Package 'multibias'

May 5, 2024

Type Package

Title Simultaneous Multi-Bias Adjustment

Version 1.5.0

Maintainer Paul Brendel pcbrendel@gmail.com>

Description Quantify the causal effect of a binary exposure on a binary outcome with adjustment for multiple biases. The functions can simultaneously adjust for any combination of uncontrolled confounding, exposure/outcome misclassification, and selection bias.

The underlying method generalizes the concept of combining inverse probability of selection weighting with predictive value weighting. Simultaneous multi-bias analysis can be used to enhance the validity and transparency of real-world evidence obtained from observational, longitudinal studies. Based on the work from Paul Brendel, Aracelis Torres, and Onyebuchi Arah (2023) <doi:10.1093/ije/dyad001>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 2.10)

RoxygenNote 7.2.3

Imports dplyr (>= 1.1.3), magrittr (>= 2.0.3), rlang (>= 1.1.1)

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

URL https://github.com/pcbrendel/multibias

BugReports https://github.com/pcbrendel/multibias/issues

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Paul Brendel [aut, cre, cph]

Repository CRAN

Date/Publication 2024-05-05 16:40:02 UTC

45

Index

R topics documented:

adjust_emc	3
J = =	4
	5
··· ·	7
adjust_multinom_uc_emc	8
3	0
3 = = = =	2
J = -	4
J =	6
J = =	7
y -	8
adjust_uc	
adjust_uc_emc 2	
adjust_uc_emc_sel 2	
adjust_uc_omc	
adjust_uc_omc_sel 2	5
adjust_uc_sel	7
df_emc	8
df_emc_omc	
df_emc_omc_source	
df_emc_sel	0
df_emc_sel_source	1
df_emc_source	
df_omc	
df_omc_sel	
df_omc_sel_source	3
df_omc_source	4
df_sel	4
df_sel_source	5
df_uc	6
df_uc_emc	6
df_uc_emc_sel	7
df_uc_emc_sel_source	8
df_uc_emc_source	8
df_uc_omc	9
df_uc_omc_sel	0
df_uc_omc_sel_source	0
df_uc_omc_source	1
df_uc_sel	2
df_uc_sel_source	2
df_uc_source	3
evans	4

adjust_emc 3

adjust_emc

Adust for exposure misclassification.

Description

adjust_emc returns the exposure-outcome odds ratio and confidence interval, adjusted for exposure misclassification.

Usage

```
adjust_emc(
  data,
  exposure,
  outcome,
  confounders = NULL,
  x_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

x_model_coefs The regression coefficients corresponding to the model: logit(P(X = 1)) =

 $\delta_0 + \delta_1 X^* + \delta_2 Y + \delta_{2+j} C_j$, where X represents the binary true exposure, X* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number

of measured confounders. The number of parameters is therefore 3 + j.

level Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

Details

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

4 adjust_emc_omc

Examples

```
adjust_emc(
  evans,
  exposure = "SMK",
  outcome = "CHD",
  confounders = "HPT",
  x_model_coefs = c(qlogis(0.01), log(6), log(2), log(2))
)
```

adjust_emc_omc

Adust for exposure misclassification and outcome misclassification.

Description

adjust_emc_omc returns the exposure-outcome odds ratio and confidence interval, adjusted for exposure misclassification and outcome misclassification.

Usage

```
adjust_emc_omc(
  data,
  exposure,
  outcome,
  confounders = NULL,
  x_model_coefs,
  y_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

x_model_coefs The regression coefficients corresponding to the model: logit(P(X = 1)) =

 $\delta_0 + \delta_1 X^* + \delta_2 Y^* + \delta_2 + j C_j$, where X represents the binary true exposure, X* is the binary misclassified exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders. The number of parameters is therefore

3 + j.

adjust_emc_sel 5

y_model_coefs The regression coefficients corresponding to the model: $logit(P(Y=1)) = |beta_0 + \beta_1 X + \beta_2 Y^* + \beta_2 + jC_j$, where Y represents the binary true exposure, X is the binary exposure, Y is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders. The number of parameters is therefore 3 + j.

Value from 0-1 representing the full range of the confidence interval. Default is 0.95.

Details

level

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_emc_omc(
   df_emc_omc,
   exposure = "Xstar",
   outcome = "Ystar",
   confounders = "C1",
   x_model_coefs = c(-2.15, 1.64, 0.35, 0.38),
   y_model_coefs = c(-3.10, 0.63, 1.60, 0.39)
)
```

adjust_emc_sel

Adust for exposure misclassification and selection bias.

Description

adjust_emc_sel returns the exposure-outcome odds ratio and confidence interval, adjusted for exposure misclassification and selection bias.

```
adjust_emc_sel(
  data,
  exposure,
  outcome,
```

6 adjust_emc_sel

```
confounders = NULL,
  x_model_coefs,
  s_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

x_model_coefs The regression coefficients corresponding to the model: logit(P(X = 1)) =

 $\delta_0 + \delta_1 X^* + \delta_2 Y + \delta_2 Y + jC_j$, where X represents the binary true exposure, X^* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number

of measured confounders. The number of parameters is therefore 3 + j.

s_model_coefs The regression coefficients corresponding to the model: logit(P(S=1)) =

 $\beta_0 + \beta_1 X^* + \beta_2 Y + \beta_2 Y + \beta_2 Z^j$, where S represents binary selection, X^* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of

measured confounders. The number of parameters is therefore 3 + j.

level Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

Details

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_emc_sel(
  df_emc_sel,
  exposure = "Xstar",
  outcome = "Y",
  confounders = "C1",
  x_model_coefs = c(-2.78, 1.62, 0.58, 0.34),
```

