Package 'nbconv'

July 6, 2023
Title Evaluate Arbitrary Negative Binomial Convolutions
Version 1.0.1
URL https://github.com/gbedwell/nbconv
BugReports https://github.com/gbedwell/nbconv/issues
Imports parallel, matrixStats, stats
Description Three distinct methods are implemented for evaluating the sums of arbitrary negative binomial distributions. These methods are: Furman's exact probability mass function (Furman (2007) doi:10.1016/j.spl.2006.06.007), saddlepoint approximation, and a method of moments approximation. Functions are provided to calculate the density function, the distribution function and the quantile function of the convolutions in question given said evaluation methods. Functions for generating random deviates from negative binomial convolutions and for directly calculating the mean, variance, skewness, and excess kurtosis of said convolutions are also provided.

Encoding UTF-8

RoxygenNote 7.2.0
License GPL (>= 3)
NeedsCompilation no
Author Gregory Bedwell [aut, cre, cph]
(https://orcid.org/0000-0003-0456-0032)
Maintainer Gregory Bedwell gregoryjbedwell@gmail.com
Repository CRAN
Date/Publication 2023-07-06 18:20:02 UTC

R topics documented:

dnbconv 2
nbconv_params 3
nb_sum_exact 3
nb_sum_moments 4
nb_sum_saddlepoint 5
pnbconv 5

qnbconv .rnbconv .8		
Index		9
dnbconv	Probability mass function	

Description

Calculates the PMF for the convolution of arbitrary negative binomial random variables.

Usage

```
dnbconv(
    counts,
    mus,
    ps,
    phis,
    method = c("exact", "moments", "saddlepoint"),
    n.terms = 1000,
    n.cores = 1,
    tolerance = 0.001,
    normalize = TRUE
)
```


Arguments

counts The counts over which the convolution is evaluated. Should be a vector.
mus Vector of individual mean values
ps Vector of individual probabilities of success.
phis Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
method The method by which to evaluate the PMF. One of "exact", "moments", or "saddlepoint".
n.terms The number of terms to include in the series for evaluating the PMF at a given number of counts. Defaults to 1000.
n. cores The number of CPU cores to use in the evaluation. Allows parallelization.
tolerance The acceptable difference between the sum of the K distribution and 1.
normalize Boolean. If TRUE, the PMF is normalized to sum to 1.
Value
A numeric vector of probability densities.

Examples

dnbconv(counts $=0: 500$, mus $=c(100,10)$, phis $=c(5,8)$, method $=$ "exact")
nbconv_params Summary statistics

Description

Calculates distribution parameters for the convolution of arbitrary negative binomial random variables.

Usage

nbconv_params(mus, phis, ps)

Arguments

mus \quad Vector of individual mean values
phis Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
ps Vector of individual probabilities of success.

Value

A named numeric vector of distribution parameters.

Examples

nbconv_params(mus $=c(100,10)$, phis $=c(5,8))$

$$
\text { nb_sum_exact } \quad \text { Furman's } P M F
$$

Description

Implements Furman's exact PMF for the evaluation of the sum of arbitrary NB random variables. Called by other functions. Not intended to be run alone.

Usage

nb_sum_exact(phis, ps, n.terms = 1000, counts, n.cores = 1, tolerance = 0.001)

Arguments

phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
ps	Vector of individual probabilities of success.
n. terms	The number of terms to include in the series for evaluating the PMF at a given number of counts. Defaults to 1000.
counts	The vector of counts over which the PMF is evaluated.
n.cores	The number of CPU cores to use in the evaluation. Allows parallelization.
tolerance	The acceptable difference between the sum of the K distribution and 1.

Value

A numeric vector of probability densities.

Examples

```
nb_sum_exact(ps = c(0.05, 0.44), phis = c(5, 8), counts = 0:500)
```

```
nb_sum_moments Method of moments
```


Description

Implements the method of moments approximation for the sum of arbitrary NB random variables. Called by other functions. Not intended to be run alone.

Usage

nb_sum_moments(mus, phis, counts)

Arguments

mus	Vector of individual mean values.
phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
counts	The vector of counts over which the PMF is evaluated.

Value

A numeric vector of probability densities.

