Package 'paleoDiv'

May 2, 2024
Title Extracting and Visualizing Paleobiodiversity
Version 0.3.0
Description Contains various tools for conveniently downloading and editing taxon-specific datasets from the Paleobiology Database https://paleobiodb.org , extracting information on abundance, temporal distribution of subtaxa and taxonomic diversity through deep time, and visualizing these data in relation to phylogeny and stratigraphy.
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
Suggests testthat (>= 3.0.0), strap, divDyn, ggplot2, knitr, rmarkdown
Config/testthat/edition 3
Depends R ($>= 2.10$), ape, stringr
LazyData true
VignetteBuilder knitr
NeedsCompilation no
Author Darius Nau [aut, cre]
Maintainer Darius Nau <dariusnau@gmx.at></dariusnau@gmx.at>
Repository CRAN
Date/Publication 2024-05-02 11:32:42 UTC
R topics documented:
ab.gg

2 ab.gg

ab.g	7	Ma	ko a	data	a fr	am	a() 1	ha	t 00	h	0 11	000	1 +	nl.	0 f c	 246	:4.	da	t a	:	+l	lar	
ıdex																							3
	viol																						28
	tsconv																						28
	ts.stages																						
	ts.periods																						25
	tree_archosauria																						
	tree.ages.spp																						
	tree.ages																						
	tree.age.combine .																						
	synonymize																						
	stax.sel																						
	rmeana																						20
	rmean																						19
	redraw.phylo																						18
	phylo.spindles																						16
	pdb.union																						1:
	pdb.diff																						14
	pdb.autodiv																						
	pdb																						
	occ.cleanup																						
	mk.sptab																						
	ggcol																						
	diversity table																						
	divdistr_int																						(

Description

Make a data.frame() that can be used to plot diversity data with density plots, e.g. in ggplot2

Usage

Index

```
ab.gg(data, taxa = NULL, agerange = c(252, 66), precision_ma = 1)
```

plots, e.g. in ggplot2

Arguments

data	list()-object containing occurrence data.frames or single occurrence data.frame()
taxa	Selection of taxa to include. If NULL, then abundance is tabulated for each unique factor level of data\$tna
agerange	Range of geological ages to include in data.frame()
precision_ma	Size of intervals (in ma) at which to calculate diversity within the age range.

abdistr_ 3

Details

Each taxon receives one entry per occurrence per time interval. The number of entries per taxon at any given point is thus proportional to the abundance of the taxon in the fossil record, and can be used for plotting with frequency- or density-based functions (e.g. hist(), ggplot2::geom_violin(), etc.). Note that using age values in the original occurrence table instead of this function will often be fully sufficient if the number of occurrences is considered an adequate proxy for abundance. However, instead using the ab.gg() and thus visualizing the results of the abdistr_() function has the benefit of the ability to account for a column of abundance values within the occurrence dataset, if available.

Value

A data.frame() with two columns: ma, for the numerical age, and tax, for the taxon.

Examples

```
data(archosauria)
ab.gg(data=archosauria, taxa=c("Ankylosauria","Stegosauria"))->thyreophora
library(ggplot2)
ggplot(data=thyreophora, aes(x=tax, y=ma, col=tax))+ylim(252,0)+geom_violin(scale="count")
```

abdistr_

Count number of entries in occurrence or collection data.frame for specific points in geological time

Description

Count number of entries in occurrence or collection data.frame for specific points in geological time

Usage

```
abdistr_(
    x,
    table = NULL,
    ab.val = table$abund_value,
    ab.val.na = 1,
    smooth = 0,
    max = table$eag,
    min = table$lag,
    w = rep(1, length(x))
)
```

Arguments

A numeric vector giving the times (in ma) at which to determine the number of overlapping records.

table An occurrence or collection dataset

4 add.alpha

ab.val	Abundance value to be used. Default is table\$abund_value. If set to 1, each occurrence is treated as representing one specimen. If NULL (e.g. because this column does not exist) or NA, each occurrence is treated as the number of specimens specified under ab.val.na
ab.val.na	Value to substitute for missing entries in abundance values. Defaults to 1. Either a single numeric or a function to be applied to all non-missing entries of ab.val (e.g. mean() or median()).
smooth	The smoothing margin, in units of ma. Corresponds to the plusminus parameter of rmeana(). Defaults to 0 , i.e. no smoothing (beyond the resolution determined by the resolution of x)
max	Vector or column containing maximum age of each occurrence or collection
min	Vector or column containing minimum age of each occurrence or collection
W	A Vector of weights. Must be of same length as x

Value

A numeric vector of the same length as x, giving the estimated number of occurrence records (if ab.val==FALSE) or specimens (if ab.val==TRUE), or the estimated number of collections (if collection data are used instead of occurrences) overlapping each temporal value given in x

Examples

```
data(archosauria)
abdistr_(x=c(170:120), table=archosauria$Stegosauria)
```

add.alpha

Add transparency to any color

Description

Add transparency to any color

Usage

```
add.alpha(col, alpha = 0.5)
```

Arguments

col Color value or vector of colors
alpha Opacity value to apply to the color(s)

Value

A character vector containing color hex codes.

```
add.alpha("red",0.8)
```

ages_archosauria 5

ages_archosauria ages_archosauria

Description

A dataset containing earliest and latest occurrence dates for clades shown in the example phylogeny.

