Package ‘statnet.common’

May 24, 2023
Version 4.9.0
Date 2023-05-24
Title Common R Scripts and Utilities Used by the Statnet Project Software

Description Non-statistical utilities used by the software developed by the Stat-
net Project. They may also be of use to others.

Depends R (>=3.5)

Imports utils, methods, coda, parallel, tools

BugReports https://github.com/statnet/statnet.common/issues
License GPL-3 + file LICENSE

URL https://statnet.org
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3

Encoding UTF-8

Suggests covr,
rlang >=1.1.1),
MASS,
Matrix

R topics documented:

all_identical e 3
as.control.list L L e e e 3
1 5
check.control.class e e 5
COMPIESS_TOWS + & v v v v v e 6
compress_rows.dataframe oL L L 7
controlliSt.acCesSOr e e e e e e 8
controlremap 9
default_options L 10
deInf e 10
deprecation-utilities Lo 11

https://github.com/statnet/statnet.common/issues
https://statnet.org

Index

R topics documented:

despace e e 12
diff.control.list oL 12
EMPLY_ENV . . . ottt e 13
ERRVL e e 14
fixed.pval e 15
forkTimeout e e e e e e e 16
formulautilities e e e 17
handle.controls e 20
1S.SPD . L e e 21
locate_function e e e 21
logspace.utils e 22
meme-utilities L e e 24
MESSAZE_PIINL ot it e e e e e e e e e e e e e e 25
NV . e e 26
ONCE & v v o v e e e e e e e e e e e e e e e e e e e 28
OPLEESE . o o o v e e e e e e e e e 29
Order o e e e e e 30
paste.and L. e e 31
persistEval 32
print.control.list L. e 33
set.control.class L e e e 34
simplify_simple 35
snctrl . oL L e e 36
snctrl_names L e 37
splitarray e 38
SSOIVE . . o e e e e e e e e 39
StAtNEL.CILE o o e e e e e e e e e e e e e e e 40
statnetStartupMessage L. e 41
SWEEp_COlS.matriX e 42
term_liSt L e 43
M_BNV . . . o ot e e e e e e e e e e e e e e e e e e 44
ULt . e e e 45
unused_dots_warning Lo 46
unwhich e 47
vectornamesmatch oL 47
Welford e e 48
WINAMIX . . v v v v e 49
Wmatrix_weights e e 52
XTAX e e e e e e 53

55

all identical

all_identical Test if all items in a vector or a list are identical.

Description

Test if all items in a vector or a list are identical.

Usage

all_identical(x)

Arguments

X a vector or a list

Value

TRUE if all elements of x are identical to each other.

See Also

identical

Examples

stopifnot(!all_identical(1:3))

stopifnot(all_identical(list("a", "a", "a")))

as.control.list Convert to a control list.

Description

Convert to a control list.
Usage
as.control.list(x, ...)

S3 method for class 'control.list'
as.control.list(x, ...)

S3 method for class 'list'
as.control.list(x, FUN = NULL, unflat = TRUE, ...)

4 as.control.list

Arguments

X An object, usually a 1ist, to be converted to a control list.
Additional arguments to methods.

FUN Either a control.x() function or its name or suffix (to which "control."” will
be prepended); defaults to taking the nearest (in the call traceback) function
that does not begin with "as.control.list"”, and prepending "control." to
it. (This is typically the function that called as.control.list() in the first
place.)

unflat Logical, indicating whether an attempt should be made to detect whether some
of the arguments are appropriate for a lower-level control function and pass them
down.

Value

acontrol.list object.

Methods (by class)

e as.control.list(control.list): Idempotent method for control lists.

* as.control.list(list): The method for plain lists, which runs them through FUN.

Examples
myfun <- function(..., control=control.myfun()){
as.control.list(control)
3

control.myfun <- function(a=1, b=a+1){
list(a=a,b=b)
3

myfun()

myfun(control = list(a=2))

myfun2 <- function(..., control=control.myfun2()){
as.control.list(control)

3

control.myfun2 <- function(c=3, d=c+2, myfun=control.myfun()){
list(c=c,d=d,myfun=myfun)

3

myfun2()

Argument to control.myfun() (i.e., a) gets passed to it, and a
warning is issued for unused argument e.

myfun2(control = list(c=3, a=2, e=3))

attr 5

attr A wrapper for base: :attr which defaults to exact matching.

Description

A wrapper for base::attr which defaults to exact matching.

Usage
attr(x, which, exact = TRUE)

Arguments

X, which, exact asinbase::attr, but with exact defaulting to TRUE in this implementation

Value

as in base::attr

Examples

x <- list()
attr(x, "name") <- 10

base::attr(x, "n")
stopifnot(is.null(attr(x, "n")))

base::attr(x, "n", exact = TRUE)

check.control.class Ensure that the class of the control list is one of those that can be used
by the calling function

Description

This function converts an ordinary list into a control list (if needed) and checks that the control
list passed is appropriate for the function to be controlled.

Usage

check.control.class(
OKnames = as.character(ult(sys.calls(), 2)L[1L1D),
myname = as.character(ult(sys.calls(), 2)[[1L]1D),
control = get("control”, pos = parent.frame())

)

6 compress_rows

Arguments
OKnames List of control function names which are acceptable.
myname Name of the calling function (used in the error message).
control The control list or a list to be converted to a control list using control.myname().
Defaults to the control variable in the calling function. See Details for detailed
behavior.
Details

check.control.class() performs the check by looking up the class of the control argument
(defaulting to the control variable in the calling function) and checking if it matches a list of
acceptable given by OKnames.

Before performing any checks, the control argument (including the default) will be converted to a
control list by calling as.control.list() on it with the first element of OKnames to construct the
control function.

If control is missing, it will be assumed that the user wants to modify it in place, and a variable
with that name in the parent environment will be overwritten.

Value
A valid control list for the function in which it is to be used. If control argument is missing, it will
also overwrite the variable control in the calling environment with it.

Note
In earlier versions, OKnames and myname were autodetected. This capability has been deprecated
and results in a warning issued once per session. They now need to be set explicitly.

See Also

set.control.class(), print.control.list(), as.control.list()

Compress_rows A generic function to compress a row-weighted table

Description

Compress a matrix or a data frame with duplicated rows, updating row weights to reflect frequen-
cies, or reverse the process, reconstructing a matrix like the one compressed (subject to permutation
of rows and weights not adding up to an integer).

Usage

compress_rows(x, ...)

decompress_rows(x, ...)

compress_rows.data.frame 7

Arguments
X a weighted matrix or data frame.
extra arguments for methods.
Value

For compress_rows A weighted matrix or data frame of the same type with duplicated rows re-
moved and weights updated appropriately.

compress_rows.data.frame
"Compress" a data frame.

Description

compress_rows.data.frame "compresses" a data frame, returning unique rows and a tally of the
number of times each row is repeated, as well as a permutation vector that can reconstruct the
original data frame. decompress_rows. compressed_rows_df reconstructs the original data frame.

Usage

S3 method for class 'data.frame'
compress_rows(x, ...)

S3 method for class 'compressed_rows_df"'

decompress_rows(x, ...)
Arguments
X For compress_rows.data. frame adata. frame to be compressed. For decompress_rows.compress_rc

a list as returned by compress_rows.data. frame.

Additional arguments, currently unused.

Value

For compress_rows.data.frame, a 1ist with three elements:

rows Unique rows of x

frequencies A vector of the same length as the number or rows, giving the number of times
the corresponding row is repeated

ordering A vector such that if ¢ is the compressed data frame, c$rows[c$ordering, ,drop=FALSE]
equals the original data frame, except for row names

rownames Row names of x

For decompress_rows. compressed_rows_df, the original data frame.

8 control.list.accessor

See Also

data.frame

Examples

(x <- data.frame(Vi=sample.int(3,30,replace=TRUE),
V2=sample.int(2,30,replace=TRUE),
V3=sample.int(4,30,replace=TRUE)))

(c <~ compress_rows(x))

stopifnot(all(decompress_rows(c)==x))

control.list.accessor Named element accessor for ergm control lists

Description

Utility method that overrides the standard ‘$’ list accessor to disable partial matching for ergm
control.list objects

Usage
S3 method for class 'control.list'
object$name

Arguments

object list-coearceable object with elements to be searched

name literal character name of list element to search for and return

Details

Executes getElement instead of $ so that element names must match exactly to be returned and
partially matching names will not return the wrong object.

Value

Returns the named list element exactly matching name, or NULL if no matching elements found

Author(s)
Pavel N. Krivitsky

See Also

see getElement

control.remap 9

control.remap Overwrite control parameters of one configuration with another.

Description

Given a control.list, and two prefixes, from and to, overwrite the elements starting with to with
the corresponding elements starting with from.

Usage

control.remap(control, from, to)

Arguments

control An object of class control.list.

from Prefix of the source of control parameters.

to Prefix of the destination of control parameters.
Value

An control.list object.