```
adjust_multinom_emc_omc
```

```
s_{model\_coefs} = c(0.04, 0.18, 0.92, 0.05)
```

adjust_multinom_emc_omc

Adust for exposure misclassification and outcome misclassification

Description

adjust_multinom_emc_omc returns the exposure-outcome odds ratio and confidence interval, adjusted for exposure misclassification and outcome misclassification.

Usage

```
adjust_multinom_emc_omc(
  data,
  exposure,
  outcome,
  confounders = NULL,
  x1y0_model_coefs,
  x0y1_model_coefs,
  x1y1_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

 $x1y0_model_coefs$

The regression coefficients corresponding to the model: $log(P(X=1,Y=0)/P(X=0,Y=0)) = \gamma_{1,0} + \gamma_{1,1}X^* + \gamma_{1,2}Y^* + \gamma_{1,2+j}C_j$, where X is the binary true exposure, Y is the binary true outcome, X* is the binary misclassified exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

x0y1_model_coefs

The regression coefficients corresponding to the model: $log(P(X=0,U=1)/P(X=0,U=0)) = \gamma_{2,0} + \gamma_{2,1}X^* + \gamma_{2,2}Y^* + \gamma_{2,2+j}C_j$, where X is the binary true exposure, Y is the binary true outcome, X* is the binary misclassified exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

x1y1_model_coefs

The regression coefficients corresponding to the model: $log(P(X=1,Y=1)/P(X=0,Y=0)) = \gamma_{3,0} + \gamma_{3,1}X^* + \gamma_{3,2}Y^* + \gamma_{3,2+j}C_j$, where X is the binary true exposure, Y is the binary true outcome, X* is the binary misclassified exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

level

Value from 0-1 representing the full range of the confidence interval. Default is 0.95.

Details

This function uses one bias model, a multinomial logistic regression model, to predict the exposure (X) and outcome (Y). If separate bias models for X and Y are desired, use adjust_emc_omc.

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_multinom_emc_omc(
    df_emc_omc,
    exposure = "Xstar",
    outcome = "Ystar",
    confounders = c("C1", "C2", "C3"),
    x1y0_model_coefs = c(-2.86, 1.63, 0.23, 0.37, -0.22, 0.87),
    x0y1_model_coefs = c(-3.26, 0.22, 1.60, 0.41, -0.93, 0.28),
    x1y1_model_coefs = c(-5.62, 1.83, 1.83, 0.74, -1.15, 1.19)
)
```

adjust_multinom_uc_emc

Adust for uncontrolled confounding and exposure misclassification.

Description

adjust_multinom_uc_emc returns the exposure-outcome odds ratio and confidence interval, adjusted for uncontrolled confounding and exposure misclassification.

Usage

```
adjust_multinom_uc_emc(
  data,
  exposure,
  outcome,
  confounders = NULL,
   x1u0_model_coefs,
  x0u1_model_coefs,
  x1u1_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

x1u0_model_coefs

The regression coefficients corresponding to the model: $log(P(X=1,U=0)/P(X=0,U=0)) = \gamma_{1,0} + \gamma_{1,1}X^* + \gamma_{1,2}Y + \gamma_{1,2+j}C_j$, where X is the binary true exposure, U is the binary unmeasured confounder, X* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

x0u1_model_coefs

The regression coefficients corresponding to the model: $log(P(X=0,U=1)/P(X=0,U=0)) = \gamma_{2,0} + \gamma_{2,1}X^* + \gamma_{2,2}Y + \gamma_{2,2+j}C_j$, where X is the binary true exposure, U is the binary unmeasured confounder, X* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

x1u1_model_coefs

The regression coefficients corresponding to the model: $log(P(X=1,U=1)/P(X=0,U=0)) = \gamma_{3,0} + \gamma_{3,1}X^* + \gamma_{3,2}Y + \gamma_{3,2+j}C_j$, where X is the binary true exposure, U is the binary unmeasured confounder, X* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

level

Value from 0-1 representing the full range of the confidence interval. Default is 0.95.

Details

This function uses one bias model, a multinomial logistic regression model, to predict the uncontrolled confounder (U) and exposure (X). If separate bias models for X and U are desired, use adjust_uc_emc.

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_multinom_uc_emc(
    df_uc_emc,
    exposure = "Xstar",
    outcome = "Y",
    confounders = "C1",
    x1u0_model_coefs = c(-2.82, 1.62, 0.68, -0.06),
    x0u1_model_coefs = c(-0.20, 0.00, 0.68, -0.05),
    x1u1_model_coefs = c(-2.36, 1.62, 1.29, 0.27)
)
```

```
adjust_multinom_uc_emc_sel
```

Adust for uncontrolled confounding, exposure misclassification, and selection bias.

Description

adjust_multinom_uc_emc_sel returns the exposure-outcome odds ratio and confidence interval, adjusted for uncontrolled confounding, exposure misclassification, and selection bias.

```
adjust_multinom_uc_emc_sel(
  data,
  exposure,
  outcome,
  confounders = NULL,
  x1u0_model_coefs,
  x0u1_model_coefs,
  x1u1_model_coefs,
  s_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

x1u0_model_coefs

The regression coefficients corresponding to the model: $log(P(X=1,U=0)/P(X=0,U=0)) = \gamma_{1,0} + \gamma_{1,1}X^* + \gamma_{1,2}Y + \gamma_{1,2+j}C_j$, where X is the binary true exposure, U is the binary unmeasured confounder, X* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

x0u1_model_coefs

The regression coefficients corresponding to the model: $log(P(X=0,U=1)/P(X=0,U=0)) = \gamma_{2,0} + \gamma_{2,1}X^* + \gamma_{2,2}Y + \gamma_{2,2+j}C_j$, where X is the binary true exposure, U is the binary unmeasured confounder, X* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

x1u1_model_coefs

The regression coefficients corresponding to the model: $log(P(X=1,U=1)/P(X=0,U=0)) = \gamma_{3,0} + \gamma_{3,1}X^* + \gamma_{3,2}Y + \gamma_{3,2+j}C_j$, where X is the binary true exposure, U is the binary unmeasured confounder, X* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

s_model_coefs

The regression coefficients corresponding to the model: $logit(P(S=1)) = \beta_0 + \beta_1 X^* + \beta_2 Y + \beta_{2+j} C_j$, where S represents binary selection, X* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

level

Value from 0-1 representing the full range of the confidence interval. Default is 0.95.

