Package ‘GeoThinneR’

January 20, 2025
Type Package
Title Simple Spatial Thinning for Ecological and Spatial Analysis
Version 1.1.0

Description Provides efficient geospatial thinning algorithms to reduce
the density of coordinate data while maintaining spatial
relationships. Implements K-D Tree and brute-force distance-based
thinning, as well as grid-based and precision-based thinning methods.
For more information on the methods, see Elseberg et al. (2012)
<https://hdl.handle.net/10446/86202>.

License MIT + file LICENSE

URL https://github.com/jmestret/GeoThinneR,
https://jmestret.github.io/GeoThinneR/

BugReports https://github.com/jmestret/GeoThinneR/issues
Depends R (>=4.0.0)

Imports data.table, fields, matrixStats, nabor, Rcpp, stats, terra
Suggests ggplot2, knitr, rmarkdown, sf, testthat (>= 3.0.0), tibble
LinkingTo Rcpp

VignetteBuilder knitr

BuildVignettes true

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.1

NeedsCompilation yes

Author Jorge Mestre-Tomas [aut, cre] (<https://orcid.org/0000-0002-8983-3417>)
Maintainer Jorge Mestre-Tomds <jorge.mestre.tomas@csic.es>
Repository CRAN

Date/Publication 2024-10-03 23:10:13 UTC

https://hdl.handle.net/10446/86202
https://github.com/jmestret/GeoThinneR
https://jmestret.github.io/GeoThinneR/
https://github.com/jmestret/GeoThinneR/issues
https://orcid.org/0000-0002-8983-3417

2 assign_coords_to_grid

Contents
assign_coords_to_grid 2
brute_force_thinning 3
CATETLA v v o e e e e e e e e 4
grid_thinning e 5
kd_tree_thinning 6
long_lat_to_cartesian e e e e e 8
max_thinning_algorithmo 0oL 8
precision_thinningo 9
rounding_hashing_thinning oL o 10
thin_points e e e e e 12

Index 14

assign_coords_to_grid Assign Geographic Coordinates to Grid Cells

Description

This function assigns a set of geographic coordinates (longitude and latitude) to grid cells based on
a specified cell size.

Usage

assign_coords_to_grid(coords, cell_size)

Arguments
coords A data frame or matrix with two columns: longitude and latitude.
cell_size Numeric value representing the size of each grid cell, typically in degrees.
Value

A character vector of grid cell identifiers, where each identifier is formatted as "x_y", representing
the grid cell coordinates.

Examples

coords <- data.frame(long = c(-122.4194, @), lat = c(37.7749, 0))
cell_size <- 1
assign_coords_to_grid(coords, cell_size)

brute_force_thinning

brute_force_thinning Perform Brute Force Thinning

Description

This function applies a brute force algorithm to thin a set of spatial coordinates, attempting to
maximize the number of points retained while ensuring a minimum distance (‘thin_dist‘) between

any two points.

Usage

brute_force_thinning(

coordinates,

thin_dist = 10,

trials = 10,
all_trials =

FALSE,

target_points = NULL,

euclidean =
R = 6371

Arguments

coordinates

thin_dist
trials

all_trials

target_points

euclidean

Value

FALSE,

A numeric matrix or data frame with two columns representing longitude and
latitude (or XY coordinates if ‘euclidean = TRUE®).

Numeric value representing the thinning distance in kilometers (default: 10 km).
Integer specifying the number of trials to run for thinning (default: 10).

Logical value indicating whether to return the results of all trials (“TRUE®) or
just the best attempt with the most points retained (‘FALSE‘, default).

Optional integer specifying the number of points to retain. If ‘NULL® (default),
the function tries to maximize the number of points retained.

Logical value indicating whether to compute the Euclidean distance (‘TRUE‘)
or Haversine distance (‘FALSE®, default).

Numeric value representing the Earth’s radius in kilometers (default: 6371 km).
Only used if ‘euclidean = FALSE".

A logical vector indicating which points are kept in the best trial if ‘all_trials = FALSE*; otherwise,
a list of logical vectors for each trial.