Author(s)

Pavel N. Krivitsky

See Also

print.control.list

Examples

(1 <- set.control.class("test”, list(a.x=1, a.y=2)))
control.remap(l, "a", "b")

10 delnf

default_options Set options () according to a named list, skipping those already set.

Description

This function can be useful for setting default options, which do not override options set elsewhere.

Usage

default_options(...)

Arguments
see options(): either a list of name=value pairs or a single unnamed argument
giving a named list of options to set.

Value

The return value is same as that of options() (omitting options already set).

Examples

options(onesetting=1)

default_options(onesetting=2, anothersetting=3)
stopifnot(getOption("onesetting”)==1) # Still 1.
stopifnot(getOption(”anothersetting”)==3)

default_options(list(yetanothersetting=5, anothersetting=4))
stopifnot(getOption("anothersetting”)==3) # Still 3.
stopifnot(getOption("yetanothersetting”)==5)

deInf Truncate values of high magnitude in a vector.

Description

Truncate values of high magnitude in a vector.

Usage
deInf(x, replace = 1/.Machine$double.eps)

Arguments

X a numeric or integer vector.

replace a number or a string "maxint” or "intmax".

deprecation-utilities 11

Value

Returns x with elements whose magnitudes exceed replace replaced replaced by replace (or its
negation). If replace is "maxint"” or "intmax", .Machine$integer.max is used instead.

NA and NAN values are preserved.

deprecation-utilities Utilities to help with deprecating functions.

Description

.Deprecate_once calls .Deprecated(), passing all its arguments through, but only the first time
it’s called.

.Deprecate_method calls .Deprecated(), but only if a method has been called by name, i.e.,
METHOD . CLASS. Like .Deprecate_once it only issues a warning the first time.

Usage

.Deprecate_once(...)

.Deprecate_method(generic, class)

Arguments

arguments passed to .Deprecated().

generic, class strings giving the generic function name and class name of the function to be
deprecated.

Examples

Not run:
options(warn=1) # Print warning immediately after the call.
f <= function(){
.Deprecate_once("new_f")
3
f() # Deprecation warning
f() # No deprecation warning

End(Not run)

Not run:

options(warn=1) # Print warning immediately after the call.

summary . packageDescription <- function(object, ...){
.Deprecate_method("summary”, "packageDescription”)
invisible(object)

}

summary (packageDescription("statnet.common”)) # No warning.
summary . packageDescription(packageDescription("”statnet.common”)) # Warning.

12 diff.control.list

summary .packageDescription(packageDescription("”statnet.common”)) # No warning.

End(Not run)

despace A one-line function to strip whitespace from its argument.

Description

A one-line function to strip whitespace from its argument.

Usage

despace(s)

Arguments

S a character vector.

Examples

stopifnot(despace(”\n \t ")=="")

diff.control.list Identify and the differences between two control lists.

Description

Identify and the differences between two control lists.

Usage

S3 method for class 'control.list'
diff(x, y = eval(call(class(x)[[1L]1])), ignore.environment = TRUE, ...)

S3 method for class 'diff.control.list'

print(x, ..., indent = "")
Arguments
X acontrol.list
y areference control.list; defaults to the default settings for x.

ignore.environment

whether environment for environment-bearing parameters (such as formulas and
functions) should be considered when comparing.

Additional arguments to methods.

indent an argument for recursive calls, to facilitate indentation of nested lists.

empty_env 13

Value

Anobject of class diff.control.list: anamed list with an element for each non-identical setting.
The element is either itself a diff.control.list (if the setting is a control list) or a named list
with elements x and y, containing x’s and y’s values of the parameter for that setting.

Methods (by generic)

e print(diff.control.list): A print method.

empty_env Replace an object’s environment with a simple, static environment.

Description

Replace an object’s environment with a simple, static environment.

Usage

empty_env(object)

base_env(object)

Arguments

object An object with the environment ()<- method.

Value

An object of the same type as object, with updated environment.

Examples

f <= y~x
environment (f) # GlobalEnv

environment(empty_env(f)) # EmptyEnv

environment(base_env(f)) # base package environment

14 ERRVL

ERRVL Return the first argument passed (out of any number) that is not a
try-error (result of try encountering an error.

Description
This function is inspired by NVL, and simply returns the first argument that is not a try-error,
raising an error if all arguments are try-errors.

Usage
ERRVL(...)

Arguments

Expressions to be tested; usually outputs of try.

Value

The first argument that is not a try-error. Stops with an error if all are.

Note

This function uses lazy evaluation, so, for example ERRVL (1, stop("Error!")) will never evaluate
the stop call and will not produce an error, whereas ERRVL(try(solve(@)), stop("Error!"))
would.

In addition, all expressions after the first may contain a ., which is substituted with the try-error
object returned by the previous expression.

See Also

try, inherits

Examples

print(ERRVL(1,2,3)) # 1
print(ERRVL(try(solve(0)),2,3)) # 2
print(ERRVL(1, stop("Error!"))) # No error

Not run:

Error:

print(ERRVL(try(solve(@), silent=TRUE),
stop("Error!")))

Error with an elaborate message:
print(ERRVL(try(solve(@), silent=TRUE),
stop("Stopped with an error: ", .)))

End(Not run)

fixed.pval 15

fixed.pval Format a p-value in fixed notation.

Description

This is a thin wrapper around format.pval() that guarantees fixed (not scientific) notation, links
(by default) the eps argument to the digits argument and vice versa, and sets nsmall to equal
digits.

Usage

fixed.pval(
pv,
digits = max(1, getOption("digits") - 2),
eps = 10*-digits,
na.form = "NA",

Arguments

pv, digits, eps, na.form, ...
see format.pval().

Value

A character vector.

Examples

pvs <- 104((0:-12)/2)

Jointly:
fpf <- fixed.pval(pvs, digits = 3)
fpf

format.pval(pvs, digits = 3) # compare

Individually:

fpf <- sapply(pvs, fixed.pval, digits = 3)
fpf

sapply(pvs, format.pval, digits = 3) # compare

Control eps:
fpf <- sapply(pvs, fixed.pval, eps = 1e-3)
fpf

16 forkTimeout

forkTimeout Evaluate an R expression with a hard time limit by forking a process

Description

This function uses parallel: :mcparallel(), so the time limit is not enforced on Windows. How-
ever, unlike functions using setTimeLimit (), the time limit is enforced even on native code.

Usage
forkTimeout (
expr,
timeout,
unsupported = c("warning”, "error"”, "message”, "silent"),
onTimeout = NULL
)
Arguments
expr expression to be evaluated.
timeout number of seconds to wait for the expression to evaluate.
unsupported a character vector of length 1 specifying how to handle a platform that does not
support parallel: :mcparallel(),
"warning"” or "message” Issue a warning or a message, respectively, then eval-
uate the expression without the time limit enforced.
"error” Stop with an error.
"silent” Evaluate the expression without the time limit enforced, without any
notice.
Partial matching is used.
onTimeout Value to be returned on time-out.
Value

Result of evaluating expr if completed, onTimeout otherwise.

Note

onTimeout can itself be an expression, so it is, for example, possible to stop with an error by passing
onTimeout=stop().

Note that this function is not completely transparent: side-effects may behave in unexpected ways.
In particular, RNG state will not be updated.

Examples

forkTimeout ({Sys.sleep(1); TRUE}, 2) # TRUE
forkTimeout ({Sys.sleep(1); TRUE}, 0.5) # NULL (except on Windows)

formula.utilities

17

formula.utilities

Functions for Querying, Validating and Extracting from Formulas

Description

A suite of utilities for handling model formulas of the style used in Statnet packages.

Usage

append_rhs. formula(
object = NULL,

newterms,

keep.onesided = FALSE,
env = if (is.null(object)) NULL else environment(object)

)

append.rhs.formula(object, newterms, keep.onesided = FALSE)

filter_rhs.formula(object, f, ...)
nonsimp_update.formula(object, new, ..., from.new = FALSE)
nonsimp.update.formula(object, new, ..., from.new = FALSE)

term.list.formula(rhs, sign = +1)

list_summands.call(object)

list_rhs.formula(object)

eval_lhs.formula(object)

Arguments

object

newterms

keep.onesided

env

formula object to be updated or evaluated

a term_list object, or any list of terms (names or calls) to append to the for-
mula, or a formula whose RHS terms will be used; its "sign” attribute vector
can give the sign of each term (+1 or -1), and its "env" attribute vector will be
used to set its environment, with the first available being used and subsequent
ones producing a warning.

if the initial formula is one-sided, keep it whether to keep it one-sided or whether
to make the initial formula the new LHS

an environment for the new formula, if object is NULL

a function whose first argument is the term and whose additional arguments are
forwarded from ... that returns either TRUE or FALSE, for whether that term
should be kept.

18 formula.utilities

Additional arguments. Currently unused.
new new formula to be used in updating

from.new logical or character vector of variable names. controls how environment of for-
mula gets updated.

rhs, sign Arguments to the deprecated term.list.formula.