Details

This function uses one bias model, a multinomial logistic regression model, to predict the uncontrolled confounder (U) and exposure (X). If separate bias models for X and U are desired, use adjust_uc_emc_sel.

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_multinom_uc_emc_sel(
    df_uc_emc_sel,
    exposure = "Xstar",
    outcome = "Y",
    confounders = c("C1", "C2", "C3"),
    x1u0_model_coefs = c(-2.78, 1.62, 0.61, 0.36, -0.27, 0.88),
    x0u1_model_coefs = c(-0.17, -0.01, 0.71, -0.08, 0.07, -0.15),
    x1u1_model_coefs = c(-2.36, 1.62, 1.29, 0.25, -0.06, 0.74),
    s_model_coefs = c(0.00, 0.26, 0.78, 0.03, -0.02, 0.10)
)
```

adjust_multinom_uc_omc

Adust for uncontrolled confounding and outcome misclassification.

Description

adjust_multinom_uc_omc returns the exposure-outcome odds ratio and confidence interval, adjusted for uncontrolled confounding and outcome misclassification.

Usage

```
adjust_multinom_uc_omc(
  data,
  exposure,
  outcome,
  confounders = NULL,
  u1y0_model_coefs,
  u0y1_model_coefs,
  u1y1_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

u1y0_model_coefs

The regression coefficients corresponding to the model: $log(P(U=1,Y=0)/P(U=0,Y=0)) = \gamma_{1,0} + \gamma_{1,1}X + \gamma_{1,2}Y^* + \gamma_{1,2+j}C_j$, where U is the binary unmeasured confounder, Y is the binary true outcome, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

u0y1_model_coefs

The regression coefficients corresponding to the model: $log(P(U=0,Y=1)/P(U=0,Y=0)) = \gamma_{2,0} + \gamma_{2,1}X + \gamma_{2,2}Y^* + \gamma_{2,2+j}C_j$, where U is the binary unmeasured confounder, Y is the binary true outcome, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

u1y1_model_coefs

The regression coefficients corresponding to the model: $log(P(U=1,Y=1)/P(U=0,Y=0)) = \gamma_{3,0} + \gamma_{3,1}X + \gamma_{3,2}Y^* + \gamma_{3,2+j}C_j$, where U is the binary unmeasured confounder, Y is the binary true outcome, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

level

Value from 0-1 representing the full range of the confidence interval. Default is 0.95.

Details

This function uses one bias model, a multinomial logistic regression model, to predict the uncontrolled confounder (U) and outcome (Y). If separate bias models for X and U are desired, use adjust_uc_omc.

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_multinom_uc_omc(
    df_uc_omc,
    "X",
    "Ystar",
    "C1",
    u1y0_model_coefs = c(-0.19, 0.61, 0.00, -0.07),
```

```
u0y1\_model\_coefs = c(-3.21, 0.60, 1.60, 0.36), \\ u1y1\_model\_coefs = c(-2.72, 1.24, 1.59, 0.34)
```

```
adjust_multinom_uc_omc_sel
```

Adust for uncontrolled confounding, outcome misclassification, and selection bias.

Description

adjust_multinom_uc_omc_sel returns the exposure-outcome odds ratio and confidence interval, adjusted for uncontrolled confounding, outcome misclassification, and selection bias.

Usage

```
adjust_multinom_uc_omc_sel(
   data,
   exposure,
   outcome,
   confounders = NULL,
   u0y1_model_coefs,
   u1y0_model_coefs,
   u1y1_model_coefs,
   s_model_coefs,
   level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

u0y1_model_coefs

The regression coefficients corresponding to the model: $log(P(U=0,Y=1)/P(U=0,Y=0)) = \gamma_{2,0} + \gamma_{2,1}X + \gamma_{2,2}Y^* + \gamma_{2,2+j}C_j$, where U is the binary unmeasured confounder, Y is the binary true outcome, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

u1y0_model_coefs

```
The regression coefficients corresponding to the model: log(P(U=1,Y=0)/P(U=0,Y=0)) = \gamma_{1,0} + \gamma_{1,1}X + \gamma_{1,2}Y^* + \gamma_{1,2+j}C_j, where U is
```

the binary unmeasured confounder, Y is the binary true outcome, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

u1y1_model_coefs

The regression coefficients corresponding to the model: $log(P(U=1,Y=1)/P(U=0,Y=0)) = \gamma_{3,0} + \gamma_{3,1}X + \gamma_{3,2}Y^* + \gamma_{3,2+j}C_j$, where U is the binary unmeasured confounder, Y is the binary true outcome, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

s_model_coefs

The regression coefficients corresponding to the model: $logit(P(S=1)) = \beta_0 + \beta_1 X + \beta_2 Y^* + \beta_{2+j} C_j$, where S represents binary selection, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders.

level

Value from 0-1 representing the full range of the confidence interval. Default is 0.95.

Details

This function uses one bias model, a multinomial logistic regression model, to predict the uncontrolled confounder (U) and outcome (Y). If separate bias models for U and Y are desired, use adjust_uc_omc_sel.

