for hydrological
model assessment, Adv. Geosci., 5, 89-97, 2005. doi:10.5194/adgeo-5-89-2005

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Mea-
sures in Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241.
doi:10.1029/1998WR900018

Mizukami, N.; Rakovec, O.; Newman, A. J.; Clark, M. P.; Wood, A. W.; Gupta, H. V.; Kumar, R.
(2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models.
doi:10.5194/hess-23-2601-2019

Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007).
Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
Transactions of the ASABE. 50(3):885-900

Nash, J.E. and J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1: a discussion
of principles, J. Hydrol. 10 (1970), pp. 282-290. doi:10.1016/0022-1694(70)90255-6

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved
overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044

Pool, S., Vis, M. and Seibert, J. (2018). Evaluating model performance: towards a non-parametric
variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953.
doi:/10.1080/02626667.2018.1552002

Pushpalatha, R., Perrin, C., Le Moine, N. and Andreassian, V. (2012). A review of efficiency criteria
suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055

6 hydroGOF-package

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGElf
criterion. doi:10.5194/hess-22-4583-2018

Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J.
Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp.
45-58). Appleton-Century-Crofts. doi:10.1037/11491-005

Willmott, C.J., Robeson, S.M. and Matsuura, K. (2012). A refined index of model performance.
International Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419

Willmott, C.J., Robeson, S.M., Matsuura, K. and Ficklin, D.L. (2015). Assessment of three dimen-
sionless measures of model performance. Environmental Modelling and Software, 73, pp.167-174.
doi:10.1016/j.envsoft.2015.08.012

Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184-194

Willmott, C. J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460

Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J.
O’Donnell, and C. M. Rowe (1985), Statistics for the Evaluation and Comparison of Models, J.
Geophys. Res., 90(C5), 8995-9005

Yapo, P. O.; Gupta, H. V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-
1694(95)02918-4

Yilmaz, K. K., H. V. Gupta, and T. Wagener (2008), A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44,
W09417, doi:10.1029/2007WR006716

See Also

https://CRAN.R-project.org/package=hydroPSO
https://CRAN.R-project.org/package=hydroTSM

Examples

obs <- 1:100
sim <- obs

Numerical goodness of fit
gof(sim,obs)

Reverting the order of simulated values
sim <- 100:1

https://CRAN.R-project.org/package=hydroPSO
https://CRAN.R-project.org/package=hydroTSM

br2 7

gof(sim,obs)

Not run:
ggof(sim, obs)

End(Not run)

##################
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
require(zoo)
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to observations
sim <- obs

Getting the numeric goodness-of-fit measures for the "best" (unattainable) case
gof(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal
distribution with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Getting the new numeric goodness of fit
gof(sim=sim, obs=obs)

Graphical representation of 'obs' vs 'sim', along with the numeric
goodness-of-fit measures
Not run:
ggof(sim=sim, obs=obs)

End(Not run)

br2 br2

Description

Coefficient of determination (r2) multiplied by the slope of the regression line between sim and
obs, with treatment of missing values.

Usage

br2(sim, obs, ...)

Default S3 method:
br2(sim, obs, na.rm=TRUE, use.abs=FALSE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

8 br2

S3 method for class 'data.frame'
br2(sim, obs, na.rm=TRUE, use.abs=FALSE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
br2(sim, obs, na.rm=TRUE, use.abs=FALSE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
br2(sim, obs, na.rm=TRUE, use.abs=FALSE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
na.rm logical value indicating whether ’NA’ should be stripped before the computation

proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

use.abs logical value indicating whether the condition to select the formula used to com-
pute br2 should be ’b<=1’ or ’abs(b) <=1’.
Krausse et al. (2005) uses ’b<=1’ as condition, but strictly speaking this condi-
tion should be ’abs(b)<=1’. However, if your model simulations are somewhat
"close" to the observations, this condition should not have much impact on the
computation of ’br2’.
This argument was introduced in hydroGOF 0.4-0, following a comment by E.
White. Its default value is FALSE to ensure compatibility with previous versions
of hydroGOF.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).

br2 9

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.

4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

br2 = |b|R2, b <= 1; br2 =
R2

|b|
, b > 1

A model that systematically over or under-predicts all the time will still result in "good" R2 (close to
1), even if all predictions were wrong (Krause et al., 2005). The br2 coefficient allows accounting
for the discrepancy in the magnitude of two signals (depicted by ’b’) as well as their dynamics
(depicted by R2)

Value

br2 between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the br2 between each column of
sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

The slope b is computed as the coefficient of the linear regression between sim and obs, forcing the
intercept be equal to zero.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

10 br2

References

Krause, P., Boyle, D. P., and Base, F.: Comparison of different efficiency criteria for hydrological
model assessment, Adv. Geosci., 5, 89-97, 2005

Krstic, G., Krstic, N.S., Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating
the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods,
15(2), 42. doi:10.22237/jmasm/1478004000

See Also

R2, rPearson, rSpearman, cor, lm, gof, ggof

Examples

##################
Example 1:
Looking at the difference between r2 and br2 for a case with systematic
over-prediction of observed values
obs <- 1:10
sim1 <- 2*obs + 5
sim2 <- 2*obs + 25

The coefficient of determination is equal to 1 even if there is no one single
simulated value equal to its corresponding observed counterpart
r2 <- (cor(sim1, obs, method="pearson"))^2 # r2=1

'br2' effectively penalises the systematic over-estimation
br2(sim1, obs) # br2 = 0.3684211
br2(sim2, obs) # br2 = 0.1794872

ggof(sim1, obs)
ggof(sim2, obs)

Computing 'br2' without forcing the intercept be equal to zero
br2.2 <- r2/2 # br2 = 0.5

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'br2' for the "best" (unattainable) case
br2(sim=sim, obs=obs)

##################
Example 3: br2 for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than

br2 11

for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

br2(sim=sim, obs=obs)

##################
Example 4: br2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

br2(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
br2(sim=lsim, obs=lobs)

##################
Example 5: br2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

br2(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
br2(sim=lsim, obs=lobs)

##################
Example 6: br2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
br2(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
br2(sim=lsim, obs=lobs)

##################
Example 7: br2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor

12 cp

to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
br2(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
br2(sim=lsim, obs=lobs)

##################
Example 8: br2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

br2(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
br2(sim=sim1, obs=obs1)

cp Coefficient of persistence

Description

Coefficient of persistence between sim and obs, with treatment of missing values.

Usage

cp(sim, obs, ...)

Default S3 method:
cp(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
cp(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'

cp 13

cp(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'zoo'
cp(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

14 cp

Details

cp = 1−
∑N

i=2 (Si −Oi)
2∑N−1

i=1 (Oi+1 −Oi)
2

Coefficient of persistence (Kitadinis and Bras, 1980; Corradini et al., 1986) is used to compare the
model performance against a simple model using the observed value of the previous day as the pre-
diction for the current day.

The coefficient of persistence compare the predictions of the model with the predictions obtained
by assuming that the process is a Wiener process (variance increasing linearly with time), in which
case, the best estimate for the future is given by the latest measurement (Kitadinis and Bras, 1980).

Persistence model efficiency is a normalized model evaluation statistic that quantifies the relative
magnitude of the residual variance (noise) to the variance of the errors obtained by the use of a
simple persistence model (Moriasi et al., 2007).

CP ranges from 0 to 1, with CP = 1 being the optimal value and it should be larger than 0.0 to
indicate a minimally acceptable model performance.

Value

Coefficient of persistence between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the coefficient of persistence be-
tween each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Kitanidis, P.K., and Bras, R.L. 1980. Real-time forecasting with a conceptual hydrologic model. 2.
Applications and results. Water Resources Research, Vol. 16, No. 6, pp. 1034:1044

Moriasi, D. N. et al. (2007). Model Evaluation Guidelines for Systematic Quantification of Accu-
racy in Watershed Simulations. Transactions of the ASABE, 50:(3), 885-900

See Also

gof

cp 15

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
cp(sim, obs)

obs <- 1:10
sim <- 2:11
cp(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'cp' for the "best" (unattainable) case
cp(sim=sim, obs=obs)

##################
Example 3: cp for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

cp(sim=sim, obs=obs)

##################
Example 4: cp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

cp(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
cp(sim=lsim, obs=lobs)

##################
Example 5: cp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant

16 cp

during computations

cp(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
cp(sim=lsim, obs=lobs)

##################
Example 6: cp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
cp(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
cp(sim=lsim, obs=lobs)

##################
Example 7: cp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
cp(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
cp(sim=lsim, obs=lobs)

##################
Example 8: cp for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

cp(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
cp(sim=sim1, obs=obs1)

d 17

d Index of Agreement

Description

Index of Agreement between sim and obs, with treatment of missing values.

Usage

d(sim, obs, ...)

Default S3 method:
d(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
d(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
d(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
d(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

18 d

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.

It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.

Valid values of epsilon.type are:

1) "none": sim and obs are used by FUN without the addition of any nummeric
value.

2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying FUN, as described in Pushpalatha et
al. (2012).

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.

4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying FUN.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

d = 1−
∑N

i=1 (Oi − Si)
2∑N

i=1 (
∣∣Si − Ō

∣∣+
∣∣Oi − Ō

∣∣)2

The Index of Agreement (d) developed by Willmott (1981) as a standardized measure of the degree
of model prediction error.

It is is dimensionless and varies between 0 and 1. A value of 1 indicates a perfect match, and 0
indicates no agreement at all (Willmott, 1981).

The index of agreement can detect additive and proportional differences in the observed and sim-
ulated means and variances; however, it is overly sensitive to extreme values due to the squared
differences (Legates and McCabe, 1999).

Value

Index of agreement between sim and obs.

If sim and obs are matrixes or data.frames, the returned value is a vector, with the index of agree-
ment between each column of sim and obs.

d 19

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Willmott, C. J. 1981. On the validation of models. Physical Geography, 2, 184–194

Willmott, C. J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460

Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J.
O’Donnell, and C. M. Rowe (1985), Statistics for the Evaluation and Comparison of Models, J.
Geophys. Res., 90(C5), 8995-9005

Legates, D. R. and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures
in Hydrologic and Hydroclimatic Model Validation, Water Resources Research, 35(1), 233-241.
doi:10.1029/1998WR900018

See Also

md, rd, dr, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
d(sim, obs)

obs <- 1:10
sim <- 2:11
d(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

20 d

Computing the 'd' for the "best" (unattainable) case
d(sim=sim, obs=obs)

##################
Example 3: d for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

d(sim=sim, obs=obs)

##################
Example 4: d for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

d(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
d(sim=lsim, obs=lobs)

##################
Example 5: d for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

d(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
d(sim=lsim, obs=lobs)

##################
Example 6: d for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
d(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:

dr 21

lsim <- log(sim+eps)
lobs <- log(obs+eps)
d(sim=lsim, obs=lobs)

##################
Example 7: d for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
d(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
d(sim=lsim, obs=lobs)

##################
Example 8: d for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

d(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
d(sim=sim1, obs=obs1)

dr Refined Index of Agreement

Description

Refined Index of Agreement (dr) between sim and obs, with treatment of missing values.

Usage

dr(sim, obs, ...)

Default S3 method:
dr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

22 dr

S3 method for class 'data.frame'
dr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
dr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
dr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by FUN without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying FUN, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying FUN.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.

dr 23

-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

c = 2

A =

N∑
i=1

|Si −Oi|

B = c

N∑
i=1

∣∣Oi − Ō
∣∣

dr = 1− A

B
;A ≤ B

dr = 1− B

A
;A > B

The Refined Index of Agreement (dr, Willmott et al., 2012) is a reformulation of the orginal Will-
mott’s index of agreement developed in the 1980s (Willmott, 1981; Willmott, 1984; Willmott et al.,
1985)

The Refined Index of Agreement (dr) is dimensionless, and it varies between -1 to 1 (in contrast to
the original d, which varies in [0, 1]).

The Refined Index of Agreement (dr) is monotonically related with the modified Nash-Sutcliffe
(E1) desribed in Legates and McCabe (1999).

In general, dr is more rationally related to model accuracy than are other existing indices (Willmott
et al., 2012; Willmott et al., 2015). It also is quite flexible, making it applicable to a wide range of
model-performance problems (Willmott et al., 2012)

Value

Refined Index of Agreement (dr) between sim and obs.

If sim and obs are matrixes or data.frames, the returned value is a vector, with the Refined Index of
Agreement (dr) between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

24 dr

References

Willmott, C.J., Robeson, S.M. and Matsuura, K. (2012). A refined index of model performance.
International Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419.

Willmott, C.J., Robeson, S.M., Matsuura, K. and Ficklin, D.L. (2015). Assessment of three dimen-
sionless measures of model performance. Environmental Modelling & Software, 73, pp.167-174.
doi:10.1016/j.envsoft.2015.08.012

Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184–194

Willmott, C. J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460

Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J.
O’Donnell, and C. M. Rowe (1985), Statistics for the Evaluation and Comparison of Models, J.
Geophys. Res., 90(C5), 8995-9005

See Also

d, md, rd, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
dr(sim, obs)

obs <- 1:10
sim <- 2:11
dr(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'dr' for the "best" (unattainable) case
dr(sim=sim, obs=obs)

##################
Example 3: dr for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than

dr 25

for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

dr(sim=sim, obs=obs)

##################
Example 4: dr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

dr(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
dr(sim=lsim, obs=lobs)

##################
Example 5: dr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

dr(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
dr(sim=lsim, obs=lobs)

##################
Example 6: dr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
dr(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
dr(sim=lsim, obs=lobs)

##################
Example 7: dr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor

26 EgaEnEstellaQts

to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
dr(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
dr(sim=lsim, obs=lobs)

##################
Example 8: dr for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

dr(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
dr(sim=sim1, obs=obs1)

EgaEnEstellaQts Ega in "Estella" (Q071), ts with daily streamflows.

Description

Time series with daily streamflows of the Ega River (subcatchment of the Ebro River basin, Spain)
measured at the gauging station "Estella" (Q071), for the period 01/Jan/1961 to 31/Dec/1970

Usage

data(EgaEnEstellaQts)

Format

zoo object.

Source

Downloaded from: https://www.chebro.es. Last accessed [March 2010].
These data are intended to be used for research purposes only, being distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY.

https://www.chebro.es

ggof 27

ggof Graphical Goodness of Fit

Description

Graphical comparison between two vectors (numeric, ts or zoo), with several numerical goodness
of fit printed as a legend.
Missing values in observed and/or simulated values can removed before the computations.

Usage

ggof(sim, obs, na.rm = TRUE, dates, date.fmt = "%Y-%m-%d",
pt.style = "ts", ftype = "o", FUN,
stype="default", season.names=c("Winter", "Spring", "Summer", "Autumn"),
gof.leg = TRUE, digits=2,
gofs=c("ME", "MAE", "RMSE", "NRMSE", "PBIAS", "RSR", "rSD", "NSE", "mNSE",

"rNSE", "d", "md", "rd", "r", "R2", "bR2", "KGE", "VE"),
legend, leg.cex=1,
tick.tstep = "auto", lab.tstep = "auto", lab.fmt=NULL,
cal.ini=NA, val.ini=NA,
main, xlab = "Time", ylab=c("Q, [m3/s]"),
col = c("blue", "black"),
cex = c(0.5, 0.5), cex.axis=1.2, cex.lab=1.2,
lwd = c(1, 1), lty = c(1, 3), pch = c(1, 9), ...)