Value

append_rhs.formula each return an updated formula object; if object is NULL (the default), a
one-sided formula containing only the terms in newterms will be returned.

nonsimp_update.formula each return an updated formula object

list_summands.call returns an object of type term_list; its "env"” attribute is set to a list of
NULLs, however.

list_rhs.formula returns an object of type term_list.

eval_lhs.formula an object of whatever type the LHS evaluates to.

Functions

* append_rhs.formula(): append_rhs.formula appends a list of terms to the RHS of a for-
mula. If the formula is one-sided, the RHS becomes the LHS, if keep.onesided==FALSE (the
default).

e append.rhs.formula(): append.rhs.formula has been renamed to append_rhs. formula.

e filter_rhs.formula(): filter_rhs.formula filters through the terms in the RHS of a for-
mula, returning a formula without the terms for which function f (term, ...) is FALSE. Terms
inside another term (e.g., parentheses or an operator other than + or -) will be unaffected.

* nonsimp_update.formula(): nonsimp_update.formula is a reimplementation of update. formula
that does not simplify. Note that the resulting formula’s environment is set as follows. If
from.new==FALSE, it is set to that of object. Otherwise, a new sub-environment of object,
containing, in addition, variables in new listed in from.new (if a character vector) or all of new
(if TRUE).

* nonsimp.update.formula(): nonsimp.update.formula has been renamed to nonsimp_update.formula.

e term.list.formula(): term.list.formula is an older version of 1ist_rhs.formula that
required the RHS call, rather than the formula itself.

e list_summands.call(): list_summands.call, given an unevaluated call or expression
containing the sum of one or more terms, returns an object of class term_list with the terms
being summed, handling + and - operators and parentheses, and keeping track of whether a
term has a plus or a minus sign.

e list_rhs.formula(): list_rhs.formula returns an object of type term_list, containing
terms in a given formula, handling + and - operators and parentheses, and keeping track of
whether a term has a plus or a minus sign.

e eval_lhs.formula(): eval_lhs.formula extracts the LHS of a formula, evaluates it in the
formula’s environment, and returns the result.

formula.utilities 19

Examples

append_rhs.formula

(f1 <- append_rhs.formula(y~x,list(as.name("z1"),as.name("z2"))))

(f2 <- append_rhs.formula(~y,list(as.name("z"))))

(f3 <- append_rhs.formula(~y+x,structure(list(as.name("z")),sign=-1)))
(f4 <- append_rhs.formula(~y,list(as.name("z")),TRUE))

(f5 <- append_rhs.formula(y~x,~z1-z2))

(f6 <- append_rhs.formula(NULL,list(as.name("z"))))

(f7 <- append_rhs.formula(NULL,structure(list(as.name("z")),sign=-1)))

fe <- ~z2+z3

environment(fe) <- new.env()

(f8 <- append_rhs.formula(NULL, fe)) # OK

(f9 <- append_rhs.formula(y~x, fe)) # Warning

(f10 <- append_rhs.formula(y~x, fe, env=NULL)) # No warning, environment from fe.
(f11 <- append_rhs.formula(fe, ~z1)) # Warning, environment from fe

filter_rhs.formula

(f1 <- filter_rhs.formula(~a-b+c, ~!=", "a"))
(f2 <- filter_rhs.formula(~-atb-c, ~!=", "a"))
(f3 <- filter_rhs.formula(~a-b+c, ~!=", "b"))
(f4 <- filter_rhs.formula(~-atb-c, ~!=", "b"))
(f5 <- filter_rhs.formula(~a-b+c, ~!=", "c"))
(f6 <- filter_rhs.formula(~-atb-c, ~!=", "c"))

(f7 <- filter_rhs.formula(~c-a+b-c(a),
function(x) (if(is.call(x)) x[[1]] else x)!="c"))

stopifnot(identical(list_rhs.formula(a~b),
structure(alist(b), sign=1, env=list(globalenv()), class="term_list")))
stopifnot(identical(list_rhs.formula(~b),
structure(alist(b), sign=1, env=list(globalenv()), class="term_list")))
stopifnot(identical(list_rhs.formula(~b+NULL),
structure(alist(b, NULL),
sign=c(1,1), env=rep(list(globalenv()), 2), class="term_list")))
stopifnot(identical(list_rhs.formula(~-b+NULL),
structure(alist(b, NULL),
sign=c(-1,1), env=rep(list(globalenv()), 2), class="term_list")))
stopifnot(identical(list_rhs.formula(~+b-NULL),
structure(alist(b, NULL),
sign=c(1,-1), env=rep(list(globalenv()), 2), class="term_list")))
stopifnot(identical(list_rhs.formula(~+b-(NULL+c)),
structure(alist(b, NULL, c),
sign=c(1,-1,-1), env=rep(list(globalenv()), 3), class="term_list")))

eval_lhs.formula

20 handle.controls

(result <- eval_lhs.formula((2+2)~1))

stopifnot(identical(result,4))

handle.controls Handle standard control.*() function semantics.

Description

This function takes the arguments of its caller (whose name should be passed explicitly), plus any

. arguments and produces a control list based on the standard semantics of control. () func-
tions, including handling deprecated arguments, identifying undefined arguments, and handling
arguments that should be passed through match.arg().

Usage
handle.controls(myname, ...)
Arguments
myname the name of the calling function.
the . .. argument of the control function, if present.
Details

The function behaves based on the information it acquires from the calling function. Specifically,
* The values of formal arguments (except . . ., if present) are taken from the environment of the
calling function and stored in the list.

* If the calling function has a ... argument and defines an old.controls variable in its en-
vironment, then it remaps the names in . .. to their new names based on old.controls. In
addition, if the value is a list with two elements, action and message, the standard depreca-
tion message will have message appended to it and then be called with action().

* If the calling function has a match.arg.pars in its environment, the arguments in that list are
processed through match.arg().

Value

a list with formal arguments of the calling function.

is.SPD 21

is.SPD Test if the object is a matrix that is symmetric and positive definite

Description

Test if the object is a matrix that is symmetric and positive definite

Usage
is.SPD(x, tol = .Machine$double.eps)

Arguments
X the object to be tested.
tol the tolerance for the reciprocal condition number.
locate_function Locate a function with a given name and return it and its environment.
Description

These functions first search the given environment, then search all loaded environments, including
those where the function is not exported. If found, they return an unambiguous reference to the
function.

Usage

locate_function(name, env = globalenv(), ...)

locate_prefixed_function(
name,
prefix,
errname,
env = globalenv(),

call. = FALSE

)

Arguments
name a character string giving the function’s name.
env an environment where it should search first.

additional arguments to the warning and error warning messages. See Details.

prefix a character string giving the prefix, so the searched-for function is prefix.name.

22 logspace.utils

errname a character string; if given, if the function is not found an error is raised, with
errname prepended to the error message.

call. a logical, whether the call (locate_prefixed_function) should be a part of
the error message; defaults to FALSE (which is different from stop()’s default).

Details

If the initial search fails, a search using getAnywhere() is attempted, with exported ("visible")
functions with the specified name preferred over those that are not. When multiple equally qualified
functions are available, a warning is printed and an arbitrary one is returned.

Because getAnywhere() can be slow, past searches are cached.

Value

If the function is found, an unevaluated call of the form ENVNAME: : : FUNNAME, which can then be
used to call the function even if it is unexported. If the environment does not have a name, or is
GlobalEnv, only FUNNAME is returned. Otherwise, NULL is returned.

Functions

* locate_function(): alow-level function returning the reference to the function named name,
or NULL if not found.

* locate_prefixed_function(): a helper function that searches for a function of the form
prefix.name and produces an informative error message if not found.

Examples

Locate a random function in base.
locate_function("”.row_names_info")

logspace.utils Utilities for performing calculations on logarithmic scale.

Description

A small suite of functions to compute sums, means, and weighted means on logarithmic scale,
minimizing loss of precision.

Usage
log_sum_exp(logx, use_ldouble = FALSE)
log_mean_exp(logx, use_ldouble = FALSE)

lweighted.mean(x, logw)

logspace.utils 23

lweighted.var(x, logw)

lweighted.cov(x, y, logw)

Arguments

logx Numeric vector of log(z), the natural logarithms of the values to be summed or
averaged.

use_ldouble Whether to use long double precision in the calculation. If TRUE, ’s C built-in
logspace_sum() is used. If FALSE, the package’s own implementation based
on it is used, using double precision, which is (on most systems) several times
faster, at the cost of precision.

X,y Numeric vectors or matrices of x and y, the (raw) values to be summed, aver-
aged, or whose variances and covariances are to be calculated.
logw Numeric vector of log(w), the natural logarithms of the weights.
Value

The functions return the equivalents of the R expressions given below, but faster and with less loss
of precision.

