
Package ‘unmconf’
December 12, 2023

Type Package

Title Modeling with Unmeasured Confounding

Version 0.1.0

Maintainer David Kahle <david@kahle.io>

Description Fit and assess Bayesian multi-staged regression models that account
for unmeasured confounders using JAGS.

SystemRequirements JAGS >= 4.3.0 (http://mcmc-jags.sourceforge.net)

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Depends R (>= 2.10), rjags

Imports stats, glue, janitor

Suggests bayesplot, posterior, ggplot2, dplyr, tidyr, tibble, knitr,
rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Ryan Hebdon [aut],
James Stamey [aut] (<https://orcid.org/0000-0002-3787-6490>),
David Kahle [aut, cre] (<https://orcid.org/0000-0002-9999-1558>),
Xiang Zhang [aut]

Repository CRAN

Date/Publication 2023-12-12 20:50:04 UTC

R topics documented:
helpers . 2
runm . 3
unmconf . 5
unm_glm . 5
unm_summary . 8

1

https://orcid.org/0000-0002-3787-6490
https://orcid.org/0000-0002-9999-1558

2 helpers

Index 10

helpers Convert to Greek expressions

Description

Convert to Greek expressions for plotting

Usage

expand_labels(labs)

greek_expander(s)

make_greek_coefs(mod)

drop_nulls(x)

Arguments

labs A character vector of greek symbols of the form ga_x and be_1.

s A character vector of Greek short hand codes, e.g. "si".

mod Output from unm_glm().

x Character vector.

Value

A character vector.

Examples

labs <- c("ga_1", "ga_treatment", "ga_x", "be_1",
"be_treatment", "be_x", "la_u", "al_y", "si")

expand_labels(labs)

runm 3

runm Generate synthetic data

Description

runm() generates synthetic data for use of modeling with unmeasured confounders. Defaults to
the case of one unmeasured confounder present and fixed parameter values. Can be customized.
Currently set up to have at most two unmeasured confounders to pair with unm_glm().

Usage

runm(
n,
type = "int",
missing_prop = 0.8,
response = "bin",
response_param = NULL,
response_model_coefs = c(int = -1, z1 = 0.5, z2 = 0.5, z3 = 0.5, u1 = 0.5, x = 0.5),
treatment_model_coefs = c(int = -1, z1 = 0.5, z2 = 0.5, z3 = 0.5, u1 = 0.5),
covariate_fam_list = list("norm", "bin", "norm"),
covariate_param_list = list(c(mean = 0, sd = 1), prob = 0.3, c(0, 2)),
unmeasured_fam_list = list("norm"),
unmeasured_param_list = list(c(mean = 0, sd = 1))

)

Arguments

n Number of observations. When type = "int", n is a vector of length 1. When
type = "ext", n can either be a vector of length 1 or 2. For the case when n
is of length 2, n = (n_main, n_external), where n_main corresponds to the
main study sample size and n_external corresponds to the external validation
sample size. For the case when n is of length 1, n will be split evenly between
main study and external validation observations, with the main study getting the
additional observation when n is odd.

type Type of validation source. Can be "int" for internal validation or "ext" for
external validation. Defaults to "int".

missing_prop Proportion of missing values for internal validation scenario (i.e., when type =
"int").

response "norm", "bin", "pois", or "gam". Defaults to "bin".

response_param Nuisance parameters for response type. For "norm", the default standard devi-
ation is 1. For "gam", the default shape parameter is 2. For "pois", an offset
variable is added to the dataset that is uniformly distributed from 1 to 10.

response_model_coefs

A named vector of coefficients to generate data from the response model. This
must include an intercept ("int" =), a coefficient for each covariate speci-
fied, a coefficient for each unmeasured confounder, and a treatment coefficient

4 runm

("x" =). The coefficients for the covariates and treatment will be denoted with
"beta[.]" and the unmeasured confounders with "lambda[.]".

treatment_model_coefs

A named vector of coefficients to generate data from the treatment model. This
must include an intercept ("int" =), a coefficient for each covariate speci-
fied, and a coefficient for each unmeasured confounder. The coefficients for the
covariates and unmeasured confounders will be denoted with "eta[.]".

covariate_fam_list

A list of either "norm" or "bin", where the length of the list matches the number
of covariates in the model.

covariate_param_list

A list of parameters for the respective distributions in covariate_fam_list,
where the length of the list matches the length of covariate_fam_list.

unmeasured_fam_list

A list of either "norm" or "bin", where the length of the list matches the number
of unmeasured confounders in the model. This can be at most a length of 2 to
pair with unm_glm().

unmeasured_param_list

A list of parameters for the respective distributions in unmeasured_fam_list,
where the length of the list matches the length of unmeasured_fam_list.