Arguments

sim numeric or zoo object with with simulated values

obs numeric or zoo object with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

dates character, factor, Date or POSIXct object indicating how to obtain the dates for
the corresponding values in the sim and obs time series
If dates is a character or factor, it is converted into Date/POSIXct class, using
the date format specified by date.fmt

date.fmt OPTIONAL. character indicating the format in which the dates are stored in
dates, cal.ini and val.ini. See format in as.Date. Default value is %Y-%m-%d
ONLY required when class(dates)=="character" or class(dates)=="factor"
or when cal.ini and/or val.ini is provided.

pt.style Character indicating if the 2 ts have to be plotted as lines or bars. When ftype
is NOT o, it only applies to the annual values. Valid values are:
-) ts : (default) each ts is plotted as a lines along the ’x’ axis
-) bar: both series are plotted as barplots.

28 ggof

ftype Character indicating how many plots are desired by the user. Valid values are:
-) o : only the original sim and obs time series are plotted
-) dm : it assumes that sim and obs are daily time series and Daily and Monthly
values are plotted
-) ma : it assumes that sim and obs are daily or monthly time series and Monthly
and Annual values are plotted
-) dma : it assumes that sim and obs are daily time series and Daily, Monthly
and Annual values are plotted
-) seasonal: seasonal values are plotted. See stype and season.names

FUN OPTIONAL, ONLY required when ftype is in c('dm', 'ma', 'dma', 'seasonal').
Function that have to be applied for transforming teh original ts into monthly,
annual or seasonal time step (e.g., for precipitation FUN MUST be sum, for
temperature and flow time series, FUN MUST be mean)

stype OPTIONAL, only used when ftype=seasonal.
character, indicating whath weather seasons will be used for computing the out-
put. Possible values are:
-) default => "winter"= DJF = Dec, Jan, Feb; "spring"= MAM = Mar, Apr,
May; "summer"= JJA = Jun, Jul, Aug; "autumn"= SON = Sep, Oct, Nov
-) FrenchPolynesia => "winter"= DJFM = Dec, Jan, Feb, Mar; "spring"= AM
= Apr, May; "summer"= JJAS = Jun, Jul, Aug, Sep; "autumn"= ON = Oct, Nov

season.names OPTIONAL, only used when ftype=seasonal.
character of length 4 indicating the names of each one of the weather seasons
defined by stype.These names are only used for plotting purposes

gof.leg logical, indicating if several numerical goodness of fit have to be computed be-
tween sim and obs, and plotted as a legend on the graph. If leg.gof=TRUE, then
x is considered as observed and y as simulated values (for some gof functions
this is important).

digits OPTIONAL, only used when leg.gof=TRUE. Numeric, representing the deci-
mal places used for rounding the goodness-of-fit indexes.

gofs character, with one or more strings indicating the goodness-of-fit measures to be
shown in the legend of the plot when gof.leg=TRUE.
Possible values when ftype!='seasonal' are in c("ME", "MAE", "MSE", "RMSE",
"NRMSE", "PBIAS", "RSR", "rSD", "NSE", "mNSE", "rNSE", "d", "md", "rd",
"cp", "r", "R2", "bR2", "KGE", "VE")
Possible values when ftype='seasonal' are in c("ME", "RMSE", "PBIAS",
"RSR", "NSE", "d", "R2", "KGE", "VE")

legend character of length 2 to appear in the legend.

leg.cex OPTIONAL. ONLY used when leg.gof=TRUE. Character expansion factor for
drawing the legend, *relative* to current ’par("cex")’. Used for text, and pro-
vides the default for ’pt.cex’ and ’title.cex’. Default value = 1

tick.tstep character, indicating the time step that have to be used for putting the ticks on the
time axis. Valid values are: auto, years, months,weeks, days, hours, minutes,
seconds.

lab.tstep character, indicating the time step that have to be used for putting the labels
on the time axis. Valid values are: auto, years, months,weeks, days, hours,
minutes, seconds.

ggof 29

lab.fmt Character indicating the format to be used for the label of the axis. See lab.fmt
in drawTimeAxis.

cal.ini OPTIONAL. Character, indicating the date in which the calibration period started.
When cal.ini is provided, all the values in obs and sim with dates previous
to cal.ini are SKIPPED from the computation of the goodness-of-fit measures
(when gof.leg=TRUE), but their values are still plotted, in order to examine if
the warming up period was too short, acceptable or too long for the chosen cal-
ibration period. In addition, a vertical red line in drawn at this date.

val.ini OPTIONAL. Character, the date in which the validation period started.
ONLY used for drawing a vertical red line at this date.

main character representing the main title of the plot.

xlab label for the ’x’ axis.

ylab label for the ’y’ axis.

col character, representing the colors of sim and obs

cex numeric, representing the values controlling the size of text and symbols of ’x’
and ’y’ with respect to the default

cex.axis numeric, representing the magnification to be used for the axis annotation rela-
tive to ’cex’. See par.

cex.lab numeric, representing the magnification to be used for x and y labels relative to
the current setting of ’cex’. See par.

lwd vector with the line width of sim and obs

lty numeric with the line type of sim and obs

pch numeric with the type of symbol for x and y. (e.g., 1: white circle; 9: white
rhombus with a cross inside)

... further arguments passed to or from other methods.

Details

Plots observed and simulated values in the same graph.

If gof.leg=TRUE, it computes the numerical values of:
’me’, ’mae’, ’rmse’, ’nrmse’, ’PBIAS’, ’RSR, ’rSD’, ’NSE’, ’mNSE’, ’rNSE’, ’d’, ’md, ’rd’, ’cp’,
’r’, ’r.Spearman’, ’R2’, ’bR2’, ’KGE’, ’VE’

Value

me Mean Error

mae Mean Absolute Error

rmse Root Mean Square Error

nrmse Normalized Root Mean Square Error

PBIAS Percent Bias

pbiasfdc PBIAS in the slope of the midsegment of the Flow Duration Curve

RSR Ratio of RMSE to the Standard Deviation of the Observations, RSR = rms /
sd(obs). (0 <= RSR <= +Inf)

30 ggof

rSD Ratio of Standard Deviations, rSD = sd(sim) / sd(obs)

NSE Nash-Sutcliffe Efficiency (-Inf <= NSE <= 1)

mNSE Modified Nash-Sutcliffe Efficiency

rNSE Relative Nash-Sutcliffe Efficiency

d Index of Agreement (0 <= d <= 1)

md Modified Index of Agreement

rd Relative Index of Agreement

cp Persistence Index (0 <= PI <= 1)

r Pearson product-moment correlation coefficient (-1 <= r <= 1)

r.Spearman Spearman Correlation coefficient (-1 <= r.Spearman <= 1)

R2 Coefficient of Determination (0 <= R2 <= 1).
Gives the proportion of the variance of one variable that is predictable from the
other variable

bR2 R2 multiplied by the coefficient of the regression line between sim and obs
(0 <= bR2 <= 1)

KGE Kling-Gupta efficiency between sim and obs
(0 <= KGE <= 1)

VE Volumetric efficiency between sim and obs
(-Inf <= VE <= 1)

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241

Krause P., Boyle D.P., and Base F., Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences 5 (2005), pp. 89-97

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model
evaluation guidelines for systematic quantification of accuracy in watershed simulations
Transactions of the ASABE. 50(3):885-900

Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward Improved Calibration of Hydrologic
Models: Combining the Strengths of Manual and Automatic Methods, Water Resour. Res., 36(12),
3663-3674

Kitanidis, P. K., and R. L. Bras (1980), Real-Time Forecasting With a Conceptual Hydrologic Model
2. Applications and Results, Water Resour. Res., 16(6), 1034-1044

ggof 31

J.E. Nash and J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1: a discussion
of principles, J. Hydrol. 10 (1970), pp. 282-290

Yapo P. O., Gupta H. V., Sorooshian S., 1996. Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-
1694(95)02918-4

Yilmaz, K. K., H. V. Gupta, and T. Wagener (2008), A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resour. Res., 44, W09417,
doi:10.1029/2007WR006716

Hoshin V. Gupta, Harald Kling, Koray K. Yilmaz, Guillermo F. Martinez. Decomposition of
the mean squared error and NSE performance criteria: Implications for improving hydrological
modelling. Journal of Hydrology, Volume 377, Issues 1-2, 20 October 2009, Pages 80-91. DOI:
10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694

Criss, R. E. and Winston, W. E. (2008), Do Nash values have value? Discussion and alternate
proposals. Hydrological Processes, 22: 2723-2725. doi: 10.1002/hyp.7072

See Also

gof, plot2, ggof, me, mae, mse, rmse, ubRMSE, nrmse, pbias, rsr, rSD, NSE, mNSE, rNSE, wNSE, d,
dr, md, rd, cp, rPearson, R2, br2, KGE, KGElf, KGEnp, sKGE, VE, rSpearman, pbiasfdc

Examples

obs <- 1:10
sim <- 2:11

Not run:
ggof(sim, obs)

End(Not run)

##################
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Getting the numeric goodness of fit for the "best" (unattainable) case
gof(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Getting the new numeric goodness-of-fit measures

32 gof

gof(sim=sim, obs=obs)

Getting the graphical representation of 'obs' and 'sim' along with the numeric
goodness-of-fit measures for the daily and monthly time series
Not run:
ggof(sim=sim, obs=obs, ftype="dm", FUN=mean)

End(Not run)

Getting the graphical representation of 'obs' and 'sim' along with some numeric
goodness-of-fit measures for the seasonal time series
Not run:
ggof(sim=sim, obs=obs, ftype="seasonal", FUN=mean)

End(Not run)

Computing the daily residuals
even if this is a dummy example, it is enough for illustrating the capability
r <- sim-obs

Summarizing and plotting the residuals
Not run:
library(hydroTSM)

summary
smry(r)

daily, monthly and annual plots, boxplots and histograms
hydroplot(r, FUN=mean)

seasonal plots and boxplots
hydroplot(r, FUN=mean, pfreq="seasonal")

End(Not run)

gof Numerical Goodness-of-fit measures

Description

Numerical goodness-of-fit measures between sim and obs, with treatment of missing values. Sev-
eral performance indices for comparing two vectors, matrices or data.frames

Usage

gof(sim, obs, ...)

Default S3 method:
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,

gof 33

j=1, norm="sd", s=c(1,1,1), method=c("2009", "2012"), lQ.thr=0.7,
hQ.thr=0.2, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,

j=1, norm="sd", s=c(1,1,1), method=c("2009", "2012"), lQ.thr=0.7,
hQ.thr=0.2, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,

j=1, norm="sd", s=c(1,1,1), method=c("2009", "2012"), lQ.thr=0.7,
hQ.thr=0.2, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,

j=1, norm="sd", s=c(1,1,1), method=c("2009", "2012"), lQ.thr=0.7,
hQ.thr=0.2, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

do.spearman logical. Indicates if the Spearman correlation has to be computed. The default
is FALSE.

do.pbfdc logical. Indicates if the Percent Bias in the Slope of the midsegment of the Flow
Duration Curve (pbiasfdc) has to be computed. The default is FALSE.

j argument passed to the mNSE function

norm argument passed to the nrmse function

s argument passed to the KGE function

method argument passed to the KGE function

lQ.thr argument passed to the (optional) pbiasfdc function

hQ.thr argument passed to the (optional) pbiasfdc function

start.month [OPTIONAL]. Only used for the computation of the split KGE (sKGE) when the
(hydrological) year of interest is different from the calendar year.
numeric in [1:12] indicating the starting month of the (hydrological) year. Nu-
meric values in [1, 12] represent months in [January, December]. By default
start.month=1.

34 gof

digits decimal places used for rounding the goodness-of-fit indexes.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the all the goodness-of-fit functions.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by FUN without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying FUN, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying FUN.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Value

The output of the gof function is a matrix with one column only, and the following rows:

ME Mean Error

MAE Mean Absolute Error

MSE Mean Squared Error

RMSE Root Mean Square Error

ubRMSE Unbiased Root Mean Square Error

NRMSE Normalized Root Mean Square Error (-100% <= nrms <= 100%)

PBIAS Percent Bias

RSR Ratio of RMSE to the Standard Deviation of the Observations, RSR = rms /
sd(obs). (0 <= RSR <= +Inf)

rSD Ratio of Standard Deviations, rSD = sd(sim) / sd(obs)

gof 35

NSE Nash-Sutcliffe Efficiency (-Inf <= NSE <= 1)

mNSE Modified Nash-Sutcliffe Efficiency

rNSE Relative Nash-Sutcliffe Efficiency

d Index of Agreement (0 <= d <= 1)

dr Refined Index of Agreement (-1 <= dr <= 1)

md Modified Index of Agreement (0 <= md <= 1)

rd Relative Index of Agreement (0 <= rd <= 1)

cp Persistence Index (0 <= PI <= 1)

r Pearson Correlation coefficient (-1 <= r <= 1)

R2 Coefficient of Determination (0 <= R2 <= 1)

bR2 R2 multiplied by the coefficient of the regression line between sim and obs
(0 <= bR2 <= 1)

KGE Kling-Gupta efficiency between sim and obs
(-Inf <= KGE <= 1)

KGElf Kling-Gupta Efficiency for low values between sim and obs
(-Inf <= KGElf <= 1)

KGEnp Non-parametric version of the Kling-Gupta Efficiency between sim and obs
(-Inf <= KGEnp <= 1)

sKGE Split Kling-Gupta Efficiency between sim and obs
(-Inf <= sKGE <= 1). Only computed when both sim and obs are zoo objects

VE Volumetric efficiency between sim and obs
(-Inf <= VE <= 1)

r.Spearman Spearman Correlation coefficient (-1 <= r.Spearman <= 1). Only computed
when do.spearman=TRUE

pbiasfdc PBIAS in the slope of the midsegment of the Flow Duration Curve

Note

obs and sim has to have the same length/dimension.

Missing values in obs and/or sim can be removed before the computations, depending on the value
of na.rm.