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_multinom_uc_omc_sel(
    df_uc_omc_sel,
    exposure = "X",
    outcome = "Ystar",
    confounders = c("C1", "C2", "C3"),
    u1y0_model_coefs = c(-0.20, 0.62, 0.01, -0.08, 0.10, -0.15),
    u0y1_model_coefs = c(-3.28, 0.63, 1.65, 0.42, -0.85, 0.26),
    u1y1_model_coefs = c(-2.70, 1.22, 1.64, 0.32, -0.77, 0.09),
    s_model_coefs = c(0.00, 0.74, 0.19, 0.02, -0.06, 0.02)
)
```

16 adjust_omc

adjust_omc

Adust for outcome misclassification.

Description

adjust_omc returns the exposure-outcome odds ratio and confidence interval, adjusted for outcome misclassification.

Usage

```
adjust_omc(
  data,
  exposure,
  outcome,
  confounders = NULL,
  y_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

y_model_coefs The regression coefficients corresponding to the model: logit(P(Y = 1)) =

 $_delta_0 + _delta_1X + _delta_2Y^* + _delta_{2+j}C_j$, where Y represents the binary true outcome, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders. The number of parameters is

therefore 3 + j.

level Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

Details

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

adjust_omc_sel 17

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_omc(
  evans,
  exposure = "SMK",
  outcome = "CHD",
  confounders = "HPT",
  y_model_coefs = c(qlogis(0.01), log(1.5), log(5), log(1.5))
)
```

adjust_omc_sel

Adust for outcome misclassification and selection bias.

Description

adjust_omc_sel returns the exposure-outcome odds ratio and confidence interval, adjusted for outcome misclassification and selection bias.

Usage

```
adjust_omc_sel(
  data,
  exposure,
  outcome,
  confounders = NULL,
  y_model_coefs,
  s_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

y_model_coefs The regression coefficients corresponding to the model: $logit(P(Y=1)) = \int_{Y_{i}}^{Y_{i}} \int_{Y_{i}}^{Y_{$

 $\delta_0 + \delta_1 X + \delta_2 Y^* + \delta_{2+j} C_j$, where Y represents the binary true outcome, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number

of measured confounders. The number of parameters is therefore 3 + j.

18 adjust_sel

s_model_coefs The regression coefficients corresponding to the model: $logit(P(S=1)) = \beta_0 + \beta_1 X + \beta_2 Y^* + \beta_{2+j} C_j$, where S represents binary selection, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders. The number of parameters is therefore 3 + j.

Value from 0-1 representing the full range of the confidence interval. Default is 0.95.

Details

level

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_omc_sel(
  df_omc_sel,
  exposure = "X",
  outcome = "Ystar",
  confounders = "C1",
  y_model_coefs = c(-3.24, 0.58, 1.59, 0.45),
  s_model_coefs = c(0.03, 0.92, 0.12, 0.05)
)
```

adjust_sel

Adust for selection bias.

Description

adjust_sel returns the exposure-outcome odds ratio and confidence interval, adjusted for selection bias.

```
adjust_sel(
  data,
  exposure,
  outcome,
```

adjust_sel 19

```
confounders = NULL,
s_model_coefs,
level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

s_model_coefs The regression coefficients corresponding to the model: logit(P(S=1)) =

 $\beta_0 + \beta_1 X + \beta_2 Y$, where S represents binary selection, X is the binary exposure,

Y is the binary outcome. The number of parameters is therefore 3.

level Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

Details

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_sel(
  evans,
  exposure = "SMK",
  outcome = "CHD",
  confounders = "HPT",
  s_model_coefs = c(qlogis(0.25), log(0.75), log(0.75))
)
```

20 adjust_uc

adjust_uc

Adust for uncontrolled confounding.

Description

adjust_uc returns the exposure-outcome odds ratio and confidence interval, adjusted for uncontrolled confounding.

Usage

```
adjust_uc(
  data,
  exposure,
  outcome,
  confounders = NULL,
  u_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

u_model_coefs The regression coefficients corresponding to the model: logit(P(U=1)) =

 $\alpha_0+\alpha_1X+\alpha_2Y+\alpha_{2+j}C_j$, where U is the (binary) unmeasured confounder, X is the (binary) exposure, Y is the (binary) outcome, C represents the vector of (binary) measured confounders (if any), and j corresponds to the number of

measured confounders. The number of parameters therefore equals 3 + j.

level Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

Details

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

adjust_uc_emc 21

Examples

```
adjust_uc(
  evans,
  exposure = "SMK",
  outcome = "CHD",
  confounders = "HPT",
  u_model_coefs = c(qlogis(0.25), log(0.5), log(2.5), log(2)),
)
```

adjust_uc_emc

Adust for uncontrolled confounding and exposure misclassification.

Description

adjust_uc_emc returns the exposure-outcome odds ratio and confidence interval, adjusted for uncontrolled confounding and exposure misclassification.

Usage

```
adjust_uc_emc(
  data,
  exposure,
  outcome,
  confounders = NULL,
  u_model_coefs,
  x_model_coefs,
  level = 0.95
)
```

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable. outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

u_model_coefs The regression coefficients corresponding to the model: logit(P(U=1)) =

 $\alpha_0 + \alpha_1 X + \alpha_2 Y$, where U is the binary unmeasured confounder, X is the binary true exposure, Y is the binary outcome. The number of parameters therefore

equals 3.

x_model_coefs The regression coefficients corresponding to the model: logit(P(X = 1)) =

 $\delta_0 + \delta_1 X^* + \delta_2 Y + \delta_{2+j} C_j$, where X represents the binary true exposure, X* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders. The number of parameters therefore equals 3 + j.

level Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

22 adjust_uc_emc_sel

Details

This function uses two separate logistic regression models to predict the uncontrolled confounder (U) and exposure (X). If a single bias model for jointly modeling X and U is desired use adjust_multinom_uc_emc.