Usage

```
ages_archosauria
```

Format

A matrix with 13 rows and 2 collumns containing:

FAD Earliest occurrence age

LAD Latest occurrence age

... for each taxon

archosauria archosauria

Description

A dataset of stratigraphic ranges of species within the clades in tree_archosauria.

Usage

archosauria

Format

A list() object containing 2 occurrence data.frames, 1 collections data.frame and 15 species-range tables (all as data.frames) with the following data in each:

tna taxon names (species names)

max maximum ages

min minimum ages

ma mean ages

Source

Generated from data downloaded from the paleobiology database https://paleobiodb.org using the functions pdb(), occ.cleanup() and mk.sptab()

6 darken

convert.sptab	Convert geological ages in taxon-range tables as constructed by mk.sptab() for plotting alongside a time-calibrated phylogeny.
	mk.spiao() for pioning alongside a time-canorated phylogeny.

Description

Convert geological ages in taxon-range tables as constructed by mk.sptab() for plotting alongside a time-calibrated phylogeny.

Usage

```
convert.sptab(sptab, tree = NULL, root.time = tree$root.time)
```

Arguments

sptab Taxon-range table to convert

tree Optional phylogenetic tree to draw root.time from root.time Root time of the tree, used for converting ages

Value

A data.frame() object in the format of the original taxon-range table, but with geological ages converted for plotting alongside the the phylogenetic tree.

Examples

```
data(archosauria)
data(tree_archosauria)
convert.sptab(archosauria$sptab_Coelophysoidea,tree_archosauria)
```

darken	Darken or lighten colors by adding/subtracting to or hsv channel val-
	ues

Description

Darken or lighten colors by adding/subtracting to or hsv channel values

Usage

```
darken(x, add = 0, abs = NULL)
```

7 div.gg

Arguments

abs

X	Color value or vector of colors
add	Value to be added to the third hsv-channel. Can be a vector of length x, or a
	vector of any length if length(x)==1

Value to substitute for the third hsv-channel. If set, this overrides the setting

for parameter add. Can be a vector of length x, or a vector of any length if

length(x)==1

Value

A color value or vector of color values of length x (or, if length(x)==1, the length of add or abs)

Examples

```
darken(ggcol(3),abs=0.5)
```

div.gg	Make a data.frame() that can be used to plot diversity data with density
	plots, e.g. in ggplot2

Description

Make a data.frame() that can be used to plot diversity data with density plots, e.g. in ggplot2

Usage

```
div.gg(data, taxa, agerange = c(252, 66), precision_ma = 1, prefix = "sptab_")
```

Arguments

data list()-object containing taxon-range tables

Selection of taxa to include taxa

Range of geological ages to include in data.frame() agerange

Size of intervals (in ma) at which to calculate diversity within the age range. precision_ma

prefix Prefix under which to find taxon-range tables in data

Details

Each taxon receives one entry per subtaxon (e.g. species) occurring for each time interval at which it occurs. The number of entries per taxon at any given point is thus proportional to the diversity of the taxon, and can be used to trick density functions (e.g. hist(), density()) into plotting diversity diagrams of various types. This is most useful when using ggplot2::geom_violin(), geom_histogram() or geom_density() functions. A simpler alternative to achieve a similar result would be to use the taxon-range-tables directly with these functions. However, this will lead to a relative underestimate of diversity for taxa with long-lived subtaxa, since each subtaxon will only be counted once. The div.gg()-function circumvents this problem by representing each taxon for each time interval in which it occurs, i.e. the relative number of entries in the returned data frame will be proportional to the relative number of taxa with ranges overlapping each point in time.

8 divdistr_

Value

A data.frame() with two columns: ma, for the numerical age, and tax, for the taxon.

Examples

```
data(archosauria)
div.gg(archosauria, taxa=c("Pterosauria","Aves"), agerange=c(252,0),precision_ma=1)->flyers
library(ggplot2)
ggplot(data=flyers, aes(x=tax, y=ma))+ylim(252,0)+geom_violin(scale="count")
ggplot(data=flyers, aes(col=tax, x=ma))+xlim(252,0)+geom_density(adjust=0.5)
```

divdistr_

Calculate total species diversity for any point in time based on a taxon-range table

Description

Calculate total species diversity for any point in time based on a taxon-range table

Usage

```
divdistr_(
   x,
   table = NULL,
   w = rep(1, length(x)),
   smooth = 0,
   max = table$max,
   min = table$min
)
```

Arguments

Х	A point in time or vector of points in time, in ma, at which species diversity is to be determined.
table	A taxon-range table to be used, usually the output of mk.sptab()
W	A vector of weights to apply to the estimated (raw) diversity figures. This vector needs to be of the same length as x. Each raw diversity estimate will then be multiplied by the weight. Can be used to account for differences in collection intensity/sampling biases, if these can be quantified (e.g. by analyzing collection records.
smooth	The smoothing margin, in units of ma. Corresponds to the plusminus parameter of rmeana(). Defaults to 0, i.e. no smoothing (beyond the resolution determined by the resolution of \boldsymbol{x})
max	Vector or column containing the maximum age of each entry in the taxon-range table. Defaults to table\$max
min	Vector or column containing the minimum age of each entry in the taxon-range table. Defaults to table\$min