Although r and r2 have been widely used for model evaluation, these statistics are over-sensitive
to outliers and insensitive to additive and proportional differences between model predictions and
measured data (Legates and McCabe, 1999)

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

36 gof

References

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241

Krause P., Boyle D.P., and Base F., Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences 5 (2005), pp. 89-97

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model
evaluation guidelines for systematic quantification of accuracy in watershed simulations
Transactions of the ASABE. 50(3):885-900

Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward Improved Calibration of Hydrologic
Models: Combining the Strengths of Manual and Automatic Methods, Water Resour. Res., 36(12),
3663-3674

Kitanidis, P. K., and R. L. Bras (1980), Real-Time Forecasting With a Conceptual Hydrologic Model
2. Applications and Results, Water Resour. Res., 16(6), 1034-1044

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part 1: a
discussion of principles, J. Hydrol. 10, pp. 282-290

Yapo P. O., Gupta H. V., Sorooshian S., 1996. Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48

Yilmaz, K. K., H. V. Gupta, and T. Wagener (2008), A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resour. Res., 44, W09417,
doi:10.1029/2007WR006716

Hoshin V. Gupta, Harald Kling, Koray K. Yilmaz, Guillermo F. Martinez. Decomposition of
the mean squared error and NSE performance criteria: Implications for improving hydrological
modelling. Journal of Hydrology, Volume 377, Issues 1-2, 20 October 2009, Pages 80-91. DOI:
10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694

Criss, R. E. and Winston, W. E. (2008), Do Nash values have value? Discussion and alternate
proposals. Hydrological Processes, 22: 2723-2725. doi: 10.1002/hyp.7072

See Also

ggof, me, mae, mse, rmse, ubRMSE, nrmse, pbias, rsr, rSD, NSE, mNSE, rNSE, wNSE, d, dr, md, rd,
cp, rPearson, R2, br2, KGE, KGElf, KGEnp, sKGE, VE, rSpearman, pbiasfdc

Examples

##################
Example 1: basic ideal case
obs <- 1:10

gof 37

sim <- 1:10
gof(sim, obs)

obs <- 1:10
sim <- 2:11
gof(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'gof' for the "best" (unattainable) case
gof(sim=sim, obs=obs)

##################
Example 3: gof for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

gof(sim=sim, obs=obs)

##################
Example 4: gof for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

gof(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
gof(sim=lsim, obs=lobs)

##################
Example 5: gof for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

gof(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012

38 gof

eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)

##################
Example 6: gof for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
gof(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)

##################
Example 7: gof for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
gof(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)

##################
Example 8: gof for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

gof(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
gof(sim=sim1, obs=obs1)

Storing a matrix object with all the GoFs:
g <- gof(sim, obs)

Getting only the RMSE

KGE 39

g[4,1]
g["RMSE",]

Not run:
Writing all the GoFs into a TXT file
write.table(g, "GoFs.txt", col.names=FALSE, quote=FALSE)

Getting the graphical representation of 'obs' and 'sim' along with the
numeric goodness of fit
ggof(sim=sim, obs=obs)

End(Not run)

KGE Kling-Gupta Efficiency

Description

Kling-Gupta efficiency between sim and obs, with treatment of missing values.

This goodness-of-fit measure was developed by Gupta et al. (2009) to provide a diagnostically
interesting decomposition of the Nash-Sutcliffe efficiency (and hence MSE), which facilitates the
analysis of the relative importance of its different components (correlation, bias and variability) in
the context of hydrological modelling. Kling et al. (2012), proposed a revised version of this index,
to ensure that the bias and variability ratios are not cross-correlated.

Kling-Gupta efficiencies range from -Inf to 1. Essentially, the closer to 1, the more similar sim and
obs are.

Knoben et al. (2019) showed that KGE values greater than -0.41 indicate that a model improves
upon the mean flow benchmark, even if the model’s KGE value is negative.

In the computation of this index, there are three main components involved:

1) r : the Pearson product-moment correlation coefficient. Ideal value is r=1.

2) Beta : the ratio between the mean of the simulated values and the mean of the observed ones.
Ideal value is Beta=1.

3) vr : variability ratio, which could be computed using the standard deviation (Alpha) or the
coefficient of variation (Gamma) of sim and obs, depending on the value of method:

3.1) Alpha: the ratio between the standard deviation of the simulated values and the standard devi-
ation of the observed ones. Its ideal value is Alpha=1.

3.2) Gamma: the ratio between the coefficient of variation (CV) of the simulated values to the coeffi-
cient of variation of the observed ones. Its ideal value is Gamma=1.

For a full discussion pf the Kling-Gupta index, and its advantages over the Nash-Sutcliffe efficiency
(NSE) see Gupta et al. (2009).

40 KGE

Usage

KGE(sim, obs, ...)

Default S3 method:
KGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'data.frame'
KGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'matrix'
KGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'zoo'
KGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012", "2021"),

out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

s numeric of length 3, representing the scaling factors to be used for re-scaling
the criteria space before computing the Euclidean distance from the ideal point
c(1,1,1), i.e., s elements are used for adjusting the emphasis on different com-
ponents. The first elements is used for rescaling the Pearson product-moment
correlation coefficient (r), the second element is used for rescaling Alpha and
the third element is used for re-scaling Beta

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

method character, indicating the formula used to compute the variability ratio in the
Kling-Gupta efficiency. Valid values are:
-) 2009: the variability is defined as ‘Alpha’, the ratio of the standard deviation
of sim values to the standard deviation of obs. This is the default option. See
Gupta et al. (2009).

KGE 41

-) 2012: the variability is defined as ‘Gamma’, the ratio of the coefficient of
variation of sim values to the coefficient of variation of obs. See Kling et al.
(2012).

-) 2021: the bias is defined as ‘Beta’, the ratio of mean(sim) minus mean(obs)
to the standard deviation of obs. The variability is defined as ‘Alpha’, the ratio
of the standard deviation of sim values to the standard deviation of obs. See
Tang et al. (2021).

out.type character, indicating the whether the output of the function has to include each
one of the three terms used in the computation of the Kling-Gupta efficiency or
not. Valid values are:

-) single: the output is a numeric with the Kling-Gupta efficiency only.

-) full: the output is a list of two elements: the first one with the Kling-Gupta
efficiency, and the second is a numeric with 3 elements: the Pearson product-
moment correlation coefficient (‘r’), the ratio between the mean of the simu-
lated values to the mean of observations (‘Beta’), and the variability measure
(‘Gamma’ or ‘Alpha’, depending on the value of method).

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Kling-Gupta efficiency.

The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.

It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.

Valid values of epsilon.type are:

1) "none": sim and obs are used by fun without the addition of any nummeric
value.

2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.

4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

42 KGE

Details

KGE = 1− ED

ED =
√

(s[1] ∗ (r − 1))2 + (s[2] ∗ (vr − 1))2 + (s[3] ∗ (β − 1))2

r = Pearsonproduct−momentcorrelationcoefficient

vr =

{
α , method = 2009
γ , method = 2012

β = µs/µo

α = σs/σo

γ =
CVs
CVo

=
σs/µs

σo/µo

Value

If out.type=single: numeric with the Kling-Gupta efficiency between sim and obs. If sim and
obs are matrices, the output value is a vector, with the Kling-Gupta efficiency between each column
of sim and obs

If out.type=full: a list of two elements:

KGE.value numeric with the Kling-Gupta efficiency. If sim and obs are matrices, the output
value is a vector, with the Kling-Gupta efficiency between each column of sim
and obs

KGE.elements numeric with 3 elements: the Pearson product-moment correlation coefficient
(‘r’), the ratio between the mean of the simulated values to the mean of observa-
tions (‘Beta’), and the variability measure (‘Gamma’ or ‘Alpha’, depending on
the value of method). If sim and obs are matrices, the output value is a matrix,
with the previous three elements computed for each column of sim and obs

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

KGE 43

References

Gupta, H. V.; Kling, H.; Yilmaz, K. K.; Martinez, G. F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE
criterion. doi:10.5194/hess-22-4583-2018

Knoben, W. J.; Freer, J. E.; Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019

Mizukami, N.; Rakovec, O.; Newman, A. J.; Clark, M. P.; Wood, A. W.; Gupta, H. V.; Kumar, R.
(2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models.
doi:10.5194/hess-23-2601-2019

Tang, G., Clark, M. P., & Papalexiou, S. M. (2021). SC-earth: a station-based serially complete
earth dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511. doi:10.1175/JCLI-D-21-
0067.1

Cinkus, G., Mazzilli, N., Jourde, H., Wunsch, A., Liesch, T., Ravbar, N., Chen, Z., and Goldschei-
der, N. (2023). When best is the enemy of good - critical evaluation of performance criteria in
hydrological models. Hydrology and Earth System Sciences 27, 2397-2411, doi:10.5194/hess-27-
2397-2023

See Also

KGElf, sKGE, KGEnp, gof, ggof

Examples

Example1: basic ideal case
obs <- 1:10
sim <- 1:10
KGE(sim, obs)

obs <- 1:10
sim <- 2:11
KGE(sim, obs)

##################
Example2: Looking at the difference between 'method=2009' and 'method=2012'
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

44 KGE

Simulated daily time series, initially equal to twice the observed values
sim <- 2*obs

KGE 2009
KGE(sim=sim, obs=obs, method="2009", out.type="full")

KGE 2012
KGE(sim=sim, obs=obs, method="2012", out.type="full")

##################
Example3: KGE for simulated values equal to observations plus random noise
on the first half of the observed values
Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim <- obs
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)

Computing the new 'KGE'
KGE(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Computing the new 'KGE'
KGE(sim=sim, obs=obs)

##################
Example 4: KGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

KGE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
KGE(sim=lsim, obs=lobs)

##################
Example 5: KGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

KGE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGE(sim=lsim, obs=lobs)

KGElf 45

##################
Example 6: KGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
KGE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGE(sim=lsim, obs=lobs)

##################
Example 7: KGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
KGE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGE(sim=lsim, obs=lobs)

##################
Example 8: KGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

KGE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
KGE(sim=sim1, obs=obs1)

KGElf Kling-Gupta Efficiency for low values

46 KGElf

Description

Kling-Gupta efficiency between sim and obs, with focus on low (streamflow) values and treatment
of missing values.

This goodness-of-fit measure was developed by Garcia et al. (2017), as a modification to the original
Kling-Gupta efficiency (KGE) proposed by Gupta et al. (2009). See Details.

Usage

KGElf(sim, obs, ...)

Default S3 method:
KGElf(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012"),

epsilon.type=c("Pushpalatha2012", "otherFactor", "otherValue", "none"),
epsilon.value=NA, ...)

S3 method for class 'data.frame'
KGElf(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012"),

epsilon.type=c("Pushpalatha2012", "otherFactor", "otherValue", "none"),
epsilon.value=NA, ...)

S3 method for class 'matrix'
KGElf(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012"),

epsilon.type=c("Pushpalatha2012", "otherFactor", "otherValue", "none"),
epsilon.value=NA, ...)

S3 method for class 'zoo'
KGElf(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012"),

epsilon.type=c("Pushpalatha2012", "otherFactor", "otherValue", "none"),
epsilon.value=NA, ...)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

s numeric of length 3, representing the scaling factors to be used for re-scaling
the criteria space before computing the Euclidean distance from the ideal point
c(1,1,1), i.e., s elements are used for adjusting the emphasis on different com-
ponents. The first elements is used for rescaling the Pearson product-moment
correlation coefficient (r), the second element is used for rescaling Alpha and
the third element is used for re-scaling Beta

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

method character, indicating the formula used to compute the variability ratio in the
Kling-Gupta efficiency. Valid values are:

KGElf 47

-) 2009: the variability is defined as ‘Alpha’, the ratio of the standard deviation
of sim values to the standard deviation of obs. This is the default option. See
Gupta et al. (2009).
-) 2012: the variability is defined as ‘Gamma’, the ratio of the coefficient of
variation of sim values to the coefficient of variation of obs. See Kling et al.
(2012).

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is designed to allow the use of logarithm and other similar functions that do
not work with zero values.
Valid values of epsilon.type are:
1) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012). This is the default option.
2) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.
3) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.
4) "none": sim and obs are used by fun without the addition of any numeric
value.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

... further arguments passed to or from other methods.

Details

Garcia et al. (2017) tested different objective functions and found that the mean value of the KGE
applied to the streamflows (i.e., KGE(Q)) and the KGE applied to the inverse of the streamflows
(i.e., KGE(1/Q) is able to provide a an aceptable representation of low-flow indices important for
water management. They also found that KGE applied to a transformation of streamflow values
(e.g., log) is inadequate to capture low-flow indices important for water management.

The robustness of their findings depends more on the climate variability rather than the objective
function, and they are insensitive to the hydrological model used in the evaluation.

KGElf =
KGE(Q) +KGE(1/Q)

2

Traditional Kling-Gupta efficiencies (Gupta et al., 2009; Kling et al., 2012) range from -Inf to 1
and, therefore, KGElf should also range from -Inf to 1. Essentially, the closer to 1, the more similar

48 KGElf

sim and obs are.

Knoben et al. (2019) showed that traditional Kling-Gupta (Gupta et al., 2009; Kling et al., 2012)
values greater than -0.41 indicate that a model improves upon the mean flow benchmark, even if the
model’s KGE value is negative.

Value

numeric with the Kling-Gupta efficiency for low flows between sim and obs.

If sim and obs are matrices, the output value is a vector, with the Kling-Gupta efficiency between
each column of sim and obs

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

References

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff mod-
els for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511

Pushpalatha, R., Perrin, C., Le Moine, N. and Andreassian, V. (2012). A review of efficiency criteria
suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved
overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044

Gupta, H. V.; Kling, H.; Yilmaz, K. K.; Martinez, G. F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE
criterion. doi:10.5194/hess-22-4583-2018

KGElf 49

Knoben, W. J.; Freer, J. E.; Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019

See Also

KGE, KGEnp, sKGE, gof, ggof

Examples

##################
Example1: basic ideal case
obs <- 1:10
sim <- 1:10
KGElf(sim, obs)

obs <- 1:10
sim <- 2:11
KGElf(sim, obs)

##################
Example2: Looking at the difference between 'method=2009' and 'method=2012'
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, initially equal to twice the observed values
sim <- 2*obs

KGE 2009
KGE(sim=sim, obs=obs, method="2009", out.type="full")

KGE 2012
KGE(sim=sim, obs=obs, method="2012", out.type="full")

KGElf (Garcia et al., 2017):
KGElf(sim=sim, obs=obs, method="2012")

##################
Example3: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim <- obs
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

Computing 'KGElf'
KGElf(sim=sim, obs=obs)

50 KGElf

##################
Example 4: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

KGElf(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
KGElf(sim=lsim, obs=lobs)

##################
Example 5: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

KGElf(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGElf(sim=lsim, obs=lobs)

##################
Example 6: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
KGElf(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGElf(sim=lsim, obs=lobs)

##################
Example 7: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
KGElf(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)

KGEnp 51

lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGElf(sim=lsim, obs=lobs)

##################
Example 8: KGElf for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

KGElf(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
KGElf(sim=sim1, obs=obs1)

KGEnp Non-parametric version of the Kling-Gupta Efficiency

Description

Non-parametric Kling-Gupta efficiency between sim and obs, with treatment of missing values.

This goodness-of-fit measure was developed by Pool et al. (2018), as a non-parametric alternative
to the original Kling-Gupta efficiency (KGE) proposed by Gupta et al. (2009). See Details.

Usage

KGEnp(sim, obs, ...)