Functions

* log_sum_exp(): log(sum(exp(logx)))
e log_mean_exp(): log(mean(exp(logx)))

* lweighted.mean(): weighted mean of x: sum(x*exp(logw))/sum(exp(logw)) for x scalar
and colSums (x*exp(logw))/sum(exp(logw)) for x matrix

* lweighted.var(): weighted variance of x: crossprod(x-lweighted.mean(x,logw)*exp(logw/2))/sum(exp(logy

* lweighted.cov(): weighted covariance between x and y: crossprod(x-lweighted.mean(x, logw)*exp(logw/2),
y-lweighted.mean(y, logw)*exp(logw/2))/sum(exp(logw))

Author(s)
Pavel N. Krivitsky

Examples

X <= rnorm(1000)
stopifnot(all.equal (log_sum_exp(x), log(sum(exp(x))), check.attributes=FALSE))
stopifnot(all.equal (log_mean_exp(x), log(mean(exp(x))), check.attributes=FALSE))

logw <- rnorm(1000)
stopifnot(all.equal(m <- sum(x*exp(logw))/sum(exp(logw)),lweighted.mean(x, logw)))
stopifnot(all.equal (sum((x-m)*2xexp(logw))/sum(exp(logw)),

lweighted.var(x, logw), check.attributes=FALSE))

X <- cbind(x, rnorm(1000))
stopifnot(all.equal(mx <- colSums(x*exp(logw))/sum(exp(logw)),

24 mcmc-utilities

lweighted.mean(x, logw), check.attributes=FALSE))
stopifnot(all.equal(crossprod(t(t(x)-mx)*exp(logw/2))/sum(exp(logw)),
lweighted.var(x, logw), check.attributes=FALSE))

y <= cbind(x, rnorm(1000))

my <- colSums(y*exp(logw))/sum(exp(logw))

stopifnot(all.equal(crossprod(t(t(x)-mx)*exp(logw/2), t(t(y)-my)*exp(logw/2))/sum(exp(logw)),
lweighted.cov(x, vy, logw), check.attributes=FALSE))

stopifnot(all.equal(crossprod(t(t(y)-my)*exp(logw/2), t(t(x)-mx)*exp(logw/2))/sum(exp(logw)),
lweighted.cov(y, x, logw), check.attributes=FALSE))

mcmc-utilities Utility operations for mcmc. list objects

Description

colMeans.mcmc. list is a "method" for (non-generic) colMeans applicable to mcmc. 1ist objects.
sweep.mcmc. list is a "method" for (non-generic) sweep applicable to mcmc. 1ist objects.

lapply.mcmc.list is a "method" for (non-generic) lapply applicable to memc. 1ist objects.

Usage
colMeans.mcmc.list(x, ...)
sweep.mcmc. list(x, STATS, FUN = "-" check.margin = TRUE, ...)
lapply.mcmc.list(X, FUN, ...)
Arguments
X amcmc. list object.

e additional arguments to colMeans or sweep.
STATS, FUN, check.margin
See help for sweep.

X An mcmc. list object.

Value

colMeans.mcmc returns a vector with length equal to the number of mcmc chains in x with the mean
value for each chain.

sweep.mcmc. list returns an appropriately modified version of x

lapply.mcmc. list returns an memc. list each of whose chains had been passed through FUN.

message_print 25

See Also

colMeans, mcmc.list
sweep

lapply

Examples

data(line, package="coda")
summary(line) # coda
colMeans.mecmc.list(line) # "Method”

data(line, package="coda")
colMeans.mecmc.list(line)-1:3
colMeans.mcmc. list(sweep.memc.list(line, 1:3))

data(line, package="coda")
colMeans.mcmc. list(line)[c(2,3,1)]
colMeans.mecmc.list(lapply.mcmec.list(line, “[7,,c(2,3,1)))

message_print print objects to the message output.

Description

A thin wrapper around print that captures its output and prints it as a message, usually to STDERR.

Usage

message_print(..., messageArgs = NULL)

Arguments

arguments to print.

messageArgs a list of arguments to be passed directly to message.

Examples

cat(1:5)

print(1:5)
message_print(1:5) # Looks the same (though may be in a different color on some frontends).

suppressMessages(print(1:5)) # Still prints
suppressMessages(message_print(1:5)) # Silenced

26

NVL

NVL

Convenience functions for handling NULL objects.

Description

Convenience functions for handling NULL objects.

Usage
NVL(...)
NVL2(test, notnull, null = NULL)
NVL3(test, notnull, null = NULL)
EVL(...)
EVL2(test, notnull, null = NULL)
EVL3(test, notnull, null = NULL)
NVL(x) <- value
EVL(x) <- value
Arguments
..., test expressions to be tested.
notnull expression to be returned if test is not NULL.
null expression to be returned if test is NULL.
X an object to be overwritten if NULL.
value new value for x.
Functions

NVL(): Inspired by SQL function NVL, returns the first argument that is not NULL, or NULL if
all arguments are NULL.

NVL2(): Inspired by Oracle SQL function NVL2, returns the second argument if the first ar-
gument is not NULL and the third argument if the first argument is NULL. The third argument
defaults to NULL, so NVL2(a, b) can serve as shorthand for (if(!is.null(a)) b).

NVL3(): Inspired by Oracle SQL NVL2 function and magittr %>% operator, behaves as NVL2
but .s in the second argument are substituted with the first argument.

EVL(): As NVL, but for any objects of length O (Empty) rather than just NULL. Note that if no
non-zero-length arguments are given, NULL is returned.

EVL2(): As NVL2, but for any objects of length 0 (Empty) rather than just NULL.

NVL 27

e EVL3(): As NVL3, but for any objects of length 0 (Empty) rather than just NULL.

* NVL(x) <- value: Assigning to NVL overwrites its first argument if that argument is NULL.
Note that it will always return the right-hand-side of the assignment (value), regardless of
what x is.

e EVL(x) <- value: As assignment to NVL, but for any objects of length O (Empty) rather than
just NULL.

Note

Whenever possible, these functions use lazy evaluation, so, for example NVL(1, stop("Error!"))
will never evaluate the stop call and will not produce an error, whereas NVL (NULL, stop("Error!"))
would.

See Also

NULL, is.null, if

Examples

a <- NULL

a # NULL
NVL(a,0) # 0

b <-1

b #1
NVL(b,0) # 1

Here, object x does not exist, but since b is not NULL, x is
never evaluated, so the statement finishes.
NVL(b,x) # 1

Also,

NVL(NULL,1,0) # 1
NVL(NULL,@,1) # 0
NVL(NULL,NULL,Q) # @

NVL (NULL,NULL,NULL) # NULL

NVL2(a, "not null!”, "null!") # "null!”
NVL2(b, "not null!”, "null!") # "not null!”
NVL3(a, "not null!”, "null!”) # "null!”

NVL3(b, .+1, "null!"™) # 2
NVL(NULL*2, 1) # numeric(@) is not NULL

EVL(NULL*2, 1) # 1

NVL(a) <- 2
a# 2

28 once

NVL(b) <- 2
b # still 1
once Evaluate a function once for a given input.
Description

This is a purrr-style adverb that checks if a given function has already been called with a given
configuration of arguments and skips it if it has.

Usage

once(f, expire_after = Inf, max_entries = Inf)

Arguments

f A function to modify.

expire_after The number of seconds since it was added to the database before a particular
configuration is "forgotten". This can be used to periodically remind the user
without overwhelming them.

max_entries The number of distinct configurations to remember. If not Inf, earliest-inserted
configurations will be removed from the database when capacity is exceeded.
(This exact behavior may change in the future.)

Details

Each modified function instance returned by once() maintains a database of previous argument
configurations. They are not in any way compressed, so this database may grow over time. Thus,
this wrapper should be used with caution if arguments are large objects. This may be replaced with
hashing in the future. In the meantime, you may want to set the max_entries argument to be safe.

Different instances of a modified function do not share databases, even if the function is the same.
This means that if you, say, modify a function within another function, the modified function will
call once per call to the outer function. Modified functions defined at package level count as the
same "instance", however. See example.

Note

Because the function needs to test whether a particular configuration of arguments have already
been used, do not rely on lazy evaluation behaviour.

opttest

Examples

msg <- once(message)
msg("abc") # Prints.
msg("abc") # Silent.

msg <- once(message) # Starts over.
msg("abc") # Prints.

f <= function(){
innermsg <- once(message)
innermsg("efg") # Prints once per call to f().
innermsg("efg”) # Silent.
msg("abcd”) # Prints only the first time f() is called.
msg("abcd”) # Silent.

3

f() # Prints "efg” and "abcd”.

f() # Prints only "efg".

msg3 <- once(message, max_entries=3)
msg3("a") # 1 remembered.

msg3(”a") # Silent.
msg3("b") # 2 remembered.
msg3("a") # Silent.
msg3("c") # 3 remembered.
msg3("a") # Silent.
msg3("d") # "a" forgotten.
msg3(”a"”) # Printed.

msg2s <- once(message, expire_after=2)
msg2s("abc”) # Prints.

msg2s("abc") # Silent.

Sys.sleep(1)

msg2s("abc”) # Silent after 1 sec.
Sys.sleep(1.1)

msg2s("abc"”) # Prints after 2.1 sec.

29

opttest Optionally test code depending on environment variable.