divdistr_int 9

Details

divdistr_() produces a "maximum" estimate of taxonomic diversity at any given point in time in the fossil record. This function is based on the principle of counting the number of taxon ranges (from the provided range table) that overlap each age provided in x. As a result of uncertainty of age estimates, this may lead to an overestimation of the actual fossil diversity at each point in time, especially at the points of overlap between taxon-specific ranges. Moreover this represents a "raw", uncorrected diversity estimate that does not account for differences in sampling intensity throughout the time interval that is investigated. A rudimentary functionality for using such a correction exists in the form of the w argument, which allows the user to provide a vector of weights (of the same length as x) to be multiplied with the raw diversity estimates. Such weights can, for instance, be based on (the inverse of) the number of collections overlapping any given age in x, which can be calculated using the same basic approach as the raw diversity, by downloading collections instead of occurrence data.

Value

A numeric vector containing taxon diversity (at the chosen taxonomic level used in the generation of the range table) at the provided ages.

Examples

```
data(archosauria)
divdistr_(c(170:140),table=archosauria$sptab_Stegosauria)
curve(divdistr_(x,archosauria$sptab_Stegosauria), xlim=c(200,100),ylim=c(-5,35))
ts.stages(ylim=c(-6,-1),alpha=0.3,border=add.alpha("grey"))
ts.periods(ylim=c(-6,-1),alpha=0.0)
```

divdistr_int

Count number of taxon records overlapping a specific time interval.

Description

Count number of taxon records overlapping a specific time interval.

Usage

```
divdistr_int(x, table = NULL, ids = FALSE, max = table$max, min = table$min)
```

Arguments

X	A numeric vector of length 2 specifying the start and end (in ma) of the time interval in question.
table	Taxon-range table to use
ids	Logical whether to return ids of entries in taxon-range table (defaults to FALSE) or their number
max	Vector or column containing the maximum age of each entry in the taxon-range table. Defaults to table\$max

10 ggcol

min

Vector or column containing the minimum age of each entry in the taxon-range table. Defaults to table\$min

Value

A single numeric giving the number of entries in table overlapping the specified interval, or a numeric vector giving their indices.

Examples

```
data(archosauria)
divdistr_int(x=c(201,220), table=archosauria$sptab_Coelophysoidea)
```

diversity_table

diversity_table

Description

A dataset of diversity by stage, exemplifying the output produced by the divDyn-package.

Usage

```
diversity_table
```

Format

A data.frame() containing mean ages and diversity figures by stage.

x_orig ages for each stage in the phanerozoic

x ages converted for plotting on tree_archosauria, using the tsconv()-function

Sauroporomorpha diversity by stage for Sauropodomorpha

etc diversity by stage for each of the taxa represented in tree_archosauria ...

ggcol

Replicate the standard color scheme from ggplot2

Description

Replicate the standard color scheme from ggplot2

Usage

```
ggcol(n)
```

11 mk.sptab

Arguments

n

Length of color vector to return.

Value

A character vector containing color hex codes.

Examples

```
ggcol(3)
```

mk.sptab

Generate a taxon-range table based on an occurrence dataset.

Description

Generate a taxon-range table based on an occurrence dataset.

Usage

```
mk.sptab(
  xx = NULL,
  taxa = xx$tna,
  earliest = xx$eag,
 latest = xx$lag,
  tax = NULL
)
```

Arguments

A data.frame() of occurrence records, containing at least the following columns: xxtaxonomic name at level at which ranges are to be determined (e.g. species or genus), earliest possible age for each occurrence and latest possible age for each occurrence. If xx==NULL, then each column or vector must be specified individualy using the following parameters column/vector containing the taxonomic variable. Defaults to xx\$tna taxa earliest column/vector containing the earliest age estimate. Defaults to xx\$eag. latest column/vector containing the latest age estimate. Defaults to xx\$lag. Optional. A single character string containing the taxon name, to be added as tax

another column to the range table (useful for categorization, should several range

tables be concatenated, e.g. using rbind()).

Value

A data.frame() containing the taxon names, the maximum and minimum age for each taxon, and (optionally) a column with the name of the higher-level taxon.

12 occ.cleanup

Examples

```
data(archosauria)
mk.sptab(archosauria$Stegosauria)->sptab_Stegosauria
```

occ.cleanup	Clean up occurrence dataset by removing commonly used character
	combinations in the identified name that will result in different factor
	levels for the same taxon.

Description

Clean up occurrence dataset by removing commonly used character combinations in the identified name that will result in different factor levels for the same taxon.

Usage

```
occ.cleanup(x, remove = NULL, return.df = FALSE)
```

Arguments

Х		A occurrence data.frame or character vector containing the variable to clean up (defaults to x \$tna)
rem	ove	Which values to remove. If NULL, a default set of commonly occurring character combinations is used ("n. gen.", "n. sp.", "cf.", "aff.", punctuation, as well as double, leading and ending spaces). If user-defined, remove needs to be formatted as a character vector with the values to be removed as names, i.e. in the format of c("remove_this" = "", "removethistoo"="")
ret	urn.df	A logical indicating whether to return the entire data.frame (if TRUE) or just the

Value

A character vector containing the cleaned up taxonomic names or a dataframe with cleaned-up tna column (if return.df==TRUE).