Default S3 method:
KGEnp(sim, obs, na.rm=TRUE, out.type=c("single", "full"), fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
KGEnp(sim, obs, na.rm=TRUE, out.type=c("single", "full"), fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
KGEnp(sim, obs, na.rm=TRUE, out.type=c("single", "full"), fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'

52 KGEnp

KGEnp(sim, obs, na.rm=TRUE, out.type=c("single", "full"), fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

out.type character, indicating the whether the output of the function has to include each
one of the three terms used in the computation of the Kling-Gupta efficiency or
not. Valid values are:
-) single: the output is a numeric with the Kling-Gupta efficiency only.
-) full: the output is a list of two elements: the first one with the Kling-Gupta
efficiency, and the second is a numeric with 3 elements: the Spearman rank
correlation coefficient (‘rSpearman’), the ratio between the mean of the simu-
lated values to the mean of observations (‘Beta’), and the variability measure
(‘Alpha’).

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to

KGEnp 53

multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

This non-paramettric verison of the Kling-Gupta efficiency keeps the bias term Alpha (mean(sim) /
mean(obs)), but for correlation uses the Spearman rank coefficient instead of the Pearson product-
moment coefficient; and for variability it uses the normalized flow-duration curve instead of the
standard deviation (or coefficient of variation).

The proposed non-parametric based multi-objective function can be seen as a useful alternative
to existing performance measures when aiming at acceptable simulations of multiple hydrograph
aspects (Pool et al., 2018).

KGEnp = 1− ED

ED =
√

((ρ− 1)2 + (α− 1)2 + (β − 1)2

ρ = Spearman rank correlation coefficient

α = 1− 0.5 ∗ sum(sim(I(k))/(n ∗ µs)− obs(J(k))/(n ∗ µo))

β = µs/µo

Traditional Kling-Gupta efficiencies (Gupta et al., 2009; Kling et al., 2012) range from -Inf to 1,
and therefore KGEnp should do so. Essentially, the closer to 1, the more similar sim and obs are.

Knoben et al. (2019) showed that traditional Kling-Gupta (Gupta et al., 2009; Kling et al., 2012)
values greater than -0.41 indicate that a model improves upon the mean flow benchmark, even if the
model’s KGE value is negative.

Value

numeric with the non-parametric Kling-Gupta efficiency between sim and obs.
If sim and obs are matrices, the output value is a vector, with the non-parametric Kling-Gupta
efficiency between each column of sim and obs

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

54 KGEnp

References

Pool, S., Vis, M. and Seibert, J. (2018). Evaluating model performance: towards a non-parametric
variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953.
doi:/10.1080/02626667.2018.1552002.

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff mod-
els for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511

Gupta, H. V.; Kling, H.; Yilmaz, K. K.; Martinez, G. F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE
criterion. doi:10.5194/hess-22-4583-2018

Knoben, W. J.; Freer, J. E.; Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019

See Also

KGE, KGElf, sKGE, gof, ggof

Examples

Example1: basic ideal case
obs <- 1:10
sim <- 1:10
KGEnp(sim, obs)

obs <- 1:10
sim <- 2:11
KGEnp(sim, obs)

##################
Example2: Looking at the difference between 'method=2009' and 'method=2012'
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, initially equal to twice the observed values
sim <- 2*obs

KGE 2009

KGEnp 55

KGE(sim=sim, obs=obs, method="2009", out.type="full")

KGE 2012
KGE(sim=sim, obs=obs, method="2012", out.type="full")

KGEnp (Pool et al., 2018):
KGEnp(sim=sim, obs=obs)

##################
Example3: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values
Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim <- obs
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)

Computing the new 'KGEnp'
KGEnp(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Computing the new 'KGEnp'
KGEnp(sim=sim, obs=obs)

##################
Example 4: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

KGEnp(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
KGEnp(sim=lsim, obs=lobs)

##################
Example 5: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

KGEnp(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGEnp(sim=lsim, obs=lobs)

##################

56 mae

Example 6: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
KGEnp(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGEnp(sim=lsim, obs=lobs)

##################
Example 7: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
KGEnp(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
KGEnp(sim=lsim, obs=lobs)

##################
Example 8: KGEnp for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

KGEnp(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
KGEnp(sim=sim1, obs=obs1)

mae Mean Absolute Error

Description

Mean absolute error between sim and obs, in the same units of them, with treatment of missing
values.

mae 57

Usage

mae(sim, obs, ...)

Default S3 method:
mae(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
mae(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
mae(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
mae(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).

58 mae

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

mae =
1

N

N∑
i=1

|Si −Oi)|

Value

Mean absolute error between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the mean absolute error between
each column of sim and obs.

Note

obs and sim have to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Mean_absolute_error

See Also

pbias, pbiasfdc, mse, rmse, ubRMSE, nrmse, ssq, gof, ggof

https://en.wikipedia.org/wiki/Mean_absolute_error

mae 59

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
mae(sim, obs)

obs <- 1:10
sim <- 2:11
mae(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'mae' for the "best" (unattainable) case
mae(sim=sim, obs=obs)

##################
Example 3: mae for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

mae(sim=sim, obs=obs)

##################
Example 4: mae for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

mae(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
mae(sim=lsim, obs=lobs)

##################
Example 5: mae for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant

60 mae

during computations

mae(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mae(sim=lsim, obs=lobs)

##################
Example 6: mae for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
mae(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mae(sim=lsim, obs=lobs)

##################
Example 7: mae for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
mae(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mae(sim=lsim, obs=lobs)

##################
Example 8: mae for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

mae(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
mae(sim=sim1, obs=obs1)

md 61

md Modified index of agreement

Description

This function computes the modified Index of Agreement between sim and obs, with treatment of
missing values.
If ’x’ is a matrix or a data frame, a vector of the modified index of agreement among the columns
is returned.

Usage

md(sim, obs, ...)

Default S3 method:
md(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
md(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
md(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
md(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

j numeric, with the exponent to be used in the computation of the modified index
of agreement. The default value is j=1.

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

62 md

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the modified index of agreement.

The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.

It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.

Valid values of epsilon.type are:

1) "none": sim and obs are used by fun without the addition of any nummeric
value.

2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.

4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value numeric value to be added to both sim and obs when epsilon.type="otherValue".

Details

md = 1−
∑N

i=1 |Oi − Si|j∑N
i=1

∣∣Si − Ō
∣∣+
∣∣Oi − Ō

∣∣j
The Index of Agreement (d) developed by Willmott (1981) as a standardized measure of the degree
of model prediction error and varies between 0 and 1.
A value of 1 indicates a perfect match, and 0 indicates no agreement at all (Willmott, 1981).

The index of agreement can detect additive and proportional differences in the observed and sim-
ulated means and variances; however, it is overly sensitive to extreme values due to the squared
differences (Legates and McCabe, 1999).

Value

Modified index of agreement between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the modified index of agreement
between each column of sim and obs.

md 63

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Krause, P., Boyle, D. P., and Base, F.: Comparison of different efficiency criteria for hydrological
model assessment, Adv. Geosci., 5, 89-97, 2005

Willmott, C. J. 1981. On the validation of models. Physical Geography, 2, 184–194

Willmott, C. J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460

Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J.
O’Donnell, and C. M. Rowe (1985), Statistics for the Evaluation and Comparison of Models, J.
Geophys. Res., 90(C5), 8995-9005

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233–241

See Also

d, dr, rd, gof, ggof

Examples

obs <- 1:10
sim <- 1:10
md(sim, obs)

obs <- 1:10
sim <- 2:11
md(sim, obs)

##################
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

64 me

Computing the modified index of agreement for the "best" (unattainable) case
md(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Computing the new 'd1'
md(sim=sim, obs=obs)

me Mean Error

Description

Mean error between sim and obs, in the same units of them, with treatment of missing values.

Usage

me(sim, obs, ...)

Default S3 method:
me(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
me(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
me(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
me(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
na.rm a logical value indicating whether ’NA’ should be stripped before the computa-

tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

me 65

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

me =
1

N

N∑
i=1

(Si −Oi))

Value

Mean error between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the mean error between each column
of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

66 me

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Hill, T., Lewicki, P., & Lewicki, P. (2006). Statistics: methods and applications: a comprehensive
reference for science, industry, and data mining. StatSoft, Inc.

See Also

mae, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
me(sim, obs)

obs <- 1:10
sim <- 2:11
me(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'me' for the "best" (unattainable) case
me(sim=sim, obs=obs)

##################
Example 3: me for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

me(sim=sim, obs=obs)

##################
Example 4: me for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)

me 67

logarithm to 'sim' and 'obs' during computations.

me(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
me(sim=lsim, obs=lobs)

##################
Example 5: me for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

me(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
me(sim=lsim, obs=lobs)

##################
Example 6: me for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
me(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
me(sim=lsim, obs=lobs)

##################
Example 7: me for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
me(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
me(sim=lsim, obs=lobs)

68 mNSE

##################
Example 8: me for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

me(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
me(sim=sim1, obs=obs1)

mNSE Modified Nash-Sutcliffe efficiency

Description

Modified Nash-Sutcliffe efficiency between sim and obs, with treatment of missing values.

Usage

mNSE(sim, obs, ...)

Default S3 method:
mNSE(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
mNSE(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
mNSE(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
mNSE(sim, obs, j=1, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

mNSE 69

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

j numeric, with the exponent to be used in the computation of the modified Nash-
Sutcliffe efficiency. The default value is j=1.

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by FUN without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying FUN, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying FUN.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

mNSE = 1−
∑N

i=1 |Si −Oi|j∑N
i=1

∣∣Oi − Ō
∣∣j

When j=1, the modified NSeff is not inflated by the squared values of the differences, because the
squares are replaced by absolute values.

70 mNSE

Value

Modified Nash-Sutcliffe efficiency between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the modified Nash-Sutcliffe effi-
ciency between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Krause, P., Boyle, D. P., and Base, F.: Comparison of different efficiency criteria for hydrological
model assessment, Adv. Geosci., 5, 89-97, 2005

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241

See Also

NSE, rNSE, wNSE, KGE, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
mNSE(sim, obs)

obs <- 1:10
sim <- 2:11
mNSE(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

mNSE 71

Computing the 'mNSE' for the "best" (unattainable) case
mNSE(sim=sim, obs=obs)

##################
Example 3: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

mNSE(sim=sim, obs=obs)

##################
Example 4: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

mNSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
mNSE(sim=lsim, obs=lobs)

##################
Example 5: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

mNSE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mNSE(sim=lsim, obs=lobs)

##################
Example 6: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
mNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:

72 mse

lsim <- log(sim+eps)
lobs <- log(obs+eps)
mNSE(sim=lsim, obs=lobs)

##################
Example 7: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
mNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mNSE(sim=lsim, obs=lobs)

##################
Example 8: mNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

mNSE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
mNSE(sim=sim1, obs=obs1)

mse Mean Squared Error

Description

Mean squared error between sim and obs, in the squared units of sim and obs, with treatment of
missing values.

Usage

mse(sim, obs, ...)

Default S3 method:
mse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

mse 73

S3 method for class 'data.frame'
mse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
mse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
mse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

74 mse

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

mse =
1

N

N∑
i=1

(Si −Oi)
2

Value

Mean squared error between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the mean squared error between
each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Yapo P. O., Gupta H. V., Sorooshian S., 1996. Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48

See Also

pbias, pbiasfdc, mae, rmse, ubRMSE, nrmse, ssq, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
mse(sim, obs)

obs <- 1:10

mse 75

sim <- 2:11
mse(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'mse' for the "best" (unattainable) case
mse(sim=sim, obs=obs)

##################
Example 3: mse for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

mse(sim=sim, obs=obs)

##################
Example 4: mse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

mse(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
mse(sim=lsim, obs=lobs)

##################
Example 5: mse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

mse(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mse(sim=lsim, obs=lobs)

76 nrmse

##################
Example 6: mse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
mse(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mse(sim=lsim, obs=lobs)

##################
Example 7: mse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
mse(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
mse(sim=lsim, obs=lobs)

##################
Example 8: mse for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

mse(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
mse(sim=sim1, obs=obs1)

nrmse Normalized Root Mean Square Error

nrmse 77

Description

Normalized root mean square error (NRMSE) between sim and obs, with treatment of missing
values.

Usage

nrmse(sim, obs, ...)

Default S3 method:
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
nrmse(sim, obs, na.rm=TRUE, norm="sd", fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

norm character, indicating the value to be used for normalising the root mean square
error (RMSE). Valid values are:
-) sd : standard deviation of observations (default).
-) maxmin: difference between the maximum and minimum observed values

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

78 nrmse

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

nrmse = 100

√
1
N

∑N
i=1 (Si −Oi)

2

nval

nval =

{
sd(Oi) , norm="sd"

Omax −Omin , norm="maxmin"

Value

Normalized root mean square error (nrmse) between sim and obs. The result is given in percentage
(%)

If sim and obs are matrixes, the returned value is a vector, with the normalized root mean square
error between each column of sim and obs.

Note

obs and sim have to have the same length/dimension

Missing values in obs and sim are removed before the computation proceeds, and only those posi-
tions with non-missing values in obs and sim are considered in the computation

nrmse 79

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

See Also

pbias, pbiasfdc, mae, mse, rmse, ubRMSE, ssq, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
nrmse(sim, obs)

obs <- 1:10
sim <- 2:11
nrmse(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'nrmse' for the "best" (unattainable) case
nrmse(sim=sim, obs=obs)

##################
Example 3: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

nrmse(sim=sim, obs=obs)

##################
Example 4: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

nrmse(sim=sim, obs=obs, fun=log)

Verifying the previous value:

80 nrmse

lsim <- log(sim)
lobs <- log(obs)
nrmse(sim=lsim, obs=lobs)

##################
Example 5: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

nrmse(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
nrmse(sim=lsim, obs=lobs)

##################
Example 6: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
nrmse(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
nrmse(sim=lsim, obs=lobs)

##################
Example 7: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
nrmse(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
nrmse(sim=lsim, obs=lobs)

##################
Example 8: nrmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

NSE 81

fun1 <- function(x) {sqrt(x+1)}

nrmse(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
nrmse(sim=sim1, obs=obs1)

NSE Nash-Sutcliffe Efficiency

Description

Nash-Sutcliffe efficiency between sim and obs, with treatment of missing values.

Usage

NSE(sim, obs, ...)

Default S3 method:
NSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
NSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
NSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
NSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

82 NSE

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the mean of the observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

NSE = 1−
∑N

i=1 (Si −Oi)
2∑N

i=1

(
Oi − Ō

)2
The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the relative magnitude
of the residual variance ("noise") compared to the measured data variance ("information") (Nash
and Sutcliffe, 1970).

NSE indicates how well the plot of observed versus simulated data fits the 1:1 line.

Nash-Sutcliffe efficiencies range from -Inf to 1. Essentially, the closer to 1, the more accurate the
model is.
-) NSE = 1, corresponds to a perfect match of modelled to the observed data.
-) NSE = 0, indicates that the model predictions are as accurate as the mean of the observed data,
-) -Inf < NSE < 0, indicates that the observed mean is better predictor than the model.