Value

A tibble

Examples

runm(100)
runm(n = 100, type = "int", missing_prop = .75)
runm(n = 100, type = "int", missing_prop = .75) |> attr("params")
runm(100, type = "int", response = "norm")
runm(100, type = "int", response = "norm") |> attr("params")
runm(100, type = "int", response = "norm", response_param = 3) |> attr("params")
runm(100, type = "int", response = "gam")
runm(100, type = "int", response = "gam", response_param = 5) |> attr("params")
runm(100, type = "int", missing_prop = .5, response = "pois")

runm(n = 100, type = "ext")
runm(n = 100, type = "ext") |> attr("params")
runm(n = c(10, 10), type = "ext")
runm(100, type = "ext", response = "norm")
runm(100, type = "int", response = "norm", response_param = 3) |> attr("params")
runm(100, type = "ext", response = "gam")
runm(100, type = "ext", response = "pois")

runm(
n = 100,
type = "int",
missing_prop = .80,

unmconf 5

response = "norm",
response_param = c("si_y" = 2),
response_model_coefs = c("int" = -1, "z" = .4,

"u1" = .75, "u2" = .75, "x" = .75),
treatment_model_coefs = c("int" = -1, "z" = .4,

"u1" = .75, "u2" = .75),
covariate_fam_list = list("norm"),
covariate_param_list = list(c(mean = 0, sd = 1)),
unmeasured_fam_list = list("norm", "bin"),
unmeasured_param_list = list(c(mean = 0, sd = 1), c(.3))

)

runm(
n = c(20, 30),
type = "ext",
response = "norm",
response_param = c("si_y" = 2),
response_model_coefs = c("int" = -1, "z1" = .4, "z2" = .5, "z3" = .4,

"u1" = .75, "u2" = .75, "x" = .75),
treatment_model_coefs = c("int" = -1, "z1" = .4, "z2" = .5, "z3" = .4,

"u1" = .75, "u2" = .75),
covariate_fam_list = list("norm", "bin", "norm"),
covariate_param_list = list(c(mean = 0, sd = 1), c(.3), c(0, 2)),
unmeasured_fam_list = list("norm", "bin"),
unmeasured_param_list = list(c(mean = 0, sd = 1), c(.3))

)

unmconf unmconf: Modeling with Unmeasured Confounding

Description

Tools for fitting and assessing Bayesian multi-staged regression models that account for unmeasured
confounders.

unm_glm Fitting Multi-Staged Bayesian Regression Model with Unmeasured
Confounders

Description

unm_glm() fits a multi-staged Bayesian regression model that accounts for unmeasured confounders.
Users can input model information into unm_glm() in a similar manner as they would for the stan-
dard stats::glm() function, providing arguments like formula, family, and data. Results are
stored as MCMC iterations.

6 unm_glm

Usage

unm_glm(
form1,
form2 = NULL,
form3 = NULL,
family1 = binomial(),
family2 = NULL,
family3 = NULL,
data,
n.iter = 2000,
n.adapt = 1000,
thin = 1,
n.chains = 4,
filename = tempfile(fileext = ".jags"),
quiet = getOption("unm_quiet"),
progress.bar = getOption("unm_progress.bar"),
code_only = FALSE,
priors,
response_nuisance_priors,
response_params_to_track,
confounder1_nuisance_priors,
confounder1_params_to_track,
confounder2_nuisance_priors,
confounder2_params_to_track,
...

)

jags_code(mod)

S3 method for class 'unm_int'
print(x, digits = 3, ..., print_call = getOption("unm_print_call"))

S3 method for class 'unm_int'
coef(object, ...)

