

Package ‘CCMnet’

February 13, 2026

Type Package

Title Congruence Class Models for Networks

Version 0.1.4

Description Provides an implementation of Congruence Class Models for generating networks. It facilitates sampling networks based on specific topological properties and attribute mixing patterns using a Markov Chain Monte Carlo framework. The implementation builds upon code from the ‘ergm’ package; see Handcock et al. (2008) <[doi:10.18637/jss.v024.i01](https://doi.org/10.18637/jss.v024.i01)>.

License GPL-3

Encoding UTF-8

Imports dplyr, ergm, ggplot2, gtools, igraph, intergraph, kableExtra, mvtnorm, network, RBesT, rlang, stats, tibble, tidyverse, utils

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

RoxygenNote 7.3.2

NeedsCompilation yes

Author Ravi Goyal [aut, cre],
Statnet Development Team [ctb, cph]

Maintainer Ravi Goyal <ravi.j.goyal@gmail.com>

Repository CRAN

Date/Publication 2026-02-13 16:40:14 UTC

Contents

CCM_theoretical_check	2
CCM_traceplot	2
sample_ccm	3

Index

6

 CCM_theoretical_check *Compare MCMC Estimates with Theoretical Distributions*

Description

This function compares the empirical MCMC distribution from `sample_ccm` with the theoretical distribution from the CCM model. It is used as a diagnostic tool to evaluate model adequacy.

Usage

```
CCM_theoretical_check(fit, n_sim = nrow(fit$mcmc_stats))
```

Arguments

<code>fit</code>	An object returned by <code>ccm_sample</code> .
<code>n_sim</code>	The number of samples drawn from the theoretical distribution

Value

A diagnostic plot comparing empirical and theoretical distributions.

Examples

```
ccm_sample <- sample_ccm(
  network_stats = list("edges"),
  prob_distr = list("poisson"),
  prob_distr_params = list(list(350)),
  population = 50
)
ccm_sample<- CCM_theoretical_check(ccm_sample, n_sim = 1000)
plot(ccm_sample, stats = "edges", type = "hist", include_theoretical = TRUE)
```

 CCM_traceplot *Plot MCMC Trace for sample_ccm*

Description

`CCM_traceplot` produces a trace plot of the MCMC samples from `sample_ccm`. This is used to diagnose convergence and mixing.

Usage

```
CCM_traceplot(object, stats = NULL, ...)
```

Arguments

object	A ccm_sample object.
stats	string. Which statistic to plot.
...	Additional arguments passed to plot().

Value

A trace plot for the selected MCMC chain.

Examples

```
ccm_sample <- sample_ccm(  
  network_stats = list("edges"),  
  prob_distr = list("poisson"),  
  prob_distr_params = list(list(350)),  
  population = 50  
)  
CCM_traceplot(ccm_sample, stats = "edges")
```

sample_ccm

Fit a Congruence Class Model (CCM)

Description

sample_ccm fits a Congruence Class Model using an MCMC framework to sample networks that match specific topological property distributions. It facilitates sampling based on specified network statistics (e.g., edges, degree distribution, mixing patterns) and their associated probability distributions.

Usage

```
sample_ccm(  
  network_stats,  
  prob_distr,  
  prob_distr_params,  
  population,  
  sample_size = 1000L,  
  burnin = 200000L,  
  interval = 1000L,  
  cov_pattern = NULL,  
  initial_g = NULL,  
  use_initial_g = FALSE,  
  partial_network = as.integer(0),  
  obs_nodes = NULL,  
  Obs_stats = NULL,  
  remove_var_last_entry = FALSE,  
  stats_only = TRUE  
)
```

Arguments

network_stats	Character vector of statistic names to be constrained (e.g., "edges", "degree", "density").
prob_distr	Character vector of probability distribution names corresponding to each statistic.
prob_distr_params	List of parameter sets for each specified distribution.
population	Integer. The number of nodes in the network.
sample_size	Integer. Number of MCMC samples to return. Default is 1000.
burnin	Integer. Number of MCMC iterations to discard before sampling begins. Default is 200,000.
interval	Integer. Thinning interval (number of iterations between samples). Default is 1000.
cov_pattern	Integer vector. Optional group labels or covariate patterns for nodes.
initial_g	An igraph object. The starting graph for the MCMC chain.
use_initial_g	Logical. If TRUE, the MCMC chain starts from initial_g.
partial_network	Integer. Reserved for future use in partial network observation.
obs_nodes	Integer vector. Reserved for future use in specifying observed nodes.
Obs_stats	Character vector of additional network statistics to monitor during sampling.
remove_var_last_entry	Logical. If TRUE, removes the variance constraint from the last entry of the distribution.
stats_only	Logical. If TRUE, only sufficient statistics are returned; otherwise, network objects are included.

Value

An object of class `ccm_sample` containing:

- `mcmc_stats`: A data frame of sampled network statistics.
- `population`: The number of nodes in the network.
- `prob_distr`: The distributions used for constraints.
- `prob_distr_params`: Parameters used for the constraints.
- `network_stats`: The names of the statistics constrained.
- `cov_pattern`: The covariate pattern used.
- `theoretical`: Theoretical distribution values, if calculated.
- `g`: A list of sampled graphs.

Examples

```
# Basic sampling of a random graph with an edge constraint
ccm_sample <- sample_ccm(
  network_stats = list("edges"),
  prob_distr = list("poisson"),
  prob_distr_params = list(list(350)),
  population = 50
)
summary(ccm_sample)
plot(ccm_sample, stats = "edges", type = "hist")
```

Index

CCM_theoretical_check, 2

CCM_traceplot, 2

sample_ccm, 3