Examples

```
data(archosauria)
occ.cleanup(archosauria$Stegosauria)->archosauria$Stegosauria
```

column of taxonomic names.

pdb 13

pdb

Download data from the paleobiology database.

Description

Download data from the paleobiology database.

Usage

```
pdb(
  taxon,
  interval = "all",
  what = "occs",
  full = FALSE,
  base = "https://paleobiodb.org/data1.2/",
  file = "list.csv"
)
```

Arguments

taxon	A taxon (base_name) for which to download records.
interval	A character string indicating over which temporal interval to download data (defaults to "all"), e.g. "Phanerozoic" or "Jurassic".
what	The type of data to download (for details, see https://paleobiodb.org/data1.2/). Defaults to "occs", which downloads occurrence data. Setting this parameter to "colls" will instead download collection data.
full	A logical indicating whether or not the full dataset is to be downloaded (defaults to FALSE). At the expense of larger file size, the full dataset contains a large number of additional columns containing data such as stratigraphy, phylogeny and (paleo)geography, which is useful for various purposes but not strictly necessary for graphing paleodiversity.
base	Character string containing base url to use. Defaults to https://paleobiodb.org/data1.2/. Entering "dev" serves as a shortcut to use https://dev.paleobiodb.org/data1.2/ instead (can sometimes be helpful if one of the two is unavailable).
file	Character string containing which file name to look for. Defaults to list.csv.

Value

A data.frame() containing the downloaded paleobioDB dataset. The column "identified_name" will be copied into the column "tna", and (if what==occs) the columns "max_ma" and "min_ma" will be copied into the columns named "eag" and "lag" respectively, maintaining compatibility with the output of the deprecated package "paleobioDB" for those variable names.

```
pdb("Stegosauria")->Stegosauria
```

14 pdb.diff

pdb.autodiv	A wrapper around pdb(), occ.cleanup() and mk.sptab() to automatically download and clean occurrence data from the paleobiology database and build species-level taxon-range tables for multiple taxa in one step.
-------------	---

Description

A wrapper around pdb(), occ.cleanup() and mk.sptab() to automatically download and clean occurrence data from the paleobiology database and build species-level taxon-range tables for multiple taxa in one step.

Usage

```
pdb.autodiv(taxa, cleanup = TRUE, interval = NULL)
```

Arguments

taxa	Either a character vector of valid taxonomic names, or an object of class "phylo" whose tip.labels to use instead.
cleanup	Logical indicating whether to apply occ.cleanup() to occurrence data after download (defaults to TRUE)
interval	Stratigraphic interval for which to download data (defaults to NULL, which downloads data for all intervals)

Value

A list() object containing occurrence data (saved under the taxon names given) and species-level taxon-range tables (saved with the prefix "sptab_" before the taxon names).

Examples

```
pdb.autodiv("Coelophysoidea")->coelo

pdb.diff

Subtract one occurrence data.frame from another, for disentangling overlapping taxonomies or quantifying stem-lineage diversity.
```

Description

Subtract one occurrence data.frame from another, for disentangling overlapping taxonomies or quantifying stem-lineage diversity.

Usage

```
pdb.diff(x, subtract, id_col = x$occurrence_no)
```

pdb.union 15

Arguments

X	Occurrence data from which to subtract.
subtract	Occurrence data frame or vector of occurrence numbers to subtract from x
id_col	Vector or column of x containing id to be used for determining which values are
	also found in subtract or subtract occurrence no

Value

A data.frame() containing the difference between the two occurrence datasets, i.e. all entries that are in x but not in subtract.

Examples

```
data(archosauria)
pdb.union(rbind(archosauria$Ankylosauria, archosauria$Stegosauria))->Eurypoda
pdb.diff(Eurypoda, subtract=archosauria$Stegosauria)
```

pdb.union	Form the union of two occurrence data.frames or remove duplicates from occurrence data.frame. Useful if parts of a clade are not included in the downloaded dataset and need to be added separately.

Description

Form the union of two occurrence data.frames or remove duplicates from occurrence data.frame. Useful if parts of a clade are not included in the downloaded dataset and need to be added separately.

Usage

```
pdb.union(x, id_col = x$occurrence_no)
```

Arguments

X	Concatenated occurrence data.frames to be merged
id_col	Vector or column of x containing id to be used for determining which values contain occurrence numbers to be used for matching entries

Value

A data.frame() containing the first entry for each unique occurrence to be represented in x.

```
data(archosauria)
pdb.union(rbind(archosauria$Ankylosauria, archosauria$Stegosauria))->Eurypoda
```

16 phylo.spindles

phylo.spindles

Plots a phylogenetic tree with spindle-diagrams, optimized for showing taxonomic diversity.

Description

Plots a phylogenetic tree with spindle-diagrams, optimized for showing taxonomic diversity.