4 caretta

Examples

Example with geographic coordinates (Haversine distance)
coords <- data.frame(

long = c(-122.4194, -122.4195, -122.4196),

lat = c(37.7749, 37.7740, 37.7741)
)

coords <- as.matrix(coords)

result <- brute_force_thinning(coords, thin_dist = 0.1, trials = 5)
print(result)

Example computing Euclidean distance
result_euclidean <- brute_force_thinning(coords, thin_dist =1, trials =5, euclidean = TRUE)
print(result_euclidean)

caretta Loggerhead Sea Turtle (Caretta caretta) Occurrences in the Mediter-
ranean Sea

Description

This dataset contains a subset of global occurrences of the Loggerhead Sea Turtle (Caretta caretta),
filtered for records in the Mediterranean Sea. The data were sourced from the Global Biodiversity
Information Facility (GBIF).

Usage

data("caretta”)

Format
A data frame with 6785 rows and 5 columns:

decimalLongitude Numeric. Longitude coordinates (WGS84).

decimalLatitude Numeric. Latitude coordinates (WGS84).

year Integer. The year in which the occurrence was recorded.

species Character. The scientific name of the species, i.e., Caretta caretta.
coordinateUncertaintyInMeters Numeric. The uncertainty of the coordinates in meters.

Details

The dataset has been filtered to include only records within the Mediterranean Sea. The occurrence
data cover multiple years, which provides information on the temporal distribution of the species in
this region.

Source

Global Biodiversity Information Facility (GBIF), https://www.gbif.org/species/8894817

https://www.gbif.org/species/8894817

grid_thinning

grid_thinning

Perform Grid-Based Thinning of Spatial Points

Description

This function performs thinning of spatial points by assigning them to grid cells based on a specified
resolution or thinning distance. It can either create a new raster grid or use an existing raster object.

Usage

grid_thinning(
coordinates,
thin_dist = NULL,

resolution

NULL,

origin = NULL,
raster_obj = NULL,
trials = 10,

all_trials

FALSE,

crs = "epsg:4326",
priority = NULL

Arguments

coordinates

thin_dist

resolution

origin

raster_obj

trials

all_trials

crs

priority

A numeric matrix or data frame with two columns representing the x (longitude)
and y (latitude) coordinates of the points.

A numeric value representing the thinning distance in kilometers. It will be
converted to degrees if ‘resolution® is not provided.

A numeric value representing the resolution (in degrees) of the raster grid. If
provided, this takes priority over ‘thin_dist*.

A numeric vector of length 2 (for example, ‘c(0, 0)), specifying the origin of
the raster grid (optional).

An optional ‘terra‘ SpatRaster object to use for grid thinning. If provided, the
raster object will be used instead of creating a new one.

An integer specifying the number of trials to perform for thinning (default: 10).

A logical value indicating whether to return results for all trials (“TRUE®) or just
the first trial (‘FALSE‘, default).

An optional CRS (Coordinate Reference System) to project the coordinates and
raster (default WGS84). This can be an EPSG code, a PROJ.4 string, or a
‘terra::crs‘ object.

A of the same length as the number of points with numerical values indicating
the priority of each point. Instead of eliminating points randomly, the points are
preferred according to these values.

6 kd_tree_thinning

Value

A list of logical vectors indicating which points to keep for each trial.

Examples

Example: Grid thinning using thin_dist
coordinates <- matrix(c(-122.4194, 37.7749,
-122.4195, 37.7740,
-122.4196, 37.7741), ncol = 2, byrow = TRUE)

result <- grid_thinning(coordinates, thin_dist = 10, trials = 5, all_trials = TRUE)
print(result)

Example: Grid thinning using a custom resolution
result_res <- grid_thinning(coordinates, resolution = 0.01, trials = 5)
print(result_res)

Example: Using a custom raster object

library(terra)

rast_obj <- terra::rast(nrows = 100, ncols = 100, xmin = =123, xmax = =121, ymin = 36, ymax = 38)
result_raster <- grid_thinning(coordinates, raster_obj = rast_obj, trials = 5)
print(result_raster)

kd_tree_thinning Perform K-D Tree ANN Thinning

Description

This function applies the K-D tree Approximate Nearest Neighbors (ANN) thinning algorithm on a
set of spatial coordinates. It can optionally use space partitioning to improve the thinning process,
which is particularly useful for large datasets.