Arguments

form1 The formula specification for the response model (stage I)

form2 The formula specification for the first unmeasured confounder model (stage II)

form3 The formula specification for the second unmeasured confounder model (stage
III)

family1, family2, family3

The family object, communicating the types of models to be used for response
(form1) and unmeasured confounder (form2, form3) models. See stats::family()
for details

data The dataset containing all variables (this function currently only supports a sin-
gle dataset containing internally validated data)

unm_glm 7

n.iter n.iter argument of rjags::coda.samples()

n.adapt n.adapt argument of rjags::jags.model()

thin thin argument of rjags::coda.samples()

n.chains n.chains argument of rjags::jags.model()

filename File name where to store jags code

quiet The quiet parameter of rjags::jags.model(). Defaults to TRUE, but you can
change it on a per-session basis with options(unm_quiet = FALSE).

progress.bar The progress.bar parameter of rjags::update.jags(). Defaults to "none",
but you can change it on a per-session basis with options(unm_progress.bar
= "text").

code_only Should only the code be created?

priors Custom priors to use on regression coefficients, see examples.
response_nuisance_priors, confounder1_nuisance_priors, confounder2_nuisance_priors

JAGS code for the nuisance priors on parameters in a JAGS model (see exam-
ples)

response_params_to_track, confounder1_params_to_track, confounder2_params_to_track

Additional parameters to track when nuisance parameter priors are used (see
examples)

... Additional arguments to pass into rjags::jags.model(), such as inits

mod The output of unm_glm()

x Object to be printed

digits Number of digits to round to; defaults to 3

print_call Should the call be printed? Defaults to TRUE, but can be turned off with options("unm_print_call"
= FALSE)

object Model object for which the coefficients are desired

Value

(Invisibly) The output of rjags::coda.samples(), an object of class mcmc.list, along with at-
tributes code containing the jags code used and file containing the filename of the jags code.

See Also

runm(), rjags::dic.samples()

Examples

~~ One Unmeasured Confounder Examples (II-Stage Model) ~~

normal response, normal confounder model with internally validated data
(df <- runm(20, response = "norm"))

8 unm_summary

(unm_mod <- unm_glm(
y ~ x + z1 + z2 + z3 + u1, family1 = gaussian(),
u1 ~ x + z1 + z2 + z3, family2 = gaussian(),
data = df

))

(unm_mod <- unm_glm(
y ~ ., family1 = gaussian(),
u1 ~ . - y, family2 = gaussian(),
data = df

))
glm(y ~ x + z1 + z2 + z3, data = df)
coef(unm_mod)

jags_code(unm_mod)
unm_glm(

y ~ .,
u1 ~ . - y,
family1 = gaussian(),
family2 = gaussian(),
data = df, code_only = TRUE

)

unm_summary Generate synthetic data

Description

unm_summary() produces result summaries of the results from the model fitting function, unm_glm().
The table of results are summarized from the MCMC draws of the posterior distribution.

Usage

unm_summary(mod, data, quantiles = c(0.025, 0.975))

unm_backfill(data, mod)

unm_dic(mod)

Arguments

mod Output from unm_glm().
data The data mod was generated with.
quantiles A numeric vector of quantiles.

unm_summary 9

Value

A tibble

Examples

~~ One Unmeasured Confounder Examples (II-Stage Model) ~~

normal response, normal confounder model with internally validated data
(df <- runm(20, response = "norm"))

(unm_mod <- unm_glm(
y ~ x + z1 + z2 + z3 + u1, family1 = gaussian(),
u1 ~ x + z1 + z2 + z3, family2 = gaussian(),
data = df

))

glm(y ~ x + z1 + z2 + z3, data = df)

coef(unm_mod)
jags_code(unm_mod)
unm_summary(unm_mod)
unm_summary(unm_mod, df) # true values known df

impute missing values with model
unm_backfill(df, unm_mod)

Index

coef.unm_int (unm_glm), 5

drop_nulls (helpers), 2

expand_labels (helpers), 2

greek_expander (helpers), 2

helpers, 2

jags_code (unm_glm), 5

make_greek_coefs (helpers), 2

print.unm_int (unm_glm), 5

rjags::coda.samples(), 7
rjags::dic.samples(), 7
rjags::jags.model(), 7
rjags::update.jags(), 7
runm, 3
runm(), 3, 7

stats::family(), 6
stats::glm(), 5

unm_backfill (unm_summary), 8
unm_dic (unm_summary), 8
unm_glm, 5
unm_glm(), 2–5, 7, 8
unm_summary, 8
unm_summary(), 8
unmconf, 5
unmconf-package (unmconf), 5

10

	helpers
	runm
	unmconf
	unm_glm
	unm_summary
	Index