NSE 83

Value

Nash-Sutcliffe efficiency between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the Nash-Sutcliffe efficiency be-
tween each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_coefficient

Nash, J.E. and J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1: a discussion
of principles, J. Hydrol. 10 (1970), pp. 282-290. doi:10.1016/0022-1694(70)90255-6

Criss, R. E. and Winston, W. E. (2008), Do Nash values have value? Discussion and alternate
proposals. Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072

Knoben, W. J.; Freer, J. E.; Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019

Pushpalatha, R., Perrin, C., Le Moine, N. and Andreassian, V. (2012). A review of efficiency criteria
suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055

See Also

mNSE, rNSE, wNSE, KGE, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
NSE(sim, obs)

obs <- 1:10
sim <- 2:11
NSE(sim, obs)

https://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_coefficient

84 NSE

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'NSE' for the "best" (unattainable) case
NSE(sim=sim, obs=obs)

##################
Example 3: NSE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

NSE(sim=sim, obs=obs)

##################
Example 4: NSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

NSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
NSE(sim=lsim, obs=lobs)

##################
Example 5: NSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

NSE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
NSE(sim=lsim, obs=lobs)

##################

pbias 85

Example 6: NSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
NSE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
NSE(sim=lsim, obs=lobs)

##################
Example 7: NSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
NSE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
NSE(sim=lsim, obs=lobs)

##################
Example 8: NSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

NSE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
NSE(sim=sim1, obs=obs1)

pbias Percent Bias

Description

Percent Bias between sim and obs, with treatment of missing values.

86 pbias

Usage

pbias(sim, obs, ...)

Default S3 method:
pbias(sim, obs, na.rm=TRUE, dec=1, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
pbias(sim, obs, na.rm=TRUE, dec=1, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
pbias(sim, obs, na.rm=TRUE, dec=1, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
pbias(sim, obs, na.rm=TRUE, dec=1, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

dec numeric, specifying the number of decimal places used to rounf the output ob-
ject. Default value is 1.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.

pbias 87

2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

PBIAS = 100

∑N
i=1 (Si −Oi)∑N

i=1Oi

Percent bias (PBIAS) measures the average tendency of the simulated values to be larger or smaller
than their observed ones.

The optimal value of PBIAS is 0.0, with low-magnitude values indicating accurate model simula-
tion. Positive values indicate overestimation bias, whereas negative values indicate model underes-
timation bias

Value

Percent bias between sim and obs. The result is given in percentage (%)

If sim and obs are matrixes, the returned value is a vector, with the percent bias between each
column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

88 pbias

References

Yapo, P. O.; Gupta, H. V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23–48. doi:10.1016/0022-
1694(95)02918-4

Sorooshian, S., Q. Duan, and V. K. Gupta. 1993. Calibration of rainfall-runoff models: Applica-
tion of global optimization to the Sacramento Soil Moisture Accounting Model, Water Resources
Research, 29 (4), 1185-1194, doi:10.1029/92WR02617.

See Also

pbias, pbiasfdc, mae, mse, rmse, ubRMSE, nrmse, ssq, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
pbias(sim, obs)

obs <- 1:10
sim <- 2:11
pbias(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'pbias' for the "best" (unattainable) case
pbias(sim=sim, obs=obs)

##################
Example 3: pbias for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

pbias(sim=sim, obs=obs)

##################

pbias 89

Example 4: pbias for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

pbias(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
pbias(sim=lsim, obs=lobs)

##################
Example 5: pbias for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

pbias(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbias(sim=lsim, obs=lobs)

##################
Example 6: pbias for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
pbias(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbias(sim=lsim, obs=lobs)

##################
Example 7: pbias for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
pbias(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)

90 pbiasfdc

pbias(sim=lsim, obs=lobs)

##################
Example 8: pbias for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

pbias(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
pbias(sim=sim1, obs=obs1)

pbiasfdc Percent Bias in the Slope of the Midsegment of the Flow Duration
Curve

Description

Percent Bias in the slope of the midsegment of the flow duration curve (FDC) [%]. It is related to
the vertical soil moisture redistribution.

Usage

pbiasfdc(sim, obs, ...)

Default S3 method:
pbiasfdc(sim, obs, lQ.thr=0.7, hQ.thr=0.2, na.rm=TRUE,

plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
pbiasfdc(sim, obs, lQ.thr=0.7, hQ.thr=0.2, na.rm=TRUE,

plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
pbiasfdc(sim, obs, lQ.thr=0.7, hQ.thr=0.2, na.rm=TRUE,

plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

pbiasfdc 91

S3 method for class 'zoo'
pbiasfdc(sim, obs, lQ.thr=0.7, hQ.thr=0.2, na.rm=TRUE,

plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
lQ.thr numeric, used to classify low flows. All the streamflows with a probability of

exceedence larger or equal to lQ.thr are classified as low flows
hQ.thr numeric, used to classify high flows. All the streamflows with a probability of

exceedence larger or equal to hQ.thr are classified as high flows
na.rm a logical value indicating whether ’NA’ values should be stripped before the

computation proceeds.
plot a logical value indicating if the flow duration curves corresponding to obs and

sim have to be plotted or not.
verbose logical; if TRUE, progress messages are printed
fun function to be applied to sim and obs in order to obtain transformed values

thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

92 pbiasfdc

Value

Percent Bias in the slope of the midsegment of the flow duration curve, between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the Percent Bias in the slope of the
midsegment of the flow duration curve, between each column of sim and obs.

Note

The result is given in percentage (%).

It requires the hydroTSM package.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Yilmaz, K. K., H. V. Gupta, and T. Wagener (2008), A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resour. Res., 44, W09417,
doi:10.1029/2007WR006716

Yilmaz, K. K., H. V. Gupta, and T. Wagener (2008), A process-based diagnostic approach to model
evaluation: Application to the NWS distributed hydrologic model, Water Resour. Res., 44, W09417,
doi:10.1029/2007WR006716

See Also

fdc, pbias, mae, mse, rmse, ubRMSE, nrmse, ssq, gof, ggof

Examples

Not run:
##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
pbiasfdc(sim, obs)

obs <- 1:10
sim <- 2:11
pbiasfdc(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

pbiasfdc 93

Computing the 'pbiasfdc' for the "best" (unattainable) case
pbiasfdc(sim=sim, obs=obs)

##################
Example 3: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

pbiasfdc(sim=sim, obs=obs)

##################
Example 4: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

pbiasfdc(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
pbiasfdc(sim=lsim, obs=lobs)

##################
Example 5: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

pbiasfdc(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbiasfdc(sim=lsim, obs=lobs)

##################
Example 6: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
pbiasfdc(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:

94 pfactor

lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbiasfdc(sim=lsim, obs=lobs)

##################
Example 7: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
pbiasfdc(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbiasfdc(sim=lsim, obs=lobs)

##################
Example 8: pbiasfdc for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

pbiasfdc(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
pbiasfdc(sim=sim1, obs=obs1)

End(Not run)

pfactor P-factor

Description

P-factor is the percent of observations that are within the given uncertainty bounds.

Ideally, i.e., with a combination of model structure and parameter values that perfectly represents
the catchment under study, and in absence of measurement errors and other additional sources of
uncertainty, all the simulated values should be in a perfect match with the observations, leading to
a P-factor equal to 1, and an R-factor equal to zero. However, in real-world applications we aim at
encompassing as much observations as possible within the given uncertainty bounds (P-factor close
to 1) while keeping the width of the uncertainty bounds as small as possible (R-factor close to 0),

pfactor 95

in order to avoid obtaining a good bracketing of observations at expense of uncertainty bounds too
wide to be informative for the decision-making process.

Usage

pfactor(x, ...)

Default S3 method:
pfactor(x, lband, uband, na.rm=TRUE, ...)

S3 method for class 'data.frame'
pfactor(x, lband, uband, na.rm=TRUE, ...)

S3 method for class 'matrix'
pfactor(x, lband, uband, na.rm=TRUE, ...)

Arguments

x ts or zoo object with the observed values.

lband numeric, ts or zoo object with the values of the lower uncertainty bound

uband numeric, ts or zoo object with the values of the upper uncertainty bound

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

... further arguments passed to or from other methods.

Value

Percent of the x observations that are within the given uncertainty bounds given by lband and
uband.

If sim and obs are matrixes, the returned value is a vector, with the P-factor between each column
of sim and obs.

Note

So far, the argument na.rm is not being taken into account.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Abbaspour, K. C., M. Faramarzi, S. S. Ghasemi, and H. Yang (2009), Assessing the impact of cli-
mate change on water resources in Iran, Water Resour. Res., 45(10), W10,434, doi:10.1029/2008WR007615

Abbaspour, K. C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, and R. Srini-
vasan (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using

96 plot2

SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014

Schuol, J., K. Abbaspour, R. Srinivasan, and H. Yang (2008b), Estimation of freshwater availability
in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-
2), 30, doi:10.1016/j.jhydrol.2007.12.025

Abbaspour, C., Karim (2007), User manual for SWAT-CUP, SWAT calibration and uncertainty anal-
ysis programs, 93pp, Eawag: Swiss Fed. Inst. of Aquat. Sci. and Technol. Dubendorf, Switzerland

See Also

rfactor, plotbands

Examples

x <- 1:10
lband <- x - 0.1
uband <- x + 0.1
pfactor(x, lband, uband)

lband <- x - rnorm(10)
uband <- x + rnorm(10)
pfactor(x, lband, uband)

#############
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Selecting only the daily values belonging to the year 1961
obs <- window(obs, end=as.Date("1961-12-31"))

Generating the lower and upper uncertainty bounds, centred at the observations
lband <- obs - 5
uband <- obs + 5

pfactor(obs, lband, uband)

Randomly generating the lower and upper uncertainty bounds
uband <- obs + rnorm(length(obs))
lband <- obs - rnorm(length(obs))

pfactor(obs, lband, uband)

plot2 Plotting 2 Time Series

plot2 97

Description

Plotting of 2 time series, in two different vertical windows or overlapped in the same window.
It requires the hydroTSM package.

Usage

plot2(x, y, plot.type = "multiple",
tick.tstep = "auto", lab.tstep = "auto", lab.fmt=NULL,
main, xlab = "Time", ylab,
cal.ini=NA, val.ini=NA, date.fmt="%Y-%m-%d",
gof.leg = FALSE, gof.digits=2,
gofs=c("ME", "MAE", "RMSE", "NRMSE", "PBIAS", "RSR", "rSD", "NSE", "mNSE",

"rNSE", "d", "md", "rd", "r", "R2", "bR2", "KGE", "VE"),
legend, leg.cex = 1,
col = c("black", "blue"),
cex = c(0.5, 0.5), cex.axis=1.2, cex.lab=1.2,
lwd= c(1,1), lty=c(1,3), pch = c(1, 9),
pt.style = "ts", add = FALSE,
...)

Arguments

x time series that will be plotted. class(x) must be ts or zoo. If leg.gof=TRUE,
then x is considered as simulated (for some goodness-of-fit functions this is
important)

y time series that will be plotted. class(x) must be ts or zoo. If leg.gof=TRUE,
then y is considered as observed values (for some goodness-of-fit functions this
is important)

plot.type character, indicating if the 2 ts have to be plotted in the same window or in two
different vertical ones. Valid values are:
-) single : (default) superimposes the 2 ts on a single plot
-) multiple: plots the 2 series on 2 multiple vertical plots

tick.tstep character, indicating the time step that have to be used for putting the ticks on the
time axis. Valid values are: auto, years, months,weeks, days, hours, minutes,
seconds.

lab.tstep character, indicating the time step that have to be used for putting the labels
on the time axis. Valid values are: auto, years, months,weeks, days, hours,
minutes, seconds.

lab.fmt Character indicating the format to be used for the label of the axis. See lab.fmt
in drawTimeAxis.

main an overall title for the plot: see title

xlab label for the ’x’ axis

ylab label for the ’y’ axis

cal.ini OPTIONAL. Character, indicating the date in which the calibration period started.
When cal.ini is provided, all the values in obs and sim with dates previous
to cal.ini are SKIPPED from the computation of the goodness-of-fit measures

98 plot2

(when gof.leg=TRUE), but their values are still plotted, in order to examine if
the warming up period was too short, acceptable or too long for the chosen cal-
ibration period. In addition, a vertical red line in drawn at this date.

val.ini OPTIONAL. Character with the date in which the validation period started.
ONLY used for drawing a vertical red line at this date.

date.fmt OPTIONAL. Character indicating the format in which the dates entered are
stored in cal.ini and val.ini. Default value is %Y-%m-%d. ONLY required
when cal.ini or val.ini is provided.

gof.leg logical, indicating if several numerical goodness-of-fit values have to be com-
puted between sim and obs, and plotted as a legend on the graph. If gof.leg=TRUE
(default value), then x is considered as observed and y as simulated values
(for some gof functions this is important). This legend is ONLY plotted when
plot.type="single"

gof.digits OPTIONAL, only used when gof.leg=TRUE. Decimal places used for rounding
the goodness-of-fit indexes.

gofs character, with one or more strings indicating the goodness-of-fit measures to be
shown in the legend of the plot when gof.leg=TRUE.
Possible values are in c("ME", "MAE", "MSE", "RMSE", "NRMSE", "PBIAS",
"RSR", "rSD", "NSE", "mNSE", "rNSE", "d", "md", "rd", "cp", "r", "R2",
"bR2", "KGE", "VE").

legend vector of length 2 to appear in the legend.
leg.cex numeric, indicating the character expansion factor *relative* to current ’par("cex")’.

Used for text, and provides the default for ’pt.cex’ and ’title.cex’. Default value
= 1
So far, it controls the expansion factor of the ’GoF’ legend and the legend refer-
ring to x and y

col character, with the colors of x and y

cex numeric, with the values controlling the size of text and symbols of x and y with
respect to the default

cex.axis numeric, with the magnification of axis annotation relative to ’cex’. See par.
cex.lab numeric, with the magnification to be used for x and y labels relative to the

current setting of ’cex’. See par.
lwd vector with the line width of x and y

lty vector with the line type of x and y

pch vector with the type of symbol for x and y. (e.g.: 1: white circle; 9: white
rhombus with a cross inside)

pt.style Character, indicating if the 2 ts have to be plotted as lines or bars. Valid values
are:
-) ts : (default) each ts is plotted as a lines along the x axis
-) bar: the 2 series are plotted as a barplot.

add logical indicating if other plots will be added in further calls to this function.
-) FALSE => the plot and the legend are plotted on the same graph
-) TRUE => the legend is plotted in a new graph, usually when called from another
function (e.g.: ggof)

... further arguments passed to plot.zoo function for plotting x, or from other
methods

plotbands 99

Note

It requires the package hydroTSM.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

See Also

ggof, plot_pq

Examples

sim <- 2:11
obs <- 1:10
Not run:
plot2(sim, obs)

End(Not run)

##################
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Plotting 'sim' and 'obs' in 2 separate panels
plot2(x=obs, y=sim)

Plotting 'sim' and 'obs' in the same window
plot2(x=obs, y=sim, plot.type="single")

plotbands Plot a ts with observed values and two confidence bounds

Description

It plots a ts with observed values and two confidence bounds. Optionally can also add a simulated
time series, in order to be compared with ’x’.