Description

A convenience wrapper to run code based on whether an environment variable is defined.

Usage

opttest(
expr,
testname = NULL,

30 order

testvar "ENABLE_statnet_TESTS",
yesvals = C(”y", "yes”, ”t", ”true"’ ”‘I”),
lowercase = TRUE

)
Arguments
expr An expression to be evaluated only if testvar is set to a non-empty value.
testname Optional name of the test. If given, and the test is skipped, will print a message
to that end, including the name of the test, and instructions on how to enable it.
testvar Environment variable name. If set to one of the yesvals, expr is run. Other-
wise, an optional message is printed.
yesvals A character vector of strings considered affirmative values for testvar.
lowercase Whether to convert the value of testvar to lower case before comparing it to
yesvals.
order Implement the sort and order methods for data.frame and matrix,
sorting it in lexicographic order.
Description

These function return a data frame sorted in lexcographic order or a permutation that will rearrange
it into lexicographic order: first by the first column, ties broken by the second, remaining ties by the
third, etc..

Usage

order(..., na.last = TRUE, decreasing = FALSE)

Default S3 method:

order(..., na.last = TRUE, decreasing = FALSE)
S3 method for class 'data.frame'

order(..., na.last = TRUE, decreasing = FALSE)
S3 method for class 'matrix'

order(..., na.last = TRUE, decreasing = FALSE)

S3 method for class 'data.frame'
sort(x, decreasing = FALSE, ...)

paste.and 31

Arguments
Ignored for sort. For order, first argument is the data frame to be ordered.
(This is needed for compatibility with order.)
na.last See order documentation.
decreasing Whether to sort in decreasing order.
X A data. frame to sort.
Value

For sort, a data frame, sorted lexicographically. For order, a permutation I (of a vector 1:nrow(x))
such that x[I, ,drop=FALSE] equals x ordered lexicographically.

See Also

data.frame, sort, order, matrix
Examples

data(iris)

head(iris)

head(order(iris))

head(sort(iris))

stopifnot(identical(sort(iris),iris[order(iris), 1))

paste.and Concatenates the elements of a vector (optionaly enclosing them in
quotation marks or parentheses) adding appropriate punctuation and
conjunctions.
Description

A vector x becomes "x[1]1", "x[1] and x[2]", or "x[1], x[2], and x[3]", depending on the langth

of x.
Usage
paste.and(x, og = "", cq = "", con = "and")
Arguments
X A vector.
oq Opening quotation symbol. (Defaults to none.)
cq Closing quotation symbol. (Defaults to none.)

con Conjunction to be used if length(x)>1. (Defaults to "and".)

32 persistEval

Value

A string with the output.

See Also

paste, cat

Examples
print(paste.and(c()))
print(paste.and(1))
print(paste.and(1:2))
print(paste.and(1:3))

print(paste.and(1:4,con="'or"))

persistEval Evaluate an expression, restarting on error

Description

A pair of functions paralleling eval () and evalq() that make multiple attempts at evaluating an
expression, retrying on error up to a specified number of attempts, and optionally evaluating another
expression before restarting.

Usage

persistEval(
expr,
retries = NVL(getOption("eval.retries”), 5),
beforeRetry,
envir = parent.frame(),
enclos = if (is.list(envir) || is.pairlist(envir)) parent.frame() else baseenv(),
verbose = FALSE

)

persistEvalQ(
expr,
retries = NVL(getOption("eval.retries"), 5),
beforeRetry,
envir = parent.frame(),
enclos = if (is.list(envir) || is.pairlist(envir)) parent.frame() else baseenv(),
verbose = FALSE

print.control.list 33

Arguments
expr an expression to be retried; note the difference between eval() and evalq().
retries number of retries to make; defaults to "eval.retries” option, or 5.
beforeRetry if given, an expression that will be evaluated before each retry if the initial at-

tempt fails; it is evaluated in the same environment and with the same quoting
semantics as expr, but its errors are not handled.

envir, enclos seeeval().

verbose Whether to output retries.

Value

Results of evaluating expr, including side-effects such as variable assignments, if successful in
retries retries.

Note

If expr returns a "try-error” object (returned by try()), it will be treated as an error. This
behavior may change in the future.

Examples

x <- 0
persistEvalQ({if ((x<-x+1)<3) stop("x < 3") else x},
beforeRetry = {cat("Will try incrementing...\n")})

X <- 0
e <- quote(if((x<-x+1)<3) stop("x < 3") else x)
persistEval(e,
beforeRetry = quote(cat("Will try incrementing...\n")))

print.control.list Pretty print the control list

Description

This function prints the control list, including what it can control and the elements.

Usage
S3 method for class 'control.list'
print(x, ..., indent = "")
Arguments
X A list generated by a control. x function.

Additional argument to print methods for individual settings.

indent an argument for recursive calls, to facilitate indentation of nested lists.

34 set.control.class

See Also

check.control.class, set.control.class

set.control.class Set the class of the control list

Description

This function sets the class of the control list, with the default being the name of the calling function.

Usage

set.control.class(
myname = as.character(ult(sys.calls(), 2)[[1L1D),
control = get("control”, pos = parent.frame())

)
Arguments

myname Name of the class to set.

control Control list. Defaults to the control variable in the calling function.
Value

The control list with class set.

Note

In earlier versions, OKnames and myname were autodetected. This capability has been deprecated
and results in a warning issued once per session. They now need to be set explicitly.

See Also

check.control.class(), print.control.list()

simplify_simple 35

simplify_simple Convert a list to an atomic vector if it consists solely of atomic ele-
ments of length 1.

Description

This behaviour is not dissimilar to that of simplify2array(), but it offers more robust handling
of empty or NULL elements and never promotes to a matrix or an array, making it suitable to be a
column of a data. frame.

Usage

simplify_simple(
X,
toNA = c("null”, "empty”, "keep"),
empty = c("keep”, "unlist"),

)
Arguments
X an R 1ist to be simplified.
toNA a character string indicating whether NULL entries (if "null”) or O-length en-
tries including NULL (if "empty") should be replaced with NAs before attempting
conversion; specifying keep or FALSE leaves them alone (typically preventing
conversion).
empty a character string indicating how empty lists should be handled: either "keep”,
in which case they are unchanged or "unlist”, in which cases they are unlisted
(typically to NULL).
additional arguments passed to unlist().
Value

an atomic vector or a list of the same length as x.

Examples

(x <= as.list(1:5))
stopifnot(identical (simplify_simple(x), 1:5))

x[3] <- list(NULL) # Put a NULL in place of 3.

X

stopifnot(identical(simplify_simple(x, FALSE), x)) # Can't be simplified without replacing the NULL.
stopifnot(identical(simplify_simple(x), c(1L,2L,NA,4L,5L))) # NULL replaced by NA and simplified.

x[[3]1] <- integer(@)

36 snctrl

X
stopifnot(identical(simplify_simple(x), x)) # A @-length vector is not replaced by default,
stopifnot(identical(simplify_simple(x, "empty"), c(1L,2L,NA,4L,5L))) # but can be.

(x <= lapply(1:5, function(i) c(i,i+1L))) # Elements are vectors of equal length.
simplify2array(x) # simplify2array() creates a matrix,
stopifnot(identical(simplify_simple(x), x)) # but simplify_simple() returns a list.

snctrl Statnet Control

Description

A utility to facilitate argument completion of control lists.

Usage
snctrl(...)
Arguments
The parameter list is updated dynamically as packages are loaded and unloaded.
Their current list is given below.
Details

In and of itself, snctrl copies its named arguments into a list. However, its argument list is updated
dynamically as packages are loaded, as are those of its reexports from other packages. This is done
using an API provided by helper functions. (See API?snctrl.)

Currently recognised control parameters

This list is updated as packages are loaded and unloaded.

Note

You may see messages along the lines of

The following object is masked from 'package:PKG':
snctrl

when loading packages. They are benign.

snctrl_names 37

snctrl_names Helper functions used by packages to facilitate snctrl updating.

Description

Helper functions used by packages to facilitate snctrl updating.

Usage

snctrl_names()

update_snctrl(myname, arglists = NULL, callback = NULL)
collate_controls(x = NULL, ...)

UPDATE_MY_SCTRL_EXPR

COLLATE_ALL_MY_CONTROLS_EXPR

Arguments
myname Name of the package defining the arguments.
arglists A named list of argument name-default pairs. If the list is not named, it is first
passed through collate_controls().
callback A function with no arguments that updates the packages own copy of snctrl().
X Either a function, a list of functions, or an environment. If x is an environment,
all functions starting with dQuote(control.) are obtained.
Additional functions or lists of functions.
Format

UPDATE_MY_SCTRL_EXPR is a quoted expression meant to be passed directly to eval().
COLLATE_ALL_MY_CONTROLS_EXPR is a quoted expression meant to be passed directly to eval ().

Value

update_snctrl() has no return value and is used for its side-effects.

collate_controls() returns the combined list of name-default pairs of each function.

Functions

* snctrl_names(): Typeset the currently defined list of argument names by package and con-
trol function.