Examples

nb_sum_moments(mus $=c(100,10)$, phis $=c(5,8)$, counts $=0: 500)$

```
nb_sum_saddlepoint Saddlepoint approximation
```


Description

Implements the saddlepoint approximation for the sum of arbitrary NB random variables. Called by other functions. Not intended to be run alone.

Usage

nb_sum_saddlepoint(mus, phis, counts, normalize = TRUE, n.cores = 1)

Arguments

mus	Vector of individual mean values.
phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
counts	The vector of counts over which the PMF is evaluated.
normalize	Boolean. If TRUE, the PMF is normalized to sum to 1.
n. cores	The number of CPU cores to use in the evaluation. Allows parallelization.

Details

Inspired by https://www.martinmodrak.cz/2019/06/20/approximate-densities-for-sums-of-variables-negative-binomials-and-saddlepoint/

Value

A numeric vector of probability densities.

Examples

nb_sum_saddlepoint(mus = c(100, 10), phis $=c(5,8)$, counts $=0: 500)$

pnbconv
 Cumulative distribution function

Description

Calculates the CDF for the convolution of arbitrary negative binomial random variables.

Usage

```
    pnbconv(
        quants,
        mus,
        ps,
        phis,
        method = c("exact", "moments", "saddlepoint"),
        n.terms = 1000,
        n.cores = 1,
        tolerance = 0.001,
        normalize = TRUE
    )
```


Arguments

quants	Vector of quantiles.
mus	Vector of individual mean values
ps	Vector of individual probabilities of success.
phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom. method
The method by which to evaluate the PMF. One of "exact", "moments", or "sad- dlepoint".	
n. terms	The number of terms to include in the series for evaluating the PMF at a given number of counts. Defaults to 1000.
n. cores	The number of CPU cores to use in the evaluation. Allows parallelization. tolerance
The acceptable difference between the sum of the K distribution and 1.	

Value

A numeric vector of cumulative probability densities.

Examples

```
    pnbconv(quants = 200, mus = c(100, 10), phis = c(5, 8), method = "exact")
```

 qnbconv Quantile function

Description

Calculates the quantile function for the convolution of arbitrary negative binomial random variables.

Usage

```
qnbconv(
        probs,
        counts,
        mus,
    ps,
    phis,
    method = c("exact", "moments", "saddlepoint"),
    n.terms = 1000,
    n.cores = 1,
    tolerance = 0.001,
    normalize = TRUE
)
```


Arguments

probs Vector of target (cumulative) probabilities.
counts Vector of counts over which the PMF is evaluated.
mus \quad Vector of individual mean values
ps Vector of individual probabilities of success.
phis Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
method The method by which to evaluate the PMF. One of "exact", "moments", or "saddlepoint".
n.terms The number of terms to include in the series for evaluating the PMF at a given number of counts. Defaults to 1000 .
n. cores The number of CPU cores to use in the evaluation. Allows parallelization.
tolerance \quad The acceptable difference between the sum of the K distribution and 1.
normalize Boolean. If TRUE, the PMF is normalized to sum to 1.

Value

A numeric vector of quantiles.

Examples

```
qnbconv(probs = c(0.05, 0.25, 0.5, 0.75, 0.95), counts = 0.500,
    mus = c(100, 10), phis = c(5, 8), method = "exact")
```

```
rnbconv Random deviates
```


Description

Generates random samples from the convolution of arbitrary negative binomial random variables.

Usage

rnbconv(mus, phis, ps, n.samp, n.cores = 1)

Arguments

mus	Vector of individual mean values
phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
ps	Vector of individual probabilities of success.
n. samp	The number of samples per distribution
n. cores	The number of CPU cores to use in the evaluation. Allows parallelization.

Value

A numeric vector of random deviates.

Examples

$$
\operatorname{rnbconv}(\text { mus }=c(100,10), \text { phis }=c(5,8), n . \operatorname{samp}=10)
$$

Index

dnbconv, 2
nb_sum_exact, 3
nb_sum_moments, 4
nb_sum_saddlepoint, 5
nbconv_params, 3
pnbconv, 5
qnbconv, 6
rnbconv, 8