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_uc_emc(
   df_uc_emc,
   exposure = "Xstar",
   outcome = "Y",
   confounders = "C1",
   u_model_coefs = c(-0.23, 0.63, 0.66),
   x_model_coefs = c(-2.47, 1.62, 0.73, 0.32)
)
```

adjust_uc_emc_sel

Adust for uncontrolled confounding, exposure misclassification, and selection bias.

Description

adjust_uc_emc_sel returns the exposure-outcome odds ratio and confidence interval, adjusted for uncontrolled confounding, exposure misclassification, and selection bias.

```
adjust_uc_emc_sel(
  data,
  exposure,
  outcome,
  confounders = NULL,
  u_model_coefs,
  x_model_coefs,
  s_model_coefs,
  level = 0.95
)
```

adjust_uc_emc_sel 23

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

u_model_coefs The regression coefficients corresponding to the model: logit(P(U=1)) =

 $\alpha_0 + \alpha_1 X + \alpha_2 Y$, where U is the binary unmeasured confounder, X is the binary true exposure, and Y is the binary outcome. The number of parameters

therefore equals 3.

x_model_coefs The regression coefficients corresponding to the model: logit(P(X = 1)) =

 $\delta_0 + \delta_1 X^* + \delta_2 Y + \delta_{2+j} C_j$, where X represents binary true exposure, X^* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of

measured confounders. The number of parameters therefore equals 3 + j.

s_model_coefs The regression coefficients corresponding to the model: logit(P(S=1)) =

 $\beta_0 + \beta_1 X^* + \beta_2 Y + \beta_{2+j} C_j$, where S represents binary selection, X^* is the binary misclassified exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of

measured confounders. The number of parameters therefore equals 3 + j.

level Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

Details

This function uses two separate logistic regression models to predict the uncontrolled confounder (U) and exposure (X). If a single bias model for jointly modeling X and U is desired use adjust_multinom_uc_emc_sel.

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_uc_emc_sel(
  df_uc_emc_sel,
  exposure = "Xstar",
  outcome = "Y",
  confounders = c("C1", "C2", "C3"),
  u_model_coefs = c(-0.32, 0.59, 0.69),
```

24 adjust_uc_omc

```
x_{model\_coefs} = c(-2.44, 1.62, 0.72, 0.32, -0.15, 0.85), s_{model\_coefs} = c(0.00, 0.26, 0.78, 0.03, -0.02, 0.10)
```

adjust_uc_omc

Adust for uncontrolled confounding and outcome misclassification.

Description

adjust_uc_omc returns the exposure-outcome odds ratio and confidence interval, adjusted for uncontrolled confounding and outcome misclassification.

Usage

```
adjust_uc_omc(
  data,
  exposure,
  outcome,
  confounders = NULL,
  u_model_coefs,
  y_model_coefs,
  level = 0.95
)
```

Arguments

data	D	at	a	tran	ne	tor	ana	lysis.	

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

u_model_coefs The regression coefficients corresponding to the model: logit(P(U=1)) =

 $\alpha_0 + \alpha_1 X + \alpha_2 Y$, where U is the binary unmeasured confounder, X is the binary true exposure, Y is the binary true outcome. The number of parameters

therefore equals 3.

y_model_coefs The regression coefficients corresponding to the model: logit(P(Y = 1)) =

 $\delta_0 + \delta_1 X + \delta_2 Y^* + \delta_{2+j} C_j$, where Y represents binary true outcome, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of measured confounders. The number of perspectors therefore equals 3.4 is

measured confounders. The number of parameters therefore equals 3 + j.

level Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

adjust_uc_omc_sel 25

Details

This function uses two separate logistic regression models to predict the uncontrolled confounder (U) and outcome (Y). If a single bias model for jointly modeling Y and U is desired use adjust_multinom_uc_omc.

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_uc_omc(
    df_uc_omc,
    "X",
    "Ystar",
    "C1",
    u_model_coefs = c(-0.22, 0.61, 0.70),
    y_model_coefs = c(-2.85, 0.73, 1.60, 0.38)
)
```

adjust_uc_omc_sel

Adust for uncontrolled confounding, outcome misclassification, and selection bias.

Description

adjust_uc_omc_sel returns the exposure-outcome odds ratio and confidence interval, adjusted for uncontrolled confounding, outcome misclassification, and selection bias.

```
adjust_uc_omc_sel(
  data,
  exposure,
  outcome,
  confounders = NULL,
  u_model_coefs,
  y_model_coefs,
  s_model_coefs,
  level = 0.95
)
```

26 adjust_uc_omc_sel

Arguments

data Dataframe for analysis.

exposure String name of the exposure variable.

outcome String name of the outcome variable.

confounders String name(s) of the confounder(s). A maximum of three confounders are al-

lowed.

u_model_coefs The regression coefficients corresponding to the model: logit(P(U=1)) =

 $\alpha_0 + \alpha_1 X + \alpha_2 Y$, where U is the binary unmeasured confounder, X is the binary exposure, and Y is the binary true outcome. The number of parameters

therefore equals 3.

y_model_coefs The regression coefficients corresponding to the model: logit(P(Y = 1)) =

 $\delta_0 + \delta_1 X + \delta_2 Y^* + \delta_{2+j} C_j$, where Y represents binary true outcome, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of

measured confounders. The number of parameters therefore equals 3 + j.

s_model_coefs The regression coefficients corresponding to the model: logit(P(S=1)) =

 $\beta_0+\beta_1X+\beta_2Y^*+\beta_{2+j}C_j$, where S represents binary selection, X is the binary exposure, Y* is the binary misclassified outcome, C represents the vector of binary measured confounders (if any), and j corresponds to the number of

measured confounders. The number of parameters therefore equals 3 + j.

level Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

Details

This function uses two separate logistic regression models to predict the uncontrolled confounder (U) and outcome (Y). If a single bias model for jointly modeling Y and U is desired use adjust_multinom_uc_omc_sel.

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_uc_omc_sel(
  df_uc_omc_sel,
  exposure = "X",
  outcome = "Ystar",
  confounders = c("C1", "C2", "C3"),
  u_model_coefs = c(-0.32, 0.59, 0.69),
```