100 plotbands

Usage

plotbands(x, lband, uband, sim,
dates, date.fmt="%Y-%m-%d",
gof.leg= TRUE, gof.digits=2,
legend=c("Obs", "Sim", "95PPU"), leg.cex=1,
bands.col="lightblue", border= NA,
tick.tstep= "auto", lab.tstep= "auto", lab.fmt=NULL,
cal.ini=NA, val.ini=NA,
main="Confidence Bounds for 'x'",
xlab="Time", ylab="Q, [m3/s]", ylim,
col=c("black", "blue"), type= c("lines", "lines"),
cex= c(0.5, 0.5), cex.axis=1.2, cex.lab=1.2,
lwd=c(0.6, 1), lty=c(3, 4), pch=c(1,9), ...)

Arguments

x zoo or xts object with the observed values.
lband zoo or xts object with the values of the lower band.
uband zoo or xts object with the values of the upper band.
sim OPTIONAL. zoo or xts object with the simulated values.
dates OPTIONAL. Date, factor, or character object indicating the dates that will be

assigned to x, lband, uband, and sim (when provided).
If dates is a factor or character vector, its values are converted to dates using
the date format specified by date.fmt.
When x, lband, uband, and sim are already of zoo class, the values provided
by dates over-write the original dates of the objects.

date.fmt OPTIONAL. Character indicating the format in which the dates entered are
stored in cal.ini and val.ini. See format in as.Date.
Default value is %Y-%m-%d
ONLY required when cal.ini, val.ini or dates is provided.

gof.leg logical indicating if the p-factor and r-factor have to be computed and plotted as
legends on the graph.

gof.digits OPTIONAL, numeric. Only used when gof.leg=TRUE. Decimal places used
for rounding the goodness-of-fit indexes

legend OPTIONAL. logical or character vector of length 3 with the strings that will be
used for the legend of the plot.
-) When legend is a character vector, the first element is used for labelling
the observed series, the second for labelling the simulated series and the third
one for the predictive uncertainty bounds. Default value is c("obs", "sim",
"95PPU")
-) When legend=FALSE, the legend is not drawn.

leg.cex OPTIONAL. numeric. Used for the GoF legend. Character expansion factor
relative to current ’par("cex")’. Used for text, and provides the default for
’pt.cex’ and ’title.cex’. Default value is 1.

bands.col See polygon. Color to be used for filling the area between the lower and upper
uncertainty bound.

plotbands 101

border See polygon. The color to draw the border. The default, ’NULL’, means to use
’par("fg")’. Use ’border = NA’ to omit borders.

tick.tstep character, indicating the time step that have to be used for putting the ticks on the
time axis. Valid values are: auto, years, months,weeks, days, hours, minutes,
seconds.

lab.tstep character, indicating the time step that have to be used for putting the labels
on the time axis. Valid values are: auto, years, months,weeks, days, hours,
minutes, seconds.

lab.fmt Character indicating the format to be used for the label of the axis. See lab.fmt
in drawTimeAxis.

cal.ini OPTIONAL. Character with the date in which the calibration period started.
ONLY used for drawing a vertical red line at this date.

val.ini OPTIONAL. Character with the date in which the validation period started.
ONLY used for drawing a vertical red line at this date.

main an overall title for the plot: see ’title’

xlab a title for the x axis: see ’title’

ylab a title for the y axis: see ’title’

ylim the y limits of the plot. See plot.default.

col colors to be used for plotting the x and sim ts.

type character. Indicates if the observed and simulated series have to be plotted as
lines or points. Possible values are:
-) lines : the observed/simulated series are plotted as lines
-) points: the observed/simulated series are plotted as points

cex See code plot.default. A numerical vector giving the amount by which plotting
characters and symbols should be scaled relative to the default.
This works as a multiple of ’par("cex")’. ’NULL’ and ’NA’ are equivalent to
’1.0’. Note that this does not affect annotation.

cex.axis magnification of axis annotation relative to ’cex’.

cex.lab Magnification to be used for x and y labels relative to the current setting of ’cex’.
See ’?par’.

lwd See plot.default. The line width, see ’par’.

lty See plot.default. The line type, see ’par’.

pch numeric, with the type of symbol for x and y. (e.g.: 1: white circle; 9: white
rhombus with a cross inside)

... further arguments passed to the points function for plotting x, or from other
methods

Note

It requires the hydroTSM package

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

102 plotbandsonly

See Also

pfactor, rfactor

Examples

Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Selecting only the daily values belonging to the year 1961
obs <- window(obs, end=as.Date("1961-12-31"))

Generating the lower and upper uncertainty bounds
lband <- obs - 5
uband <- obs + 5

Not run:
plotbands(obs, lband, uband)

End(Not run)

Randomly generating a simulated time series
sim <- obs + rnorm(length(obs), mean=3)

Not run:
plotbands(obs, lband, uband, sim)

End(Not run)

plotbandsonly Adds uncertainty bounds to an existing plot.

Description

Adds a polygon representing uncertainty bounds to an existing plot.

Usage

plotbandsonly(lband, uband, dates, date.fmt="%Y-%m-%d",
bands.col="lightblue", border= NA, ...)

Arguments

lband zoo or xts object with the values of the lower band.

uband zoo or xts object with the values of the upper band.

plotbandsonly 103

dates OPTIONAL. Date, factor, or character object indicating the dates that will be
assigned to lband and uband.
If dates is a factor or character vector, its values are converted to dates using
the date format specified by date.fmt.
When lband and uband are already of zoo class, the values provided by dates
over-write the original dates of the objects.

date.fmt OPTIONAL. Character indicating the format of dates. See format in as.Date.

bands.col See polygon. Color to be used for filling the area between the lower and upper
uncertainty bound.

border See polygon. The color to draw the border. The default, ’NULL’, means to use
’par("fg")’. Use ’border = NA’ to omit borders.

... further arguments passed to the polygon function for plotting the bands, or from
other methods

Note

It requires the hydroTSM package

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

See Also

pfactor, rfactor

Examples

Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Selecting only the daily values belonging to the year 1961
obs <- window(obs, end=as.Date("1961-12-31"))

Generating the lower and upper uncertainty bounds
lband <- obs - 5
uband <- obs + 5

Not run:
plot(obs, type="n")
plotbandsonly(lband, uband)
points(obs, col="blue", cex=0.6, type="o")

End(Not run)

104 R2

R2 Coefficient of determination

Description

coefficient of determination between sim and obs, with treatment of missing values.

Usage

R2(sim, obs, ...)

Default S3 method:
R2(sim, obs, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
R2(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
R2(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
R2(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

R2 105

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value numeric value to be added to both sim and obs when epsilon.type="otherValue".

Details

The coefficient of determination (R2) is the proportion of the variation in the dependent variable
that is predictable from the independent variable(s).

It is a statistic used in the context of statistical models whose main purpose is either the prediction of
future outcomes or the testing of hypotheses, on the basis of other related information. It provides
a measure of how well observed outcomes are replicated by the model, based on the proportion of
total variation of outcomes explained by the model.

The coefficient of determination is a statistical measure of how well the regression predictions
approximate the real data points. An R2 of 1 indicates that the regression predictions perfectly fit
the data.

Values of R2 outside the range 0 to 1 occur when the model fits the data worse than the worst
possible least-squares predictor (equivalent to a horizontal hyperplane at a height equal to the mean
of the observed data). This occurs when a wrong model was chosen, or nonsensical constraints
were applied by mistake.

Value

Coefficient of determination between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the coefficient of determination
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

106 R2

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Coefficient_of_determination

Box, G. E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407

Hahn, G. J. (1973). The coefficient of determination exposed. Chemtech, 3(10), 609-612. Aailable
online at: https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf.

Barrett, J. P. (1974). The coefficient of determination-some limitations. The American Statistician,
28(1), 19-20. doi:10.1080/00031305.1974.10479056.

See Also

cor

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
R2(sim, obs)

obs <- 1:10
sim <- 2:11
R2(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'R2' for the "best" (unattainable) case
R2(sim=sim, obs=obs)

##################
Example 3: R2 for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

https://en.wikipedia.org/wiki/Coefficient_of_determination
https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf

R2 107

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

R2(sim=sim, obs=obs)

##################
Example 4: R2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

R2(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
R2(sim=lsim, obs=lobs)

##################
Example 5: R2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

R2(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
R2(sim=lsim, obs=lobs)

##################
Example 6: R2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
R2(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
R2(sim=lsim, obs=lobs)

##################
Example 7: R2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

108 rd

fact <- 1/50
R2(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
R2(sim=lsim, obs=lobs)

##################
Example 8: R2 for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

R2(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
R2(sim=sim1, obs=obs1)

rd Relative Index of Agreement

Description

This function computes the Relative Index of Agreement (d) between sim and obs, with treatment
of missing values.
If x is a matrix or a data frame, a vector of the relative index of agreement among the columns is
returned.

Usage

rd(sim, obs, ...)

Default S3 method:
rd(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rd(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'

rd 109

rd(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'zoo'
rd(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by FUN without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying FUN, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying FUN.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying FUN.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

110 rd

Details

rd = 1−

∑N
i=1

(
Oi−Si

Oi

)2

∑N
i=1

(
|Si−Ō|+|Oi−Ō|

Ō

)2

It varies between 0 and 1. A value of 1 indicates a perfect match, and 0 indicates no agreement at
all.

Value

Relative index of agreement between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the relative index of agreement
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation.

If some of the observed values are equal to zero (at least one of them), this index can not be com-
puted.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Krause, P., Boyle, D. P., and Base, F.: Comparison of different efficiency criteria for hydrological
model assessment, Adv. Geosci., 5, 89-97, 2005

Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184–194

Willmott, C. J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460

Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J.
O’Donnell, and C. M. Rowe (1985), Statistics for the Evaluation and Comparison of Models, J.
Geophys. Res., 90(C5), 8995-9005

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233–241

rd 111

See Also

d, md, dr, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rd(sim, obs)

obs <- 1:10
sim <- 2:11
rd(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rd' for the "best" (unattainable) case
rd(sim=sim, obs=obs)

##################
Example 3: rd for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rd(sim=sim, obs=obs)

##################
Example 4: rd for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rd(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rd(sim=lsim, obs=lobs)

112 rd

##################
Example 5: rd for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rd(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rd(sim=lsim, obs=lobs)

##################
Example 6: rd for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rd(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rd(sim=lsim, obs=lobs)

##################
Example 7: rd for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rd(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rd(sim=lsim, obs=lobs)

##################
Example 8: rd for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rd(sim=sim, obs=obs, fun=fun1)

rfactor 113

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rd(sim=sim1, obs=obs1)

rfactor R-factor

Description

R-factor represents the average width of the given uncertainty bounds divided by the standard de-
viation of the observations.

Ideally, i.e., with a combination of model structure and parameter values that perfectly represents
the catchment under study, and in absence of measurement errors and other additional sources of
uncertainty, all the simulated values should be in a perfect match with the observations, leading to
a P-factor equal to 1, and an R-factor equal to zero. However, in real-world applications we aim at
encompassing as much observations as possible within the given uncertainty bounds (P-factor close
to 1) while keeping the width of the uncertainty bounds as small as possible (R-factor close to 0),
in order to avoid obtaining a good bracketing of observations at expense of uncertainty bounds too
wide to be informative for the decision-making process.

Usage

rfactor(x, ...)

Default S3 method:
rfactor(x, lband, uband, na.rm=TRUE, ...)

S3 method for class 'data.frame'
rfactor(x, lband, uband, na.rm=TRUE, ...)

S3 method for class 'matrix'
rfactor(x, lband, uband, na.rm=TRUE, ...)

Arguments

x ts or zoo object with the observed values.

lband numeric, ts or zoo object with the values of the lower uncertainty bound

uband numeric, ts or zoo object with the values of the upper uncertainty bound

na.rm logical value indicating whether ’NA’ values should be stripped before the com-
putation proceeds.

... further arguments passed to or from other methods.

114 rfactor

Value

Average width of the given uncertainty bounds, given by lband and uband, divided by the standard
deviation of the observations x

If sim and obs are matrixes, the returned value is a vector, with the R-factor between each column
of sim and obs.

Note

So far, the argument na.rm is not being taken into account.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Abbaspour, K. C., M. Faramarzi, S. S. Ghasemi, and H. Yang (2009), Assessing the impact of cli-
mate change on water resources in Iran, Water Resour. Res., 45(10), W10,434, doi:10.1029/2008WR007615

Abbaspour, K. C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, and R. Srini-
vasan (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using
SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014

Schuol, J., K. Abbaspour, R. Srinivasan, and H. Yang (2008b), Estimation of freshwater availability
in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-
2), 30, doi:10.1016/j.jhydrol.2007.12.025

Abbaspour, C., Karim (2007), User manual for SWAT-CUP, SWAT calibration and uncertainty anal-
ysis programs, 93pp, Eawag: Swiss Fed. Inst. of Aquat. Sci. and Technol. Dubendorf, Switzerland.

See Also

pfactor, plotbands

Examples

x <- 1:10
lband <- x - 0.1
uband <- x + 0.1
rfactor(x, lband, uband)

lband <- x - rnorm(10)
uband <- x + rnorm(10)
rfactor(x, lband, uband)

#############
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)

rmse 115

obs <- EgaEnEstellaQts

Selecting only the daily values belonging to the year 1961
obs <- window(obs, end=as.Date("1961-12-31"))

Generating the lower and upper uncertainty bounds, centred at the observations
lband <- obs - 5
uband <- obs + 5

rfactor(obs, lband, uband)

Randomly generating the lower and upper uncertainty bounds
uband <- obs + rnorm(length(obs))
lband <- obs - rnorm(length(obs))

rfactor(obs, lband, uband)

rmse Root Mean Square Error

Description

Root Mean Square Error (RMSE) between sim and obs, in the same units of sim and obs, with
treatment of missing values.
RMSE gives the standard deviation of the model prediction error. A smaller value indicates better
model performance.

Usage

rmse(sim, obs, ...)

Default S3 method:
rmse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rmse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rmse(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'

116 rmse

rmse(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Root Mean Square Error.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

rmse =

√√√√ 1

N

N∑
i=1

(Si −Oi)
2

rmse 117

Value

Root mean square error (rmse) between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the RMSE between each column of
sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Root_mean_square_deviation

See Also

pbias, pbiasfdc, mae, mse, ubRMSE, nrmse, ssq, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rmse(sim, obs)

obs <- 1:10
sim <- 2:11
rmse(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rmse' for the "best" (unattainable) case
rmse(sim=sim, obs=obs)

##################

https://en.wikipedia.org/wiki/Root_mean_square_deviation

118 rmse

Example 3: rmse for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rmse(sim=sim, obs=obs)

##################
Example 4: rmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rmse(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rmse(sim=lsim, obs=lobs)

##################
Example 5: rmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rmse(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rmse(sim=lsim, obs=lobs)

##################
Example 6: rmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rmse(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rmse(sim=lsim, obs=lobs)

##################

rNSE 119

Example 7: rmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rmse(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rmse(sim=lsim, obs=lobs)

##################
Example 8: rmse for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rmse(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rmse(sim=sim1, obs=obs1)

rNSE Relative Nash-Sutcliffe efficiency

Description

Relative Nash-Sutcliffe efficiency between sim and obs, with treatment of missing values.