Usage

```
phylo.spindles(
  phylo0,
 occ,
  stat = divdistr_,
 prefix = "sptab_",
  pos = NULL,
  ages = NULL,
  xlimits = NULL,
  res = 1,
 weights = 1,
  dscale = 0.002,
  col = add.alpha("black"),
  fill = col,
  lwd = 1,
  1ty = 1,
  cex.txt = 1,
  col.txt = add.alpha(col, 1),
  axis = TRUE,
  labels = TRUE,
  txt.y = 0.5,
  txt.x = NULL
  adj.x = 0,
  add = FALSE,
  tbmar = 0.2,
  smooth = 0,
  italicize = character()
)
```

Arguments

phylo0

A time-calibrated phylogenetic tree to plot with spindle diagrams, or a character vector of taxonomic names for which to plot spindle diagrams.

occ

Either a list()-object containing taxon-range tables for plotting diversity, or a matrix() or data.frame()-object that contains numerical plotting statistics. If the latter is provided, the default use of divdistr_() is overridden and the function will look for a column named "x" and columns matching the phylogeny tip.labels to plot the spindles.

phylo.spindles 17

stat	Plotting statistic to be passed on to viol(). Defaults to use divdistr_().
prefix	Prefix for taxon-range tables in occ. Defaults to "sptab_"
pos	Position at which to draw spindles. If NULL (default), then spindles are drawn at c(1:n) where n is the number of taxa in phylo0.
ages	Optional matrix with lower and upper age limits for each spindle, formatted like the output of tree.ages() (most commonly the same calibration matrix used to time-calibrate the tree)
xlimits	Limits for plotting the on the x axis.
res	Temporal resolution of diversity estimation (if occ is a matrix or data.frame containing plotting statistics, this is ignored)
weights	Weights for diversity estimation. Must have the same length as the range of xlimits divided by res. For details, see divdistr_()
dscale	Scale value of the spindles on the y axis. Should be adjusted manually to optimize visibility of results.
col	Color to use for the border of the plotted spindles
fill	Color to use for the fill of the plotted spindles. Defaults to col.
lwd	Line width for the plotted spindles.
lty	Line type for the plotted spindles.
cex.txt	Adjustment for tip label text size
col.txt	tip label text color, defaults to be same as col, but with no transparency
axis	Logical indicating whether to plot (temporal) x axis (defaults to TRUE)
labels	Logical indicating whether to plot tip labels of phylogeny (defaults to TRUE)
txt.y	y axis alignment of tip labels
txt.x	x coordinates for plotting tip labels. Can be a single value applicable to all labels, or a vector of the same length as phylo0\$tip.label
adj.x	Numeric value giving alignment on x axis, defaults to 0 (left-aligned) but can also be 0.5 (centered) or 1 (right-aligned).
add	Logical indicating whether to add to an existing plot, in which case only the spindles are plotted on top of an existing phylogeny, or not, in which case the phylogeny is plotted along with the spindles.
tbmar	Top and bottom margin around the plot. Numeric of either length 1 or 2
smooth	Smoothing parameter to be passed on to divdistr_()
italicize	Character or numeric vector specifying which labels to italicize, if any.

Details

The phylo.spindles() function allows the plotting of a phylogeny with spindle diagrams at each of its terminal branches. Various data can be represented (e.g. disparity, abundance, various diversity measures, such as those output by the divDyn package, etc.) depending on the settings for occ and stat, but the function is optimized to plot the results of divdistr_() and does so by default. If another function is used as an argument to stat, it has to be able to take the sequence resulting from xlimits and res as its first, and occ as its 'table' argument and return a vector of the same length as

18 redraw.phylo

range(xlimits)/res to be plotted. If occ is a list() object containing multiple dataframes, occurrence datasets or taxon range tables are automatically converted to work with abdistr_() or divdistr_() respectively (if the plot contains a phylogeny). If occ is a matrix or data.frame, the x values must already be converted (e.g. using tsconv()) to match the phylogeny.

Value

A plotted phylogeny with spindle diagrams plotted at each of its terminal branches.

Examples

```
data(archosauria)
data(tree_archosauria)
data(ages_archosauria)
data(diversity_table)
phylo.spindles(tree_archosauria,occ=archosauria,dscale=0.005,ages=ages_archosauria,txt.x=66)
phylo.spindles(tree_archosauria,occ=diversity_table,dscale=0.005,ages=ages_archosauria,txt.x=66)
```

redraw.phylo

Redraw the lines of a phylogenetic tree.

Description

Redraw the lines of a phylogenetic tree.

Usage

```
redraw.phylo(
  saved_plot = NULL,
  col = "black",
  lwd = 1,
  lty = 1,
  lend = 2,
  arrow.l = 0,
  arrow.angle = 45,
  arrow.code = 2,
  indices = NULL
)
```

Arguments

saved_plot	Optional saved plot (e.g. using get("last_plot.phylo", envir = ape::.PlotPhyloEnv)) to be used instead of currently active plot.
col	Color to be used for redrawing tree edges.
lwd	Line width to be used for redrawing tree edges.
lty	Line type to be used for redrawing tree edges.
lend	Style of line ends to be used for redrawing tree edges.

rmean 19

arrow.l	Length of arrow ends to be used for plotting. Defaults to 0, i.e. no visible arrow.
arrow.angle	Angle of arrow ends to be used for plotting. Defaults to 45 degrees.
arrow.code	Arrow code to be used for plotting. For details, see ?arrows
indices	Optional indices which edges to redraw. Can be used to highlight specific edges in different color or style.

Value

Plots a timescale on the currently active plot.

Examples

```
data(tree_archosauria)
ape::plot.phylo(tree_archosauria)
redraw.phylo(col="darkred",lwd=3,indices=c(19:24))
redraw.phylo(col="red",lwd=3,indices=c(18),arrow.l=0.1)
```

rmean

Calculate a rolling mean for a vector x.