adjust_uc_sel 27

adjust_uc_sel

Adust for uncontrolled confounding and selection bias.

Description

adjust_uc_sel returns the exposure-outcome odds ratio and confidence interval, adjusted for uncontrolled confounding and exposure misclassification.

Usage

```
adjust_uc_sel(
  data,
  exposure,
  outcome,
  confounders = NULL,
  u_model_coefs,
  s_model_coefs,
  level = 0.95
)
```

Arguments

data

s_model_coefs

exposure	String name of the exposure variable.
outcome	String name of the outcome variable.
confounders	String name(s) of the confounder(s). A maximum of three confounders are allowed.
u_model_coefs	The regression coefficients corresponding to the model: $logit(P(U=1)) = \alpha_0 + \alpha_1 X + \alpha_2 Y + \alpha_{2+j} C_j$, where U is the binary unmeasured confounder, X is the binary exposure, Y is the binary outcome, C represents the vector of binary measured confounders (if any) and i corresponds to the number of measured

measured confounders (if any), and j corresponds to the number of measured confounders. The number of parameters therefore equals 3 + j. The regression coefficients corresponding to the model: logit(P(S = 1)) =

 $\beta_0 + \beta_1 X + \beta_2 Y$, where S represents binary selection, X is the binary exposure, and Y is the binary outcome. The number of parameters therefore equals 3.

1evel Value from 0-1 representing the full range of the confidence interval. Default is

0.95.

Dataframe for analysis.

28 df_emc

Details

Values for the regression coefficients can be applied as fixed values or as single draws from a probability distribution (ex: rnorm(1, mean = 2, sd = 1)). The latter has the advantage of allowing the researcher to capture the uncertainty in the bias parameter estimates. To incorporate this uncertainty in the estimate and confidence interval, this function should be run in loop across bootstrap samples of the dataframe for analysis. The estimate and confidence interval would then be obtained from the median and quantiles of the distribution of odds ratio estimates.

Value

A list where the first item is the odds ratio estimate of the effect of the exposure on the outcome and the second item is the confidence interval as the vector: (lower bound, upper bound).

Examples

```
adjust_uc_sel(
  df_uc_sel,
  exposure = "X",
  outcome = "Y",
  confounders = c("C1", "C2", "C3"),
  u_model_coefs = c(-0.19, 0.61, 0.72, -0.09, 0.10, -0.15),
  s_model_coefs = c(-0.01, 0.92, 0.94)
)
```

df emc

Simulated data with exposure misclassification

Description

Data containing one source of bias, three known confounders, and 100,000 observations. This data is obtained from df_emc_source by removing the column X. The resulting data corresponds to what a researcher would see in the real-world: a misclassified exposure, Xstar, and no data on the true exposure. As seen in df_emc_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_emc
```

Format

A dataframe with 100,000 rows and 5 columns:

Xstar misclassified exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_emc_omc 29

df_emc_omc	Simulated data with exposure misclassification and outcome misclassification
	sification

Description

Data containing two sources of bias, three known confounders, and 100,000 observations. This data is obtained from df_emc_omc_source by removing the columns X and Y. The resulting data corresponds to what a researcher would see in the real-world: a misclassified exposure, Xstar, and a misclassified outcome, Ystar. As seen in df_emc_omc_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_emc_omc
```

Format

A dataframe with 100,000 rows and 5 columns:

Xstar misclassified exposure, 1 =present and 0 =absent

Ystar misclassified outcome, 1 =present and 0 =absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_emc_omc_source Data source for df_emc_omc

Description

Data with complete information on the two sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_emc_omc and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_emc_omc. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

```
df_emc_omc_source
```

30 df_emc_sel

Format

A dataframe with 100,000 rows and 7 columns:

X true exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

Xstar misclassified exposure, 1 =present and 0 =absent

Ystar misclassified outcome, 1 =present and 0 =absent

df_emc_sel

Simulated data with exposure misclassification and selection bias

Description

Data containing two sources of bias, three known confounders, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_emc_sel_source then removing the columns X and S. The resulting data corresponds to what a researcher would see in the real-world: a misclassified exposure, Xstar, and missing data for those not selected into the study (S=0). As seen in df_emc_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_emc_sel

Format

A dataframe with 100,000 rows and 5 columns:

Xstar misclassified exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_emc_sel_source 31

df_emc_sel_source

Data source for df_emc_sel

Description

Data with complete information on the two sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_emc_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_emc_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_emc_sel_source
```

Format

A dataframe with 100,000 rows and 7 columns:

 \mathbf{X} true exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

Xstar misclassified exposure, 1 =present and 0 =absent

S selection, 1 = selected into the study and 0 = not selected into the study

df_emc_source

Data source for df_emc

Description

Data with complete information on one sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_emc and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_emc. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