* update_snctrl(): Typically called from .onLoad(), Update the argument list of snctrl()
to include additional argument names associated with the package, and set a callback for the
package to update its own copy.

38 split.array

e collate_controls(): Obtain and concatenate the argument lists of specified functions or all
functions starting with dQuote(control.) in the environment.

* UPDATE_MY_SCTRL_EXPR: A stored expression that, if evaluated, will create a callback function
update_my_snctrl() that will update the client package’s copy of snctrl().

e COLLATE_ALL_MY_CONTROLS_EXPR: A stored expression that, if evaluated on loading, will add
arguments of the package’s control.x() functions to snctrl() and set the callback.

Examples

Not run:
In the client package (outside any function):
eval (UPDATE_MY_SCTRL_EXPR)

End(Not run)

Not run:

In the client package:

.onLoad <- function(libame, pkgname){

... other code ...
eval(statnet.common: :COLLATE_ALL_MY_CONTROLS_EXPR)
... other code ...

}

End(Not run)

split.array A split() method for array and matrix types on a margin.

Description

These methods split an array and matrix into a list of arrays or matrices with the same number of
dimensions according to the specified margin.

Usage
S3 method for class 'array'
split(x, f, drop = FALSE, margin = NULL, ...)
S3 method for class 'matrix'
split(x, f, drop = FALSE, margin = NULL, ...)
Arguments
X A matrix or an array.
f, drop See help for split (). Note that drop here is not for array dimensions: these are
always preserved.
margin Which margin of the array to split along. NULL splits as split.default, drop-

ping dimensions.

Additional arguments to split().

ssolve 39

Examples

x <- diag(5)

f <= rep(1:2, c(2,3))

split(x, f, margin=1) # Split rows.
split(x, f, margin=2) # Split columns.

This is similar to how data frames are split:
stopifnot(identical(split(x, f, margin=1),
lapply(lapply(split(as.data.frame(x), f), as.matrix), unname)))

ssolve Wrappers around matrix algebra functions that pre-scale their argu-
ments

Description

Covariance matrices of variables with very different orders of magnitude can have very large ratios
between their greatest and their least eigenvalues, causing them to appear to the algorithms to be
near-singular when they are actually very much SPD. These functions first scale the matrix’s rows
and/or columns by its diagonal elements and then undo the scaling on the result.

Usage
ssolve(a, b, ..., snnd = TRUE)
sginv(X, ..., snnd = TRUE)
srcond(x, ..., snnd = TRUE)
snearPD(x, ...)
xTAx_ssolve(x, A, ...)
XxTAx_grssolve(x, A, tol = 1e-07, ...)
sandwich_ssolve(A, B, ...)
Arguments
snnd assume that the matrix is symmetric non-negative definite (SNND). If it’s "ob-

vious" that it’s not (e.g., negative diagonal elements), an error is raised.

X, a, b, X, A, B, tol, ...
corresponding arguments of the wrapped functions.

40 statnet.cite

Details

ssolve(), sginv(), and snearPD() wrap solve(), MASS: :ginv(), and Matrix: :nearPD(), re-
spectively. srcond() returns the reciprocal condition number of rcond() net of the above scaling.
xTAx_ssolve, xTAx_grssolve, and sandwich_ssolve wrap the corresponding statnet.common
functions.

Examples

x <= rnorm(2, sd=c(1,1e12))
x <= c(x, sum(x))
A <- matrix(c(1, 0, 1,
0, le24, le24,
1, le24, 1e24), 3, 3)
stopifnot(all.equal(
xTAx_grssolve(x,A),
structure(drop(x%*%sginv(A)%*x%x), rank = 2L, nullity = 1L)
)

X <= rnorm(2, sd=c(1,1e12))
x <= c(x, rnorm(1, sd=1el12))
A <- matrix(c(1, 0, 1,
0, le24, 1e24,
1, 1e24, 1e24), 3, 3)

stopifnot(try(xTAx_qgrssolve(x,A), silent=TRUE) ==
"Error in xTAx_grssolve(x, A) : x is not in the span of A\n")

statnet.cite CITATION file utilities for Statnet packages (DEPRECATED)

Description

These functions automate citation generation for Statnet Project packages. They no longer appear
to work with CRAN and are thus deprecated.

Usage
statnet.cite.head(pkg)
statnet.cite.foot(pkg)

statnet.cite.pkg(pkg)

Arguments

pkg Name of the package whose citation is being generated.

statnetStartupMessage 41

Value

For statnet.cite.head and statnet.cite.foot, an object of type citationHeader and citationFooter,
respectively, understood by the citation function, with package name substituted into the tem-
plate.

For statnet.cite.pkg, an object of class bibentry containing a ’software manual’ citation for
the package constructed from the current version and author information in the DESCRIPTION and a
template.

See Also

citation, citHeader, citFooter, bibentry

Examples

Not run:
statnet.cite.head("statnet.common”)

statnet.cite.pkg("statnet.common")
statnet.cite.foot("statnet.common")

End(Not run)

statnetStartupMessage Construct a "standard" startup message to be printed when the pack-
age is loaded.

Description
This function uses information returned by packageDescription() to construct a standard pack-
age startup message according to the policy of the Statnet Project.

Usage

statnetStartupMessage(pkgname, friends = c(), nofriends = c())

Arguments

pkgname Name of the package whose information is used.
friends, nofriends
No longer used.

Value

A string containing the startup message, to be passed to the packageStartupMessage() call or
NULL, if policy prescribes printing default startup message. (Thus, if statnetStartupMessage()
returns NULL, the calling package should not call packageStartupMessage() at all.)

42 sweep_cols.matrix

Note

Earlier versions of this function printed a more expansive message. This may change again as the
Statnet Project policy evolves.

See Also

packageDescription(), packageStartupMessage()

Examples

Not run:
.onAttach <- function(lib, pkg){
sm <- statnetStartupMessage("ergm")
if(!is.null(sm)) packageStartupMessage(sm)
3

End(Not run)

sweep_cols.matrix Suptract a elements of a vector from respective columns of a matrix

Description

An optimized function equivalent to sweep(x, 2, STATS) for a matrix x.

Usage
sweep_cols.matrix(x, STATS, disable_checks = FALSE)

Arguments
X a numeric matrix;
STATS a numeric vector whose length equals to the number of columns of x.

disable_checks if TRUE, do not check that x is a numeric matrix and its number of columns
matches the length of STATS; set in production code for a significant speed-up.

Value

A matrix of the same attributes as x.

Examples

x <= matrix(runif(1000), ncol=4)
s <- 1:4

stopifnot(all.equal(sweep_cols.matrix(x, s), sweep(x, 2, s)))

term_list 43

term_list A helper class for list of terms in an formula

Description

Typically generated by 1ist_rhs.formula(), it contains, in addition to a list of call() or similar
objects, attributes "sign” and "env"”, containing, respectively a vector of signs that the terms had
in the original formula and a list of environments of the formula from which the term has been
extracted. Indexing and concatenation methods preserve these.

Usage
term_list(x, sign = +1, env = NULL)
as.term_list(x, ...)

S3 method for class 'term_list'
as.term_list(x, ...)

Default S3 method:
as.term_list(x, sign = +1, env = NULL, ...)

S3 method for class 'term_list'

c(x, ...)
S3 method for class 'term_list'
x[i, ...]
S3 method for class 'term_list'
print(x, ...)
Arguments
X a list of terms or a term; a term_list
sign a vector specifying the signs associated with each term (-1 and +1)
env a list specifying the environments, or NULL
additional arguments to methods
i list index
See Also

list_rhs.formula(), list_summands.call()

44 trim_env

Examples

el <- new.env()

f1 <~ a~b+c
environment(f1) <- el
f2 <= ~-NULL+1

(11 <~ list_rhs.formula(f1))
(12 <- list_rhs.formula(f2))

(1 <- ¢(11,12))

(1 <= c(@2[011, 11021, 11011, 110711, 12[021))

trim_env Make a copy of an environment with just the selected objects.

Description

Make a copy of an environment with just the selected objects.
Usage
trim_env(object, keep = NULL, ...)

S3 method for class 'environment'
trim_env(object, keep = NULL, ...)

Default S3 method:

trim_env(object, keep = NULL, ...)
Arguments
object An environment or an object with environment () and environment ()<- meth-
ods.
keep A character vector giving names of variables in the environment (including its

ancestors) to copy over, defaulting to dropping all. Variables that cannot be
resolved are silently ignored.

Additional arguments, passed on to lower-level methods.

Value

An object of the same type as object, with updated environment.

ult 45

Methods (by class)

e trim_env(environment): A method for environment objects.

e trim_env(default): Default method, for objects such as formula and function that have
environment() and environment ()<- methods.

ult Extract or replace the ultimate (last) element of a vector or a list, or
an element counting from the end.

Description

Extract or replace the ultimate (last) element of a vector or a list, or an element counting from the
end.