Description

Calculate a rolling mean for a vector x.

Usage

```
rmean(x, width = 11)
```

Arguments

Numeric vector for which to calculate the rolling mean.
 Width of the interval over which to calculate rolling mean values. Should be an uneven number (even numbers are coerced into the next-higher uneven number)

Value

A numeric vector of the same length as x containing the calculated rolling means, with the first and last few values being NA (depending on the setting for width)

```
rmean(x=c(1,2,3,4,5,6),width=5)
```

20 rmeana

Description

Calculate a rolling mean based on distance within a second variable.

Usage

```
rmeana(x0, y0, x1 = NULL, plusminus = 5, weighting = FALSE, weightdiff = 0)
```

Arguments

x0	Numeric independent variable at which rolling mean is to be calculated.
y0	Numeric variable of which mean is to be calculated.
x1	Optional. New x values at which rolling mean of y0 is to be calculated. If $x1==NULL$, calculation will take place at original (x0) values.
plusminus	Criterium for the width (in x0) of the interval over which rolling mean values are to be calculated. Value represents the margin as calculated from every value of x1 or x0, i.e. for a plusminus==5, the interval over which the means are drawn will range from values with $x-x_i=5$ to $x-x_i=-5$.
weighting	Whether or not to apply weighting. If weighting==TRUE, then means are calculated as weighted means with weighting decreasing linearly towards the margins of the interval over which the mean is to be drawn.
weightdiff	Minimum weight to be added to all weights if weighting==TRUE. Defaults to 0.

Value

A numeric vector of the same length as either x1 (if not NULL) or x0, containing the calculated rolling means.

```
rmeana(x0=c(1,2,3,4,5,6), y0=c(2,3,3,4,5,6))
```

stax.sel 21

of an occurrence data.frame.

stax.sel Extract s

Description

Extract subsets of an occurrence data.frame.

Usage

```
stax.sel(taxa, rank = x$class, x = NULL)
```

Arguments

taxa	A vector containing subtaxa (or any other entries matching entries of rank) to be returned
rank	Vector or column of x in which to look for entries matching taxa. defaults to x\$class, for selecting class-level subtaxa from large datasets (only works if pdb(,full=TRUE))
X	Optional occurrence data.frame. If set, a data.frame with the selected entries

will be returned.

Value

If is.null(x) (default), a vector giving the indices of values matching taxa in rank. Otherwise, an occurrence data.frame() containing only the selected taxa or values.

Examples

```
data(archosauria)
archosauria$Stegosauria->stegos
stax.sel(c("Stegosaurus"), rank=stegos$genus,x=stegos)->Stegosaurus
```

synonymize

Combine selected entries in a taxon-range table to remove duplicates

Description

Combine selected entries in a taxon-range table to remove duplicates

Usage

```
synonymize(x, table = NULL, ids = table$tna, max = table$max, min = table$min)
```

22 tree.age.combine

Arguments

X	Indices or values (taxon names) to combine
table	Taxon-range table
ids	Vector or column of taxon names (used for matching taxon names in x). Defaults to table\$tna
max	Vector or column containing maximum ages
min	Vector or column containing minimum ages

Details

This function is meant as an aid to manually editing species tables and remove synonyms or incorrect spellings of taxonomic name that result in an inflated number of distinct taxa being represented.

Value

A data frame containing taxon names, maximum, minimum and mean ages, with ranges for the selected entries merged and superfluous entries removed (note that the first taxon indicated by x is kept as valid).

Examples

```
data(archosauria)
sp<-archosauria$sptab_Stegosauria
synonymize(c(32,33),sp)->sp
synonymize(grep("stenops",sp$tna),sp)->sp
synonymize(c("Hesperosaurus mjosi","Stegosaurus mjosi"),sp)->sp
```

tree.age.combine Combine two calibration matrixes and fill in NA values in one with values from another

Description

Combine two calibration matrixes and fill in NA values in one with values from another

Usage

```
tree.age.combine(ages0, ages1)
```

Arguments

ages0	First matrix, NA values in which to replace with values from second matrix
ages1	matrix from which to take replacement values

tree.ages 23

Details

tree.age.combine builds the union of two calibration matrices if some of the values in one of them are NAs. If exact matches for some entries cannot be found, a relaxed search matching only the first word (i.e. usually the genus name) in each taxon name is run, in order to fill in as much of the age matrix as possible with non-NA values. It is highly recommended to manually inspect the resulting table for accuracy.

Value

A two-column matrix containing earliest and latest occurrences for each taxon in taxa, with taxon names as row names

Examples

```
data(archosauria)
data(tree_archosauria)
tree.ages.spp(tree_archosauria,data=archosauria$sptab_Ornithopoda)->ages_A
tree.ages.spp(tree_archosauria,data=archosauria$sptab_Allosauroidea)->ages_B
tree.age.combine(ages_A,ages_B)->ages
```

tree.ages	Automatically build matrix for time-calibration of phylogenetic trees
	using occurrence data.

Description

Automatically build matrix for time-calibration of phylogenetic trees using occurrence data.