```
df_emc_source
```

32 df_omc

Format

A dataframe with 100,000 rows and 6 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y true outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

Xstar misclassified exposure, 1 =present and 0 =absent

df_omc

Simulated data with outcome misclassification

Description

Data containing one source of bias, three known confounders, and 100,000 observations. This data is obtained from df_omc_source by removing the column Y. The resulting data corresponds to what a researcher would see in the real-world: a misclassified outcome, Ystar, and no data on the true outcome. As seen in df_omc_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_omc

Format

A dataframe with 100,000 rows and 5 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_omc_sel 33

df_omc_sel

Simulated data with outcome misclassification and selection bias

Description

Data containing two sources of bias, a known confounder, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_omc_sel_source then removing the columns Y and S. The resulting data corresponds to what a researcher would see in the real-world: a misclassified outcome, Ystar, and missing data for those not selected into the study (S=0). As seen in df_omc_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_omc_sel
```

Format

A dataframe with 100,000 rows and 3 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

C1 1st confounder, 1 =present and 0 =absent

df_omc_sel_source

Data source for df_omc_sel

Description

Data with complete information on the two sources of bias, a known confounder, and 100,000 observations. This data is used to derive df_omc_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_omc_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_omc_sel_source
```

Format

A dataframe with 100,000 rows and 5 columns:

X exposure, 1 =present and 0 =absent

Y true outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

S selection, 1 = selected into the study and 0 = not selected into the study

34 df_sel

df_omc_source

Data source for df_omc

Description

Data with complete information on one sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_omc and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_omc. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_omc_source

Format

A dataframe with 100,000 rows and 6 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y true outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

df_sel

Simulated data with selection bias

Description

Data containing one source of bias, three known confounders, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_sel_source then removing the S column. The resulting data corresponds to what a researcher would see in the real-world: missing data for those not selected into the study (S=0). As seen in df_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_sel

df_sel_source 35

Format

A dataframe with 100,000 rows and 5 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_sel_source

Data source for df_sel

Description

Data with complete information on study selection, three known confounders, and 100,000 observations. This data is used to derive df_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_sel_source
```

Format

A dataframe with 100,000 rows and 6 columns:

X true exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

S selection, 1 = selected into the study and 0 = not selected into the study

36 df_uc_emc

df_uc

Simulated data with uncontrolled confounding

Description

Data containing one source of bias, three known confounders, and 100,000 observations. This data is obtained from df_uc_source by removing the column U. The resulting data corresponds to what a researcher would see in the real-world: information on known confounders (C1, C2, and C3), but nothing for confounder U. As seen in df_uc_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_uc

Format

A dataframe with 100,000 rows and 5 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_uc_emc

Simulated data with uncontrolled confounding and exposure misclassification

Description

Data containing two sources of bias, a known confounder, and 100,000 observations. This data is obtained from df_uc_emc_source by removing the columns X and U. The resulting data corresponds to what a researcher would see in the real-world: a misclassified exposure, Xstar, and missing data on a confounder U. As seen in df_uc_emc_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_uc_emc

df_uc_emc_sel 37

Format

A dataframe with 100,000 rows and 3 columns:

Xstar misclassified exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 confounder, 1 = present and 0 = absent

df_uc_emc_sel

Simulated data with uncontrolled confounding, exposure misclassification, and selection bias

Description

Data containing three sources of bias, three known confounders, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_uc_emc_sel_source then removing the columns X, U, and S. The resulting data corresponds to what a researcher would see in the real-world: a misclassified exposure, Xstar; missing data on a confounder U; and missing data for those not selected into the study (S=0). As seen in df_uc_emc_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_emc_sel
```

Format

A dataframe with 100,000 rows and 5 columns:

Xstar misclassified exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

38 df_uc_emc_source

Description

Data with complete information on the three sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_uc_emc_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc_emc_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3 + \alpha_5 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_emc_sel_source
```

Format

A dataframe with 100,000 rows and 8 columns:

 \mathbf{X} true exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

U unmeasured confounder, 1 = present and 0 = absent

Xstar misclassified exposure, 1 =present and 0 =absent

S selection, 1 = selected into the study and 0 = not selected into the study

df_uc_emc_source

Data source for df_uc_emc

Description

Data with complete information on the two sources of bias, a known confounder, and 100,000 observations. This data is used to derive df_uc_emc and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc_emc. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

```
df_uc_emc_source
```

df_uc_omc 39

Format

A dataframe with 100,000 rows and 5 columns:

 \mathbf{X} true exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

U unmeasured confounder, 1 = present and 0 = absent

Xstar misclassified exposure, 1 =present and 0 =absent

df_uc_omc

Simulated data with uncontrolled confounding and outcome misclassification

Description

Data containing two sources of bias, a known confounder, and 100,000 observations. This data is obtained from df_uc_omc_source by removing the columns Y and U. The resulting data corresponds to what a researcher would see in the real-world: a misclassified outcome, Ystar, and missing data on a confounder U. As seen in df_uc_omc_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_uc_omc

Format

A dataframe with 100,000 rows and 3 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

C1 confounder, 1 = present and 0 = absent

df_uc_omc_sel

Simulated data with uncontrolled confounding, outcome misclassification, and selection bias

Description

Data containing three sources of bias, three known confounders, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_uc_omc_sel_source then removing the columns Y, U, and S. The resulting data corresponds to what a researcher would see in the real-world: a misclassified outcome, Ystar; missing data on a confounder U; and missing data for those not selected into the study (S=0). As seen in df_uc_omc_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_omc_sel
```

Format

A dataframe with 100,000 rows and 5 columns:

```
\mathbf{X} exposure, 1 = \text{present} and 0 = \text{absent}
```

Ystar misclassified outcome, 1 =present and 0 =absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