Usage

rNSE(sim, obs, ...)

Default S3 method:
rNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

120 rNSE

epsilon.value=NA)

S3 method for class 'matrix'
rNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
rNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
na.rm a logical value indicating whether ’NA’ should be stripped before the computa-

tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the relative Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any nummeric
value.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

rNSE 121

Details

rNSE = 1−
∑N

i=1 (Si−Oi

Oi
)2∑N

i=1 (Oi−Ō
Ō

)2

Value

Relative Nash-Sutcliffe efficiency between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the relative Nash-Sutcliffe efficiency
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

If some of the observed values are equal to zero (at least one of them), this index can not be com-
puted.

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Krause, P., Boyle, D. P., and Base, F.: Comparison of different efficiency criteria for hydrological
model assessment, Adv. Geosci., 5, 89-97, 2005

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241.

See Also

NSE, mNSE, wNSE, KGE, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rNSE(sim, obs)

obs <- 1:10
sim <- 2:11

122 rNSE

rNSE(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rNSE' for the "best" (unattainable) case
rNSE(sim=sim, obs=obs)

##################
Example 3: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rNSE(sim=sim, obs=obs)

##################
Example 4: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rNSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rNSE(sim=lsim, obs=lobs)

##################
Example 5: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rNSE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rNSE(sim=lsim, obs=lobs)

rPearson 123

##################
Example 6: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rNSE(sim=lsim, obs=lobs)

##################
Example 7: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rNSE(sim=lsim, obs=lobs)

##################
Example 8: rNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rNSE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rNSE(sim=sim1, obs=obs1)

rPearson Pearson correlation coefficient

Description

Pearson correlation coefficient between sim and obs, with treatment of missing values.

124 rPearson

Usage

rPearson(sim, obs, ...)

Default S3 method:
rPearson(sim, obs, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rPearson(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rPearson(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
rPearson(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).

rPearson 125

3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.

4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value numeric value to be added to both sim and obs when epsilon.type="otherValue".

Details

It is a wrapper to the cor function.

The Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correla-
tion between two sets of data.

It is the ratio between the covariance of two variables and the product of their standard deviations;
thus, it is essentially a normalized measurement of the covariance, such that the result always has a
value between -1 and 1. As with covariance itself, the measure can only reflect a linear correlation
of variables, and ignores many other types of relationships or correlations.

The correlation coefficient ranges from -1 to 1. An absolute value of exactly 1 implies that a linear
equation describes the relationship between sim and obs perfectly, with all data points lying on a
line. The correlation sign is determined by the regression slope: a value of +1 implies that all data
points lie on a line for which sim increases as obs increases, and vice versa for -1. A value of 0
implies that there is no linear dependency between the variables.

Value

Pearson correlation coefficient between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the Pearson correlation coefficient
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

126 rPearson

References

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722

Schober, P., Boer, C., Schwarte, L. A. (2018). Correlation coefficients: appropriate use and inter-
pretation. Anesthesia and Analgesia, 126(5), 1763-1768. doi:10.1213/ANE.0000000000002864

See Also

cor

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rPearson(sim, obs)

obs <- 1:10
sim <- 2:11
rPearson(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rPearson' for the "best" (unattainable) case
rPearson(sim=sim, obs=obs)

##################
Example 3: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rPearson(sim=sim, obs=obs)

##################
Example 4: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

rPearson 127

rPearson(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rPearson(sim=lsim, obs=lobs)

##################
Example 5: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rPearson(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rPearson(sim=lsim, obs=lobs)

##################
Example 6: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rPearson(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rPearson(sim=lsim, obs=lobs)

##################
Example 7: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rPearson(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rPearson(sim=lsim, obs=lobs)

##################

128 rSD

Example 8: rPearson for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rPearson(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rPearson(sim=sim1, obs=obs1)

rSD Ratio of Standard Deviations

Description

Ratio of standard deviations between sim and obs, with treatment of missing values.

Usage

rSD(sim, obs, ...)

Default S3 method:
rSD(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rSD(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rSD(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
rSD(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

rSD 129

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

rSD =
sdsim
sdobs

Value

Ratio of standard deviations between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the ratio of standard deviations
between each column of sim and obs.

130 rSD

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

See Also

sd, rsr, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rSD(sim, obs)

obs <- 1:10
sim <- 2:11
rSD(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rSD' for the "best" (unattainable) case
rSD(sim=sim, obs=obs)

##################
Example 3: rSD for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rSD(sim=sim, obs=obs)

rSD 131

##################
Example 4: rSD for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rSD(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rSD(sim=lsim, obs=lobs)

##################
Example 5: rSD for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rSD(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSD(sim=lsim, obs=lobs)

##################
Example 6: rSD for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rSD(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSD(sim=lsim, obs=lobs)

##################
Example 7: rSD for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rSD(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)

132 rSpearman

lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSD(sim=lsim, obs=lobs)

##################
Example 8: rSD for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rSD(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rSD(sim=sim1, obs=obs1)

rSpearman Spearman’s rank correlation coefficient

Description

Spearman’s rank correlation coefficient between sim and obs, with treatment of missing values.

Usage

rSpearman(sim, obs, ...)

Default S3 method:
rSpearman(sim, obs, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rSpearman(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
rSpearman(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
rSpearman(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

rSpearman 133

Arguments

sim numeric, zoo, matrix or data.frame with simulated values
obs numeric, zoo, matrix or data.frame with observed values
na.rm a logical value indicating whether ’NA’ should be stripped before the computa-

tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value numeric value to be added to both sim and obs when epsilon.type="otherValue".

Details

It is a wrapper to the cor function.

The Spearman’s rank correlation coefficient is a nonparametric measure of rank correlation (statis-
tical dependence between the rankings of two variables).

It assesses how well the relationship between two variables can be described using a monotonic
function.

The Spearman correlation between two variables is equal to the Pearson correlation between the
rank values of those two variables. However, while Pearson’s correlation assesses linear relation-
ships, Spearman’s correlation assesses monotonic relationships (whether linear or not).

If there are no repeated data values, a perfect Spearman correlation of +1 or -1 occurs when each of
the variables is a perfect monotone function of the other.

134 rSpearman

Value

Spearman’s rank correlation coefficient between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the Spearman’s rank correlation
coefficient between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J.
Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp.
45-58). Appleton-Century-Crofts. doi:10.1037/11491-005

See Also

cor

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rSpearman(sim, obs)

obs <- 1:10
sim <- 2:11
rSpearman(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

rSpearman 135

Computing the 'rSpearman' for the "best" (unattainable) case
rSpearman(sim=sim, obs=obs)

##################
Example 3: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rSpearman(sim=sim, obs=obs)

##################
Example 4: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rSpearman(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rSpearman(sim=lsim, obs=lobs)

##################
Example 5: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rSpearman(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSpearman(sim=lsim, obs=lobs)

##################
Example 6: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
rSpearman(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)

136 rsr

lobs <- log(obs+eps)
rSpearman(sim=lsim, obs=lobs)

##################
Example 7: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rSpearman(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rSpearman(sim=lsim, obs=lobs)

##################
Example 8: rSpearman for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rSpearman(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rSpearman(sim=sim1, obs=obs1)

rsr Ratio of RMSE to the standard deviation of the observations

Description

Ratio of the RMSE between simulated and observed values to the standard deviation of the obser-
vations.

Usage

rsr(sim, obs, ...)

Default S3 method:
rsr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

rsr 137

S3 method for class 'data.frame'
rsr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
rsr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
rsr(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.

138 rsr

-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Value

Ratio of RMSE to the standard deviation of the observations.

If sim and obs are matrixes, the returned value is a vector, with the RSR between each column of
sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model
evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transac-
tions of the ASABE. 50(3):885-900

See Also

sd, rSD, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
rsr(sim, obs)

obs <- 1:10
sim <- 2:11
rsr(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

rsr 139

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rsr' for the "best" (unattainable) case
rsr(sim=sim, obs=obs)

##################
Example 3: rsr for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

rsr(sim=sim, obs=obs)

##################
Example 4: rsr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

rsr(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
rsr(sim=lsim, obs=lobs)

##################
Example 5: rsr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

rsr(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rsr(sim=lsim, obs=lobs)

##################
Example 6: rsr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01

140 sKGE

rsr(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rsr(sim=lsim, obs=lobs)

##################
Example 7: rsr for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
rsr(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
rsr(sim=lsim, obs=lobs)

##################
Example 8: rsr for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

rsr(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
rsr(sim=sim1, obs=obs1)

sKGE Split Kling-Gupta Efficiency

Description

Split Kling-Gupta efficiency between sim and obs.

This goodness-of-fit measure was developed by Fowler et al. (2018), as a modification to the origi-
nal Kling-Gupta efficiency (KGE) proposed by Gupta et al. (2009). See Details.

Usage

sKGE(sim, obs, ...)

sKGE 141

Default S3 method:
sKGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012"),

start.month=1, out.PerYear=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'data.frame'
sKGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012"),

start.month=1, out.PerYear=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'matrix'
sKGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012"),

start.month=1, out.PerYear=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

S3 method for class 'zoo'
sKGE(sim, obs, s=c(1,1,1), na.rm=TRUE, method=c("2009", "2012"),

start.month=1, out.PerYear=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),

epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

s numeric of length 3, representing the scaling factors to be used for re-scaling
the criteria space before computing the Euclidean distance from the ideal point
c(1,1,1), i.e., s elements are used for adjusting the emphasis on different com-
ponents. The first elements is used for rescaling the Pearson product-moment
correlation coefficient (r), the second element is used for rescaling Alpha and
the third element is used for re-scaling Beta

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

method character, indicating the formula used to compute the variability ratio in the
Kling-Gupta efficiency. Valid values are:
-) 2009: the variability is defined as ‘Alpha’, the ratio of the standard deviation
of sim values to the standard deviation of obs. This is the default option. See
Gupta et al. (2009).
-) 2012: the variability is defined as ‘Gamma’, the ratio of the coefficient of
variation of sim values to the coefficient of variation of obs. See Kling et al.
(2012).

142 sKGE

start.month [OPTIONAL]. Only used when the (hydrological) year of interest is different
from the calendar year.
numeric in [1:12] indicating the starting month of the (hydrological) year. Nu-
meric values in [1, 12] represent months in [January, December]. By default
start.month=1.

out.PerYear logical, indicating the whether the output of the function has to include the
Kling-Gupta efficiencies obtained for the individual years in sim and obs or
not.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.
epsilon.type argument used to define a numeric value to be added to both sim and obs before

applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

Garcia et al. (2017) tested different objective functions and found that the mean value of the KGE
applied to the streamflows (i.e., KGE(Q)) and the KGE applied to the inverse of the streamflows
(i.e., KGE(1/Q) is able to provide a an aceptable representation of low-flow indices important for
water management. They also found that KGE applied to a transformation of streamflow values
(e.g., log) is inadequate to capture low-flow indices important for water management.

The robustness of their findings depends more on the climate variability rather than the objective
function, and they are insensitive to the hydrological model used in the evaluation.

sKGE 143

Traditional Kling-Gupta efficiencies (Gupta et al., 2009; Kling et al., 2012) range from -Inf to 1
and, therefore, KGElf should also range from -Inf to 1. Essentially, the closer to 1, the more similar
sim and obs are.

Knoben et al. (2019) showed that traditional Kling-Gupta (Gupta et al., 2009; Kling et al., 2012)
values greater than -0.41 indicate that a model improves upon the mean flow benchmark, even if the
model’s KGE value is negative.

Value

If out.PerYear=FALSE: numeric with the Split Kling-Gupta efficiency between sim and obs. If sim
and obs are matrices, the output value is a vector, with the Split Kling-Gupta efficiency between
each column of sim and obs

If out.PerYear=FALSE: a list of two elements:

sKGE.value numeric with the Split Kling-Gupta efficiency. If sim and obs are matrices,
the output value is a vector, with the Split Kling-Gupta efficiency between each
column of sim and obs

KGE.PerYear numeric with the Kling-Gupta efficincies obtained for the individual years in
sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano-Bigiarini <mzb.devel@gmail.com>

References

Fowler, K.; Coxon, G.; Freer, J.; Peel, M.; Wagener, T.; Western, A.; Woods, R.; Zhang, L. (2018).
Simulating runoff under changing climatic conditions: A framework for model improvement. Water
Resources Research, 54(12), 812-9832. doi:10.1029/2018WR023989.

Gupta, H. V.; Kling, H.; Yilmaz, K. K.; Martinez, G. F. (2009). Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling. Journal of
hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an en-
semble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Pushpalatha, R., Perrin, C., Le Moine, N. and Andreassian, V. (2012). A review of efficiency criteria
suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved
overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044.

144 sKGE

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the sKGE
criterion. doi:10.5194/hess-22-4583-2018

Knoben, W. J.; Freer, J. E.; Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash-
Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-
4331. doi:10.5194/hess-23-4323-2019.

See Also

KGE, KGElf, KGEnp, gof, ggof

Examples

##################
Example 1: Looking at the difference between 'method=2009' and 'method=2012'
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Simulated daily time series, initially equal to twice the observed values
sim <- 2*obs

KGE 2009
KGE(sim=sim, obs=obs, method="2009", out.type="full")

KGE 2012
KGE(sim=sim, obs=obs, method="2012", out.type="full")

sKGE (Garcia et al., 2017):
sKGE(sim=sim, obs=obs, method="2012")

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'sKGE' for the "best" (unattainable) case
sKGE(sim=sim, obs=obs)

##################
Example 3: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

sKGE 145

sKGE(sim=sim, obs=obs)

##################
Example 4: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

sKGE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
sKGE(sim=lsim, obs=lobs)

##################
Example 5: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

sKGE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
sKGE(sim=lsim, obs=lobs)

##################
Example 6: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
sKGE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
sKGE(sim=lsim, obs=lobs)

##################
Example 7: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
sKGE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

146 ssq

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
sKGE(sim=lsim, obs=lobs)

##################
Example 8: sKGE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

sKGE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
sKGE(sim=sim1, obs=obs1)

ssq Sum of the Squared Residuals

Description

Sum of the Squared Residuals between sim and obs, with treatment of missing values. Its units are
the squared measurement units of sim and obs.

Usage

ssq(sim, obs, ...)

Default S3 method:
ssq(sim, obs, na.rm = TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
ssq(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
ssq(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
ssq(sim, obs, na.rm=TRUE, fun=NULL, ...,

ssq 147

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

ssr =

N∑
i=1

(Si −Oi)
2

148 ssq

Value

Sum of the squared residuals between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the SSR between each column of
sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

See Also

pbias, pbiasfdc, mae, mse, rmse, ubRMSE, nrmse, gof, ggof

Examples

obs <- 1:10
sim <- 1:10
ssq(sim, obs)

obs <- 1:10
sim <- 2:11
ssq(sim, obs)

##################
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'rNSeff' for the "best" (unattainable) case
ssq(sim=sim, obs=obs)

Randomly changing the first 2000 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

Computing the new 'rNSeff'
ssq(sim=sim, obs=obs)

ubRMSE 149

ubRMSE Unbiased Root Mean Square Error

Description

unbiased Root Mean Square Error (ubRMSE) between sim and obs, in the same units of sim and
obs, with treatment of missing values.

ubRMSE was introduced by Entekhabi et al. (2010) to improve the evaluation of the temporal dy-
namic of volumentric soil moisture, by removing from the traditional RMSE the mean bias error
caused by the mistmatch between the spatial representativeness of in situ soil moisture and the cor-
responding gridded values.