Usage

```
tree.ages(phylo0 = NULL, data = NULL, taxa = NULL)
```

Arguments

phylo0	Either an object of class phylo, or a character vector containing taxon names for building the matrix
data	Optional list()-object containing either taxon-range tables or occurrence datasets for all taxa. If NULL, data will be automatically downloaded via the pdb()-function
taxa	Deprecated argument; vector containing taxa to include in calibration matrix (can now be provided directly as phylo0)

Details

tree.ages works best for getting occurrence dates for higher-level taxa (genus-level and up) that can be used as a base_name in a call to the paleobiology database and will return NAs for species names (or any other taxon that cannot be found in the paleobiology database or the provided list object). For a function optimized to recover taxon ranges for genera and species, see tree.ages.spp(). It is highly recommended to manually inspect the resulting table for accuracy.

24 tree.ages.spp

Value

A two-column matrix containing earliest and latest occurrences for each taxon in taxa, with taxon names as row names

Examples

```
data(archosauria)
data(tree_archosauria)
tree.ages(tree_archosauria,data=archosauria)->ages
```

tree.ages.spp

Automatically build matrix for time-calibration of phylogenetic trees using occurrence data.

Description

Automatically build matrix for time-calibration of phylogenetic trees using occurrence data.

Usage

```
tree.ages.spp(phylo0, data)
```

Arguments

phylo0 Either an object of class phylo, or a character vector containing taxon names for

building the matrix

data A higher-level taxon name to get data for in the paleobiology database, or a

data.frame containing a species table containing entries for the taxa in question.

Details

tree.ages looks for the taxon names in the tna collumn of a taxon-range table (as produced by mk.sptab()), so it will only recover ages for taxa that can be found there. For a function optimized for higher-level taxa that might not be represented in such a table, see tree.ages(). It is highly recommended to manually inspect the resulting table for accuracy.

Value

A two-column matrix containing earliest and latest occurrences for each taxon in taxa, with taxon names as row names

```
data(archosauria)
data(tree_archosauria)
tree.ages.spp(tree_archosauria,data=archosauria$sptab_Ornithopoda)->ages
```

tree_archosauria 25

tree_archosauria

tree_archosauria

Description

A time-calibrated phylogenetic tree of Archosauria.

Usage

```
tree_archosauria
```

Format

An object of class==phylo with 13 tips and 12 internal nodes.

ts.periods

Add a horizontal, period-level phanerozoic timescale to any plot, especially calibrated phylogenies plotted with ape.

Description

Add a horizontal, period-level phanerozoic timescale to any plot, especially calibrated phylogenies plotted with ape.

Usage

```
ts.periods(
  phylo = NULL,
  alpha = 1,
  names = TRUE,
  exclude = c("Quarternary"),
  col.txt = NULL,
  border = NA,
  ylim = NULL,
  adj.txt = c(0.5, 0.5),
  txt.y = mean,
  bw = FALSE,
  update = NULL
)
```

26 ts.stages

Arguments	
1 LI Sulliville	

phylo	Optional (calibrated) phylogeny to which to add timescale. If phylogeny is provided, the \$root.time variable is used to convert ages so that the time scale will fit the phylogeny.
alpha	Opacity value to use for the fill of the time scale
names	Logical indicating whether to plot period names (defaults to TRUE)
exclude	Character vector listing periods for which to not plot the names, if names==TRUE
col.txt	Color(s) to use for labels.
border	Color to use for the border of the timescale
ylim	Setting for height of the timescale. Can either be one single value giving the height of the timescale, in which case the function attempts to use the lower limit of the current plot as the lower margin, or a vector of length 2 containing the lower and upper limits of the timescale.
adj.txt	Numeric vector of length==2 giving horizontal and vertical label alignment (defaults to centered, i.e. 0.5 for both values)
txt.y	Function to use to determine the vertical text position (defaults to mean, i.e. centered)
bw	Logical whether to plot in black and white (defaults to FALSE). If TRUE, time scale is drawn with a white background
update	Character string giving the filename of a .csv table for providing an updated timescale. If provided, the values for plotting the time scale are taken from the csv file instead of the internally provided values. Table must have columns named periods, bottom, top and col, giving the period names, start time in ma, end time in ma and a valid color value, respectively.

Value

Plots a timescale on the currently active plot.

Examples

```
data(tree_archosauria)
ape::plot.phylo(tree_archosauria)
ts.periods(tree_archosauria, alpha=0.5)
```

ts.stages	Add a horizontal, stage-level phanerozoic timescale to any plot, espe-
	cially calibrated phylogenies plotted with ape.

Description

Add a horizontal, stage-level phanerozoic timescale to any plot, especially calibrated phylogenies plotted with ape.

ts.stages 27

Usage

```
ts.stages(
  phylo = NULL,
  alpha = 1,
  names = FALSE,
  col.txt = NULL,
  border = NA,
  ylim = NULL,
  adj.txt = c(0.5, 0.5),
  txt.y = mean,
  bw = FALSE,
  update = NULL
)
```

Arguments

phylo	Optional (calibrated) phylogeny to which to add timescale. If phylogeny is provided, the \$root.time variable is used to convert ages so that the time scale will fit the phylogeny.
alpha	Opacity value to use for the fill of the time scale
names	Logical indicating whether to plot stage names (defaults to FALSE)
col.txt	Color(s) to use for labels.
border	Color to use for the border of the timescale
ylim	Setting for height of the timescale. Can either be one single value giving the height of the timescale, in which case the function attempts to use the lower limit of the current plot as the lower margin, or a vector of length 2 containing the lower and upper limits of the timescale.
adj.txt	Numeric vector of length==2 giving horizontal and vertical label alignment (defaults to centered, i.e. 0.5 for both values)
txt.y	Function to use to determine the vertical text position (defaults to mean, i.e. centered)
bw	Logical whether to plot in black and white (defaults to FALSE). If TRUE, time scale is drawn with a white background
update	Character string giving the filename of a .csv table for providing an updated timescale. If provided, the values for plotting the time scale are taken from the csv file instead of the internally provided values. Table must have columns named stage, bottom, top and col, giving the stage names, start time in ma, end time in ma and a valid color value, respectively.