```
df_uc_omc_sel_source Data source for df uc omc sel
```

Description

Data with complete information on the three sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_uc_omc_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc_omc_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3 + \alpha_5 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

```
df_uc_omc_sel_source
```

df_uc_omc_source 41

Format

A dataframe with 100,000 rows and 8 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y true outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

U unmeasured confounder, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

S selection, 1 = selected into the study and 0 = not selected into the study

df_uc_omc_source

Data source for df_uc_omc

Description

Data with complete information on the two sources of bias, a known confounder, and 100,000 observations. This data is used to derive df_uc_omc and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc_omc. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_omc_source
```

Format

A dataframe with 100,000 rows and 5 columns:

X true exposure, 1 =present and 0 =absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

U unmeasured confounder, 1 = present and 0 = absent

Ystar misclassified outcome, 1 =present and 0 =absent

42 df_uc_sel_source

df_uc_sel

Simulated data with uncontrolled confounding and selection bias

Description

Data containing two sources of bias, three known confounders, and 100,000 observations. This data is obtained by sampling with replacement with probability = S from df_uc_sel_source then removing the columns U and S. The resulting data corresponds to what a researcher would see in the real-world: missing data on confounder U; and missing data for those not selected into the study (S=0). As seen in df_uc_sel_source, the true, unbiased exposure-outcome odds ratio = 2.

Usage

```
df_uc_sel
```

Format

A dataframe with 100,000 rows and 3 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

df_uc_sel_source

Data source for df_uc_sel

Description

Data with complete information on the two sources of bias, a known confounder, and 100,000 observations. This data is used to derive df_uc_sel and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc_sel. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3 + \alpha_5 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

```
df_uc_sel_source
```

df_uc_source 43

Format

A dataframe with 100,000 rows and 5 columns:

X true exposure, 1 = present and 0 = absent

Y outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

U unmeasured confounder, 1 = present and 0 = absent

S selection, 1 = selected into the study and 0 = not selected into the study

df_uc_source

Data source for df_uc

Description

Data with complete information on one sources of bias, three known confounders, and 100,000 observations. This data is used to derive df_uc and can be used to obtain bias parameters for purposes of validating the simultaneous multi-bias adjustment method with df_uc. With this source data, the fitted regression $logit(P(Y=1)) = \alpha_0 + \alpha_1 X + \alpha_2 C1 + \alpha_3 C2 + \alpha_4 C3 + \alpha_5 U$ shows that the true, unbiased exposure-outcome odds ratio = 2.

Usage

df_uc_source

Format

A dataframe with 100,000 rows and 6 columns:

 \mathbf{X} exposure, 1 = present and 0 = absent

Y true outcome, 1 = present and 0 = absent

C1 1st confounder, 1 = present and 0 = absent

C2 2nd confounder, 1 = present and 0 = absent

C3 3rd confounder, 1 = present and 0 = absent

U uncontrolled confounder, 1 = present and 0 = absent

44 evans

evans

Evans County dataset

Description

Data from a cohort study in which white males in Evans County were followed for 7 years, with coronary heart disease as the outcome of interest.

Usage

evans

Format

A dataframe with 609 rows and 9 columns:

ID subject identifiction

CHD outcome variable; 1 = coronary heart disease

AGE age (in years)

CHL cholesterol, mg/dl

SMK 1 = subject has ever smoked

ECG 1 = presence of electrocardiogram abnormality

DBP diastolic blood pressure, mmHg

SBP systolic blood pressure, mmHg

HPT 1 = SBP greater than or equal to 160 or DBP greater than or equal to 95

Source

http://web1.sph.emory.edu/dkleinb/logreg3.htm#data

Index

•	
* datasets	adjust_uc_emc_sel, 22
df_emc, 28	adjust_uc_omc, 24
df_emc_omc, 29	adjust_uc_omc_sel, 25
df_emc_omc_source, 29	adjust_uc_sel, 27
df_emc_sel, 30	16 20
df_emc_sel_source, 31	df_emc, 28
df_emc_source, 31	df_emc_omc, 29
df_omc, 32	df_emc_omc_source, 29
df_omc_sel, 33	df_emc_sel, 30
df_omc_sel_source, 33	df_emc_sel_source, 31
df_omc_source, 34	df_emc_source, 31
df_sel, 34	df_omc, 32
df_sel_source, 35	df_omc_sel, 33
df_uc, 36	df_omc_sel_source, 33
df_uc_emc, 36	df_omc_source, 34
df_uc_emc_sel, 37	df_sel, 34
df_uc_emc_sel_source, 38	df_sel_source, 35
df_uc_emc_source, 38	df_uc, 36
df_uc_omc, 39	df_uc_emc, 36
df_uc_omc_sel, 40	df_uc_emc_sel, 37
df_uc_omc_sel_source, 40	df_uc_emc_sel_source, 38
df_uc_omc_source, 41	df_uc_emc_source, 38
df_uc_se1, 42	df_uc_omc, 39
df_uc_sel_source, 42	df_uc_omc_sel,40
df_uc_source, 43	df_uc_omc_sel_source, 40
evans, 44	df_uc_omc_source, 41
evans, 11	df_uc_sel, 42
adjust_emc, 3	df_uc_sel_source, 42
adjust_emc_omc, 4	df_uc_source, 43
adjust_emc_sel, 5	/
adjust_multinom_emc_omc, 7	evans, 44
adjust_multinom_uc_emc, 8	
adjust_multinom_uc_emc_sel, 10	
adjust_multinom_uc_omc, 12	
adjust_multinom_uc_omc_sel, 14	
adjust_omc, 16	
adjust_omc_sel, 17	
adjust_sel, 18	
adjust_uc, 20	
adjust_uc_emc, 21	
aujust_uc_cilic, 21	