Usage

ult(x, i = 1L)

ult(x, i = 1L) <- value

Arguments
X a vector or a list.
i index from the end of the list to extract or replace (where 1 is the last element, 2
is the penultimate element, etc.).
value Replacement value for the ith element from the end.
Value

An element of x.

Note

Due to the way in which assigning to a function is implemented in R, ult(x) <- e may be less
efficient than x[[length(x)J]] <-e.

Examples

x <- 1:5
(last <- ult(x))
(penultimate <- ult(x, 2)) # 2nd last.

(ult(x) <- 6)
(ult(x, 2) <= 7) # 2nd last.
X

46 unused_dots_warning

unused_dots_warning An error handler for rlang: : check_dots_used() that issues a warn-
ing that only lists argument names.

Description

This handler parses the error message produced by rlang::check_dots_used(), extracting the
names of the unused arguments, and formats them into a more gentle warning message. It relies on
rlang maintaining its current format.

Usage

unused_dots_warning(e)

Arguments
e a condition object, typically not passed by the end-user; see example below.
Examples
g <- function(b=NULL, ...){
invisible(force(b))
}

f <= function(...){
rlang: :check_dots_used(error = unused_dots_warning)

g(...)
3
fO # OK
f(b=2) # OK

f(a=1, b=2, c=3) # Warning about a and c but not about b

https://CRAN.R-project.org/package=rlang

unwhich 47

unwhich Construct a logical vector with TRUE in specified positions.

Description

This function is basically an inverse of which.

Usage

unwhich(which, n)

Arguments
which a numeric vector of indices to set to TRUE.
n total length of the output vector.

Value

A logical vector of length n whose elements listed in which are set to TRUE, and whose other
elements are set to FALSE.

Examples

x <- as.logical(rbinom(10,1,0.5))
stopifnot(all(x == unwhich(which(x), 10)))

vector.namesmatch reorder vector v into order determined by matching the names of its
elements to a vector of names

Description
A helper function to reorder vector v (if named) into order specified by matching its names to the
argument names

Usage

vector.namesmatch(v, names, errname = NULL)

Arguments
v a vector (or list) with named elements, to be reorderd
names a character vector of element names, corresponding to names of v, specificying

desired orering of v

errname optional, name to be reported in any error messages. default to deparse(substitute(v))

48 Welford

Details
does some checking of appropriateness of arguments, and reorders v by matching its names to
character vector names

Value

returns v, with elements reordered

Note

earlier versions of this function did not order as advertiased

Examples

test<-list(c=1,b=2,a=3)
vector.namesmatch(test,names=c('a', 'c','b"))

Welford A Welford accumulator for sample mean and variance

Description

A simple class for keeping track of the running mean and the sum of squared deviations from the
mean for a vector.

Usage

Welford(dn, means, vars)

S3 method for class 'Welford'
update(object, newdata, ...)

Arguments

dn, means, vars initialization of the Welford object: if means and vars are given, they are treated
as the running means and variances, and dn is their associated sample size, and
if not, dn is the dimension of the vector (with sample size 0).

object aWelford object.

newdata either a numeric vector of length d, a numeric matrix with d columns for a group
update, or another Welford object with the same d.

additional arguments to methods.

wmatrix

Value

an object of type Welford: a list with four elements:

1. n: Running number of observations

2. means: Running mean for each variable

3. SSDs: Running sum of squared deviations from the mean for each variable

4. vars: Running variance of each variable

Methods (by generic)

* update(Welford): Update a Welford object with new data.

Examples

X <- matrix(rnorm(200), 20, 10)

wo <- Welford(10)

w <- update(w@, X)

stopifnot(isTRUE(all.equal(w$means, colMeans(X))))
stopifnot(isTRUE(all.equal(w$vars, apply(X,2,var))))

w <- update(w@, X[1:12,1)

w <- update(w, X[13:20,])
stopifnot(isTRUE(all.equal(w$means, colMeans(X))))
stopifnot(isTRUE(all.equal(w$vars, apply(X,2,var))))

w <- Welford(12, colMeans(X[1:12,1), apply(X[1:12,1, 2, var))
w <- update(w, X[13:20,]1)

stopifnot(isTRUE(all.equal(w$means, colMeans(X))))
stopifnot(isTRUE(all.equal(w$vars, apply(X,2,var))))

49

wmatrix

A data matrix with row weights

Description

A representation of a numeric matrix with row weights, represented on either linear (1inwmatrix)
or logarithmic (Logwmatrix) scale.

Usage
logwmatrix(
data = NA,
nrow = 1,
ncol = 1,

byrow = FALSE,

dimnames =

50

w = NULL
)

linwmatrix(
data = NA,
nrow = 1,
ncol 1,
byrow = FALSE,
dimnames = NULL
w = NULL

is.wmatrix(x)

is.logwmatrix(x)
is.linwmatrix(x)
as.linwmatrix(x,
as.logwmatrix(x,

S3 method for
as.linwmatrix(x,

S3 method for
as.linwmatrix(x,

S3 method for
as.logwmatrix(x,

S3 method for
as.logwmatrix(x,

S3 method for
as.linwmatrix(x,

S3 method for
as.logwmatrix(x,

S3 method for
print(x, ...)

S3 method for
print(x, ...)

S3 method for
print(x, ...)

’

class 'linwmatrix'

.2

class 'logwmatrix'

.2

class 'logwmatrix'

)

class 'linwmatrix'

.2

class 'matrix’
w = NULL, ...)

class 'matrix’
w = NULL, ...)
class 'wmatrix'

class 'logwmatrix'

class 'linwmatrix'

wmatrix

wmatrix 51

S3 method for class 'logwmatrix'
compress_rows(x, ...)

S3 method for class 'linwmatrix'
compress_rows(x, ...)

S3 method for class 'wmatrix'
decompress_rows(x, target.nrows = NULL, ...)

S3 method for class 'wmatrix'
x[i, j, ..., drop = FALSE]

S3 replacement method for class 'wmatrix'
x[i, j, ...]1 <= value

Arguments

data, nrow, ncol, byrow, dimnames
passed to matrix.

w row weights on the appropriate scale.
X an object to be coerced or tested.
extra arguments, currently unused.

target.nrows the approximate number of rows the uncompressed matrix should have; if not
achievable exactly while respecting proportionality, a matrix with a slightly dif-
ferent number of rows will be constructed.

i, j, value rows and columns and values for extraction or replacement; as matrix.
drop Used for consistency with the generic. Ignored, and always treated as FALSE.
Value

An object of class linwmatrix/logwmatrix and wmatrix, which is a matrix but also has an at-
tribute w containing row weights on the linear or the natural-log-transformed scale.
Note

Note that wmatrix itself is an "abstract” class: you cannot instantiate it.

Note that at this time, wmatrix is designed as, first and foremost, as class for storing compressed
data matrices, so most methods that operate on matrices may not handle the weights correctly and
may even cause them to be lost.

See Also

rowweights, lrowweights, compress_rows

52 wmatrix_weights

Examples

(m <- matrix(1:3, 2, 3, byrow=TRUE))
(m <= rbind(m, 3*m, 2*m, m))

(mlog <- as.logwmatrix(m))

(mlin <- as.linwmatrix(m))

(cmlog <- compress_rows(mlog))
(cmlin <- compress_rows(mlin))

stopifnot(all.equal(as.linwmatrix(cmlog),cmlin))

cmlog[2,] <- 1:3
(cmlog <- compress_rows(cmlog))
stopifnot (sum(rowweights(cmlog))==nrow(m))

(m3 <- matrix(c(1:3,(1:3)*2,(1:3)*3), 3, 3, byrow=TRUE))
(rowweights(m3) <- c(4, 2, 2))

stopifnot(all.equal (compress_rows(as.logwmatrix(m)), as.logwmatrix(m3),check.attributes=FALSE))
stopifnot(all.equal (rowweights(compress_rows(as.logwmatrix(m))),
rowweights(as.logwmatrix(m3)),check.attributes=FALSE))

wmatrix_weights Set or extract weighted matrix row weights

Description

Set or extract weighted matrix row weights
Usage
rowweights(x, ...)

S3 method for class 'linwmatrix'
rowweights(x, ...)

S3 method for class 'logwmatrix'
rowweights(x, ...)

lrowweights(x, ...)

S3 method for class 'logwmatrix'
lrowweights(x, ...)

S3 method for class 'linwmatrix'
lrowweights(x, ...)

rowweights(x, ...) <- value

xTAx 53

S3 replacement method for class 'linwmatrix'
rowweights(x, update = TRUE, ...) <- value

S3 replacement method for class 'logwmatrix'
rowweights(x, update = TRUE, ...) <- value

lrowweights(x, ...) <- value

S3 replacement method for class 'linwmatrix'
lrowweights(x, update = TRUE, ...) <- value

S3 replacement method for class 'logwmatrix'
lrowweights(x, update = TRUE, ...) <- value

S3 replacement method for class 'matrix'
rowweights(x, ...) <- value

S3 replacement method for class 'matrix'

lrowweights(x, ...) <- value
Arguments
X a linwmatrix, a logwmatrix, or a matrix; a matrix is coerced to a weighted

matrix of an appropriate type.
extra arguments for methods.
value weights to set, on the appropriate scale.

update if TRUE (the default), the old weights are updated with the new weights (i.e.,
corresponding weights are multiplied on linear scale or added on on log scale);
otherwise, they are overwritten.