A smaller value indicates better model performance.

Usage

ubRMSE(sim, obs, ...)

Default S3 method:
ubRMSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
ubRMSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
ubRMSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
ubRMSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.

150 ubRMSE

When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the Root Mean Square Error.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value numeric value to be added to both sim and obs when epsilon.type="otherValue".

Details

The traditional root mean square error (RMSE) is severely compromised if there are biases in either
the mean or the amplitude of fluctuations of the simulated values. If it can be estimated reliably, the
mean-bias (BIAS) can easily be removed from RMSE, leading to the unbiased RMSE:

ubRMSE =
√
RMSE2 −BIAS2

Value

Unbiased Root mean square error (ubRMSE) between sim and obs.

If sim and obs are matrixes or data.frames, the returned value is a vector, with the ubRMSE between
each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

ubRMSE 151

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Entekhabi, D., Reichle, R. H., Koster, R. D., & Crow, W. T. (2010). Performance metrics for soil
moisture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840.
doi: 10.1175/2010JHM1223.1

Ling, X., Huang, Y., Guo, W., Wang, Y., Chen, C., Qiu, B., Ge, J., Qin, K., Xue, Y., Peng, J. (2021).
Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ ob-
servations over China. Hydrology and Earth System Sciences, 25(7), 4209-4229. doi:10.5194/hess-
25-4209-2021

See Also

pbias, pbiasfdc, mae, mse, rmse, nrmse, ssq, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
ubRMSE(sim, obs)

obs <- 1:10
sim <- 2:11
ubRMSE(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'ubRMSE' for the "best" (unattainable) case
ubRMSE(sim=sim, obs=obs)

##################
Example 3: ubRMSE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').

152 ubRMSE

sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

ubRMSE(sim=sim, obs=obs)

##################
Example 4: ubRMSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

ubRMSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
ubRMSE(sim=lsim, obs=lobs)

##################
Example 5: ubRMSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

ubRMSE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
ubRMSE(sim=lsim, obs=lobs)

##################
Example 6: ubRMSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
ubRMSE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
ubRMSE(sim=lsim, obs=lobs)

##################
Example 7: ubRMSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50

valindex 153

ubRMSE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
ubRMSE(sim=lsim, obs=lobs)

##################
Example 8: ubRMSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

ubRMSE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
ubRMSE(sim=sim1, obs=obs1)

valindex Valid Indexes

Description

Identify the indexes that are simultaneously valid (not missing) in sim and obs.

Usage

valindex(sim, obs, ...)

Default S3 method:
valindex(sim, obs, ...)

S3 method for class 'matrix'
valindex(sim, obs, ...)

Arguments

sim zoo, xts, numeric, matrix or data.frame with simulated values

obs zoo, xts, numeric, matrix or data.frame with observed values

... further arguments passed to or from other methods.

Value

A vector with the indexes that are simultaneously valid (not missing) in obs and sim.

154 ve

Note

This function is used in the functions of this package for removing missing values from the observed
and simulated time series.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

See Also

is.na, which

Examples

sim <- 1:5
obs <- c(1, NA, 3, NA, 5)
valindex(sim, obs)

ve Volumetric Efficiency

Description

Volumetric efficiency between sim and obs, with treatment of missing values.

Usage

VE(sim, obs, ...)

Default S3 method:
VE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'data.frame'
VE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
VE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
VE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

ve 155

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing this goodness-of-fit index.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying fun.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the the mean observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

V E = 1−
∑N

i=1 |Si −Oi|∑N
i=1 (Oi)

Volumetric efficiency was proposed in order to circumvent some problems associated to the Nash-
Sutcliffe efficiency. It ranges from 0 to 1 and represents the fraction of water delivered at the proper
time; its compliment represents the fractional volumetric mistmach (Criss and Winston, 2008).

156 ve

Value

Volumetric efficiency between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the Volumetric efficiency between
each column of sim and obs.

Note

obs and sim have to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Criss, R. E. and Winston, W. E. (2008), Do Nash values have value? Discussion and alternate
proposals. Hydrological Processes, 22: 2723-2725. doi: 10.1002/hyp.7072

See Also

gof, ggof, NSE

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
VE(sim, obs)

obs <- 1:10
sim <- 2:11
VE(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'VE' for the "best" (unattainable) case
VE(sim=sim, obs=obs)

ve 157

##################
Example 3: VE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

VE(sim=sim, obs=obs)

##################
Example 4: VE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

VE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
VE(sim=lsim, obs=lobs)

##################
Example 5: VE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

VE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
VE(sim=lsim, obs=lobs)

##################
Example 6: VE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
VE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
VE(sim=lsim, obs=lobs)

158 wNSE

##################
Example 7: VE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
VE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
VE(sim=lsim, obs=lobs)

##################
Example 8: VE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

VE(sim=sim, obs=obs, fun=fun1)

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
VE(sim=sim1, obs=obs1)

wNSE Weighted Nash-Sutcliffe efficiency

Description

Weighted Nash-Sutcliffe efficiency between sim and obs, with treatment of missing values.

This goodness-of-fit measure was proposed by Hundecha and Bardossy (2004) to put special focus
on high values.

Usage

wNSE(sim, obs, ...)

Default S3 method:
wNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

wNSE 159

S3 method for class 'data.frame'
wNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'matrix'
wNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

S3 method for class 'zoo'
wNSE(sim, obs, na.rm=TRUE, fun=NULL, ...,

epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)

Arguments

sim numeric, zoo, matrix or data.frame with simulated values

obs numeric, zoo, matrix or data.frame with observed values

na.rm a logical value indicating whether ’NA’ should be stripped before the computa-
tion proceeds.
When an ’NA’ value is found at the i-th position in obs OR sim, the i-th value
of obs AND sim are removed before the computation.

fun function to be applied to sim and obs in order to obtain transformed values
thereof before computing the weighted Nash-Sutcliffe efficiency.
The first argument MUST BE a numeric vector with any name (e.g., x), and
additional arguments are passed using

... arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type argument used to define a numeric value to be added to both sim and obs before
applying FUN.
It is was designed to allow the use of logarithm and other similar functions that
do not work with zero values.
Valid values of epsilon.type are:
1) "none": sim and obs are used by fun without the addition of any numeric
value. This is the default option.
2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is
added to both sim and obs before applying fun, as described in Pushpalatha et
al. (2012).
3) "otherFactor": the numeric value defined in the epsilon.value argument
is used to multiply the mean of the observed values, instead of the one hundredth
(1/100) described in Pushpalatha et al. (2012). The resulting value is then added
to both sim and obs, before applying fun.
4) "otherValue": the numeric value defined in the epsilon.value argument
is directly added to both sim and obs, before applying fun.

epsilon.value -) when epsilon.type="otherValue" it represents the numeric value to be
added to both sim and obs before applying fun.

160 wNSE

-) when epsilon.type="otherFactor" it represents the numeric factor used to
multiply the mean of the observed values, instead of the one hundredth (1/100)
described in Pushpalatha et al. (2012). The resulting value is then added to both
sim and obs before applying fun.

Details

wNSE = 1−
∑N

i=1Oi ∗ (Si −Oi)
2∑N

i=1Oi ∗ (Oi − Ō)2

Value

Weighted Nash-Sutcliffe efficiency between sim and obs.

If sim and obs are matrixes, the returned value is a vector, with the relative Nash-Sutcliffe efficiency
between each column of sim and obs.

Note

obs and sim has to have the same length/dimension

The missing values in obs and sim are removed before the computation proceeds, and only those
positions with non-missing values in obs and sim are considered in the computation

If some of the observed values are equal to zero (at least one of them), this index can not be com-
puted.

Author(s)

sluedtke (github user)

References

Nash, J.E. and J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1: A discus-
sion of principles, J. Hydrol. 10 (1970), pp. 282-290. doi:10.1016/0022-1694(70)90255-6

Hundecha, Y., Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff gener-
ation of a river basin through parameter regionalization of a watershed model. Journal of hydrology,
292(1-4), 281-295. doi:10.1016/j.jhydrol.2004.01.002

Hundecha, Y., Ouarda, T. B., Bardossy, A. (2008). Regional estimation of parameters of a rainfall-
runoff model at ungauged watersheds using the ’spatial’ structures of the parameters within a canon-
ical physiographic-climatic space. Water Resources Research, 44(1). doi:10.1029/2006WR005439

Hundecha, Y. and Merz, B. (2012), Exploring the Relationship between Changes in Climate and
Floods Using a Model-Based Analysis, Water Resour. Res., 48(4), 1-21, doi:10.1029/2011WR010527.

wNSE 161

See Also

NSE, rNSE, mNSE, KGE, gof, ggof

Examples

##################
Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
wNSE(sim, obs)

obs <- 1:10
sim <- 2:11
wNSE(sim, obs)

##################
Example 2:
Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

Generating a simulated daily time series, initially equal to the observed series
sim <- obs

Computing the 'wNSE' for the "best" (unattainable) case
wNSE(sim=sim, obs=obs)

##################
Example 3: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values.
This random noise has more relative importance for ow flows than
for medium and high flows.

Randomly changing the first 1826 elements of 'sim', by using a normal distribution
with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

wNSE(sim=sim, obs=obs)

##################
Example 4: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' during computations.

wNSE(sim=sim, obs=obs, fun=log)

Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
wNSE(sim=lsim, obs=lobs)

162 wNSE

##################
Example 5: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
during computations

wNSE(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
wNSE(sim=lsim, obs=lobs)

##################
Example 6: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and adding a user-defined constant
during computations

eps <- 0.01
wNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
wNSE(sim=lsim, obs=lobs)

##################
Example 7: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying (natural)
logarithm to 'sim' and 'obs' and using a user-defined factor
to multiply the mean of the observed values to obtain the constant
to be added to 'sim' and 'obs' during computations

fact <- 1/50
wNSE(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
wNSE(sim=lsim, obs=lobs)

##################
Example 8: wNSE for simulated values equal to observations plus random noise
on the first half of the observed values and applying a
user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

wNSE(sim=sim, obs=obs, fun=fun1)

wNSE 163

Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
wNSE(sim=sim1, obs=obs1)

Index

∗ datasets
EgaEnEstellaQts, 26

∗ dplot
ggof, 27
plot2, 96
plotbands, 99
plotbandsonly, 102

∗ math
br2, 7
cp, 12
d, 17
dr, 21
ggof, 27
gof, 32
KGE, 39
KGElf, 45
KGEnp, 51
mae, 56
md, 61
me, 64
mNSE, 68
mse, 72
nrmse, 76
NSE, 81
pbias, 85
pbiasfdc, 90
pfactor, 94
R2, 104
rd, 108
rfactor, 113
rmse, 115
rNSE, 119
rPearson, 123
rSD, 128
rSpearman, 132
rsr, 136
sKGE, 140
ssq, 146
ubRMSE, 149

valindex, 153
ve, 154
wNSE, 158

∗ package
hydroGOF-package, 2

as.Date, 27, 100, 103

br2, 3, 7, 31, 36

cor, 10, 106, 125, 126, 133, 134
cp, 3, 12, 31, 36

d, 3, 17, 24, 31, 36, 63, 111
dr, 3, 19, 21, 31, 36, 63, 111
drawTimeAxis, 29, 97, 101

EgaEnEstellaQts, 26

fdc, 92

ggof, 10, 19, 24, 27, 31, 36, 43, 49, 54, 58, 63,
66, 70, 74, 79, 83, 88, 92, 98, 99,
111, 117, 121, 130, 138, 144, 148,
151, 156, 161

gof, 10, 14, 19, 24, 31, 32, 43, 49, 54, 58, 63,
66, 70, 74, 79, 83, 88, 92, 111, 117,
121, 130, 138, 144, 148, 151, 156,
161

hydroGOF (hydroGOF-package), 2
hydroGOF-package, 2

is.na, 154

KGE, 3, 31, 33, 36, 39, 49, 54, 70, 83, 121, 144,
161

KGElf, 3, 31, 36, 43, 45, 54, 144
KGEnp, 3, 31, 36, 43, 49, 51, 144

lm, 10

164

INDEX 165

mae, 3, 31, 36, 56, 66, 74, 79, 88, 92, 117, 148,
151

md, 3, 19, 24, 31, 36, 61, 111
me, 3, 31, 36, 64
mNSE, 3, 31, 33, 36, 68, 83, 121, 161
mNSeff (mNSE), 68
mse, 3, 31, 36, 58, 72, 79, 88, 92, 117, 148, 151

nrmse, 3, 31, 33, 36, 58, 74, 76, 88, 92, 117,
148, 151

NSE, 3, 31, 36, 39, 70, 81, 121, 156, 161
NSeff (NSE), 81

par, 29, 98
pbias, 3, 31, 36, 58, 74, 79, 85, 88, 92, 117,

148, 151
pbiasfdc, 4, 31, 33, 36, 58, 74, 79, 88, 90,

117, 148, 151
pfactor, 94, 102, 103, 114
plot.default, 101
plot.zoo, 98
plot2, 31, 96
plot_pq, 99
plotbands, 96, 99, 114
plotbandsonly, 102
points, 101
polygon, 100, 101, 103

R2, 3, 10, 31, 36, 104
rd, 3, 19, 24, 31, 36, 63, 108
rfactor, 96, 102, 103, 113
rmse, 3, 31, 36, 58, 74, 79, 88, 92, 115, 148,

151
rNSE, 3, 31, 36, 70, 83, 119, 161
rNSeff (rNSE), 119
rPearson, 3, 10, 31, 36, 123
rSD, 3, 31, 36, 128, 138
rSpearman, 4, 10, 31, 36, 132
rsr, 3, 31, 36, 130, 136

sd, 130, 138
sKGE, 3, 31, 36, 43, 49, 54, 140
ssq, 58, 74, 79, 88, 92, 117, 146, 151

title, 97

ubRMSE, 3, 31, 36, 58, 74, 79, 88, 92, 117, 148,
149

valindex, 153

VE, 4, 31, 36
VE (ve), 154
ve, 154

which, 154
wNSE, 3, 31, 36, 70, 83, 121, 158

	hydroGOF-package
	br2
	cp
	d
	dr
	EgaEnEstellaQts
	ggof
	gof
	KGE
	KGElf
	KGEnp
	mae
	md
	me
	mNSE
	mse
	nrmse
	NSE
	pbias
	pbiasfdc
	pfactor
	plot2
	plotbands
	plotbandsonly
	R2
	rd
	rfactor
	rmse
	rNSE
	rPearson
	rSD
	rSpearman
	rsr
	sKGE
	ssq
	ubRMSE
	valindex
	ve
	wNSE
	Index