Value

Plots a timescale on the currently active plot.

28 viol

Examples

```
data(tree_archosauria)
ape::plot.phylo(tree_archosauria)
ts.stages(tree_archosauria, alpha=0.7)
ts.periods(tree_archosauria, alpha=0)
```

tsconv

Convert geological ages for accurate plotting alongside a calibrated phylogeny

Description

Convert geological ages for accurate plotting alongside a calibrated phylogeny

Usage

```
tsconv(x, phylo0 = NULL, root.time = phylo0$root.time)
```

Arguments

x A vector of geological ages to be converted.

phylo0 Phylogeny from which to take root.age

root.time Numeric root age, if not taken from a phylogeny

Value

A numeric() containing the converted geological ages

Examples

```
tsconv(c(252,201,66), root.time=300)
```

viol

Generate a violin plot

Description

Generate a violin plot

viol 29

Usage

```
viol(
  х,
  pos = 0,
  x2 = NULL,
  stat = density,
  dscale = 1,
  cutoff = range(x),
  horiz = TRUE,
  add = TRUE,
  lim = cutoff,
 xlab = "",
ylab = "",
  fill = "grey",
  col = "black",
  lwd = 1,
  lty = 1,
)
```

Arguments

xlab

Х	Variable for which to plot violin.
pos	Position at which to place violin in the axis perpendicular to x. Defaults to 0
x2	Optional variable to use instead of x as input variable for the violin plot. If $x2$ is set, the function (default: density()) used to calculate the plotting statistic is run on $x2$ instead of x, but the results are plotted at the corresponding x values.
stat	The plotting statistic. Details to the density() function, as in a standard violin plot, but can be overridden with another function that can take x or x2 as its first argument. Stat can also be a numeric vector of the same length as x, in which case the values in this vectors are used instead of the function output and plotted against x as an independent variable.
dscale	The scale to apply to the values for density (or another plotting statistic). Defaults to 1, but adjustment may be needed depending on the scale of the plot the violin is to be added to.
cutoff	Setting for cropping the violin. Can be either a single value, in which case the input is interpreted as number of standard deviations from the mean, or a numeric vector of length 2, giving the lower and upper cutoff value directly.
horiz	Logical indicating whether to plot horizontally (defaults to TRUE) or vertically
add	Logical indicating whether to add to an existing plot (defaults to TRUE) or generate a new plot.
lim	Limits (in the dimensions of x) used for plotting, if add==FALSE. Defaults to cutoff, but can be manually set as a numeric vector of length 2, giving the lower

and upper limits of the plot.

x axis label

30 viol

ylab	y axis label
fill	Fill color for the plotted violin
col	Line color for the plotted violin
lwd	Line width for the plotted violin
lty	Line width for the plotted violin
	Other arguments to be passed on to function in parameter stat

Details

Viol provides a versatile function for generating violin plots and adding them to r base graphics. The default plotting statistic is density(), resulting in the standard violin plot. However, density can be overridden by entering any function that can take x or x2 as its first argument, or any numeric vector containing the data to be plotted, as long as this vector is the same length as x.

Value

A violin plot and a data.frame containing the original and modified plotting statistic and independent variable against which it is plotted.

```
\label{eq:viol} $$ viol(x=c(1,2,2,2,3,4,4,3,2,2,3,3,4,5,3,3,2,2,1,6,7,6,9), pos=1, add=FALSE) $$ viol(c(1:10), width=9, stat=rmean, pos=0, add=FALSE) $$ viol(c(1:10), stat=c(11:20), pos=0, add=FALSE) $$
```

Index

```
* datasets
                                                    tree.ages.spp, 24
    ages_archosauria, 5
                                                    tree_archosauria, 25
    archosauria, 5
                                                    ts.periods, 25
    diversity_table, 10
                                                    ts.stages, 26
    tree_archosauria, 25
                                                    tsconv, 28
                                                    viol, 28
ab.gg, 2
abdistr_{-}, 3
add.alpha, 4
ages\_archosauria, 5
archosauria, 5
convert.sptab, 6
darken, 6
div.gg, 7
divdistr_, 8
divdistr_int, 9
{\tt diversity\_table}, \\ 10
ggcol, 10
mk.sptab, 11
occ.cleanup, 12
pdb, 13
\verb"pdb.autodiv", 14"
pdb.diff, 14
pdb.union, 15
phylo.spindles, 16
redraw.phylo, 18
rmean, 19
rmeana, 20
stax.sel, 21
synonymize, 21
{\tt tree.age.combine}, {\tt 22}
tree.ages, 23
```