Value

For the accessor functions, the row weights or the row log-weights; otherwise, a weighted matrix
with modified weights. The type of weight (linear or logarithmic) is converted to the required type
and the type of weighting of the matrix is preserved.

xTAX Common quadratic forms

Description

Common quadratic forms

54 xTAx

Usage
xTAX(x, A)
XAXT(x, A)
xTAx_solve(x, A, ...)
xTAx_grsolve(x, A, tol = 1e-07, ...)
sandwich_solve(A, B, ...)
Arguments
a vector
A a square matrix
additional arguments to subroutines
tol tolerance argument passed to the relevant subroutine
B a square matrix
Details

These are somewhat inspired by emulator::quad.form.inv() and others.

Functions

e xTAx(): Evaluate 2’ Az for vector = and square matrix A.
* XAXT(): Evaluate x Az’ for vector x and square matrix A.
» xTAx_solve(): Evaluate x' A~ '« for vector = and invertible matrix A using solve().

» xTAx_grsolve(): Evaluate 2’ A~ 'z for vector 2 and matrix A using QR decomposition and
confirming that x is in the span of A if A is singular; returns rank and nullity as attributes
just in case subsequent calculations (e.g., hypothesis test degrees of freedom) are affected.

* sandwich_solve(): Evaluate A~!B(A’)~! for B a square matrix and A invertible.

Index

* arith
logspace.utils, 22
+ datasets
snctrl_names, 37
x debugging
opttest, 29
* environment
opttest, 29
* manip
compress_rows.data. frame, 7
order, 30
+ utilities
check.control.class, 5
control.remap, 9
ERRVL, 14
NVL, 26
opttest, 29
paste.and, 31
print.control.list, 33
set.control.class, 34
statnet.cite, 40
statnetStartupMessage, 41
.Deprecate_method
(deprecation-utilities), 11
.Deprecate_once
(deprecation-utilities), 11
.Deprecated(), 11
.onLoad(), 37
[.term_list (term_list), 43
[.wmatrix (wmatrix), 49
[<-.wmatrix (wmatrix), 49
$, 8
$.control.list (control.list.accessor),
8

all_identical, 3

append.rhs.formula (formula.utilities),
17

append_rhs.formula (formula.utilities),
17

55

array, 38
as.control.list,3
as.control.list(), 6
as.linwmatrix (wmatrix), 49
as.logwmatrix (wmatrix), 49
as.term_list (term_list), 43
attr, 5

base_env (empty_env), 13
bibentry, 41

c.term_list (term_list), 43
call(), 43
check.control.class, 5, 34
check.control.class(), 34
citation, 41
COLLATE_ALL_MY_CONTROLS_EXPR
(snctrl_names), 37
collate_controls (snctrl_names), 37
collate_controls(), 37
colMeans, 24, 25
colMeans.mcmc.list (memc-utilities), 24
compress_rows, 6, 51
compress_rows.data. frame, 7
compress_rows.linwmatrix (wmatrix), 49
compress_rows. logwmatrix (wmatrix), 49
condition, 46
control.list.accessor, 8
control.remap, 9

data.frame, 7, 8, 30, 31, 35

decompress_rows (compress_rows), 6

decompress_rows. compressed_rows_df
(compress_rows.data.frame), 7

decompress_rows.wmatrix (wmatrix), 49

default_options, 10

delInf, 10

deprecation-utilities, 11

despace, 12

diff.control.list, 12

56

empty_env, 13
environment, 27, 44
environment(), 44, 45
ERRVL, 14
eval(), 32, 33,37
eval_lhs.formula (formula.utilities), 17
evalq(), 32, 33

EVL (NVL), 26

EVL2 (NVL), 26

EVL3 (NVL), 26

EVL<- (NVL), 26

filter_rhs.formula (formula.utilities),
17

fixed.pval, 15

forkTimeout, 16

format.pval(), 15

formula, 45

formula.utilities, 17

function, 45

getAnywhere(), 22
getElement, 8

handle.controls, 20

identical, 3

if, 27

inherits, 14

is.linwmatrix (wmatrix), 49
is.logwmatrix (wmatrix), 49
is.null, 27

is.SPD, 21

is.wmatrix (wmatrix), 49

lapply, 24, 25

lapply.mcmc.list (memc-utilities), 24

linwmatrix, 53

linwmatrix (wmatrix), 49

list, 4,7,35

list_rhs.formula (formula.utilities), 17

list_rhs.formula(), 43

list_summands.call (formula.utilities),
17

list_summands.call(), 43

locate_function, 21

locate_prefixed_function
(locate_function), 21

log_mean_exp (logspace.utils), 22

INDEX

log_sum_exp (logspace.utils), 22
logspace.utils, 22

logwmatrix, 53

logwmatrix (wmatrix), 49
lrowweights, 51

lrowweights (wmatrix_weights), 52
lrowweights<- (wmatrix_weights), 52
lweighted.cov (logspace.utils), 22
lweighted.mean (logspace.utils), 22
lweighted.var (logspace.utils), 22

MASS: :ginv(), 40
match.arg(), 20
matrix, 30, 31,38, 51, 53
Matrix::nearPD(), 40
mcmc-utilities, 24
mcme. list, 24, 25
message, 25
message_print, 25

nonsimp.update.formula
(formula.utilities), 17

nonsimp_update.formula
(formula.utilities), 17

NULL, 26, 27

NVL, 14, 26

NVL2 (NVL), 26

NVL3 (NVL), 26

NVL<- (NVL), 26

once, 28
options(), 10
opttest, 29
order, 30, 30, 31

packageDescription(), 41, 42
packageStartupMessage(), 41, 42
parallel::mcparallel(), 16
paste.and, 31
persistEval, 32
persistEvalQ (persistEval), 32
print, 25
print.control.list, 9, 33
print.control.list(), 6, 34
print.diff.control.list
(diff.control.list), 12
print.linwmatrix (wmatrix), 49
print.logwmatrix (wmatrix), 49
print.term_list (term_list), 43

INDEX

print.wmatrix (wmatrix), 49

rcond(), 40

rlang: :check_dots_used(), 46
rowweights, 51

rowweights (wmatrix_weights), 52
rowweights<- (wmatrix_weights), 52

sandwich_solve (xTAx), 53
sandwich_ssolve (ssolve), 39
set.control.class, 34, 34
set.control.class(), 6
setTimeLimit(), 16

sginv (ssolve), 39
simplify2array(), 35
simplify_simple, 35
snctrl, 36, 37

snctrl(), 37, 38

snctrl-API (snctrl_names), 37
snctrl_names, 37

snearPD (ssolve), 39
solve(), 40, 54

sort, 30, 31

sort.data.frame (order), 30
split(), 38

split.array, 38
split.default, 38
split.matrix (split.array), 38
srcond (ssolve), 39

ssolve, 39

statnet.cite, 40
statnetStartupMessage, 41
statnetStartupMessage(), 41/
stop, 14,27

stop(), 22

sweep, 24, 25
sweep.mcmc.list (mecmc-utilities), 24
sweep_cols.matrix, 42

term.list.formula (formula.utilities),
17

term_list, 17, 18, 43

trim_env, 44

try, 14

try(), 33

ult, 45
ult<- (ult), 45
unlist(), 35

57

unused_dots_warning, 46

unwhich, 47

update.formula, 18

update.Welford (Welford), 48
UPDATE_MY_SCTRL_EXPR (snctrl_names), 37
update_snctrl (snctrl_names), 37

vector.namesmatch, 47

Welford, 48
which, 47
wmatrix, 49
wmatrix_weights, 52

XAXT (xTAXx), 53

xTAx, 53

xTAx_grsolve (xTAx), 53
xTAx_grssolve (ssolve), 39
xTAx_solve (xTAx), 53
xTAx_ssolve (ssolve), 39

	all_identical
	as.control.list
	attr
	check.control.class
	compress_rows
	compress_rows.data.frame
	control.list.accessor
	control.remap
	default_options
	deInf
	deprecation-utilities
	despace
	diff.control.list
	empty_env
	ERRVL
	fixed.pval
	forkTimeout
	formula.utilities
	handle.controls
	is.SPD
	locate_function
	logspace.utils
	mcmc-utilities
	message_print
	NVL
	once
	opttest
	order
	paste.and
	persistEval
	print.control.list
	set.control.class
	simplify_simple
	snctrl
	snctrl_names
	split.array
	ssolve
	statnet.cite
	statnetStartupMessage
	sweep_cols.matrix
	term_list
	trim_env
	ult
	unused_dots_warning
	unwhich
	vector.namesmatch
	Welford
	wmatrix
	wmatrix_weights
	xTAx
	Index