Usage

kd_tree_thinning(
coordinates,
thin_dist = 10,
trials = 10,
all_trials = FALSE,
space_partitioning = FALSE,
euclidean = FALSE,
R = 6371

kd_tree_thinning

Arguments

coordinates

thin_dist

trials

all_trials

A matrix of coordinates to thin, with two columns representing longitude and
latitude.

A numeric value representing the thinning distance in kilometers. Points closer
than this distance to each other are considered redundant and may be removed.

An integer specifying the number of trials to run for thinning. Multiple trials
can help achieve a better result by randomizing the thinning process. Default is
10.

A logical value indicating whether to return results of all attempts (‘TRUE)
or only the best attempt with the most points retained (‘FALSE®). Default is
‘FALSE".

space_partitioning

euclidean

Value

A logical value indicating whether to use space partitioning to divide the co-
ordinates into grid cells before thinning. This can improve efficiency in large
datasets. Default is ‘FALSE".

Logical value indicating whether to compute the Euclidean distance (‘TRUE®)
or Haversine distance (‘FALSE®, default).

A numeric value representing the radius of the Earth in kilometers. The default
is 6371 km.

A list. If “all_trials® is ‘FALSE", the list contains a single logical vector indicating which points are
kept in the best trial. If ‘all_trials‘ is “TRUE, the list contains a logical vector for each trial.

Examples

Generate sample coordinates

set.seed(123)

coordinates <- matrix(runif (20, min = -180, max = 180), ncol = 2) # 10 random points

Perform K-D Tree thinning without space partitioning
result <- kd_tree_thinning(coordinates, thin_dist = 10, trials = 5, all_trials = FALSE)

print(result)

Perform K-D Tree thinning with space partitioning
result_partitioned <- kd_tree_thinning(coordinates, thin_dist = 5000, trials = 5,

space_partitioning = TRUE, all_trials = TRUE)

print(result_partitioned)

Perform K-D Tree thinning with Cartesian coordinates
cartesian_coordinates <- long_lat_to_cartesian(coordinates[, 1], coordinates[, 2])
result_cartesian <- kd_tree_thinning(cartesian_coordinates, thin_dist = 10, trials = 5,

euclidean = TRUE)

print(result_cartesian)

8 max_thinning_algorithm

long_lat_to_cartesian Convert Geographic Coordinates to Cartesian Coordinates

Description

This function converts geographic coordinates, given as longitude and latitude in degrees, to Carte-
sian coordinates (X, y, z) assuming a spherical Earth model.

Usage

long_lat_to_cartesian(long, lat, R = 6371)

Arguments

long Numeric vector of longitudes in degrees.

lat Numeric vector of latitudes in degrees.

R Radius of the Earth in kilometers (default: 6371 km).
Value

A numeric matrix with three columns (X, y, z) representing Cartesian coordinates.

Examples

long <- ¢(-122.4194, 0)
lat <- ¢(37.7749, 0)
long_lat_to_cartesian(long, lat)

max_thinning_algorithm
Thinning Algorithm for Spatial Data

Description

This function performs the core thinning algorithm used to reduce the density of points in spatial
data while maintaining spatial representation. It works by iteratively removing points with the most
neighbors until no points with neighbors remain. The algorithm supports multiple trials to find the
optimal thinning solution.

Usage

max_thinning_algorithm(neighbor_indices, n, trials, all_trials = FALSE)

precision_thinning 9

Arguments

neighbor_indices

A list of integer vectors where each element contains the indices of the neigh-
boring points for each point in the dataset.

n The number of points in the dataset.
trials The number of thinning trials to run.
all_trials If TRUE, returns the results of all trials; if FALSE, returns the best trial with the

most points retained (default: FALSE).

Value

A list of logical vectors indicating which points are kept in each trial if all_trials is TRUE; otherwise,
a single logical vector indicating the points kept in the best trial.

Examples

Example usage within a larger thinning function

neighbor_indices <- list(c(2, 3), c(1, 3), c(1, 2))

n <-3

trials <- 5

all_trials <- FALSE

keep_points <- max_thinning_algorithm(neighbor_indices, n, trials, all_trials)
print(keep_points)

precision_thinning Precision Thinning of Spatial Points

Description

This function performs thinning of spatial points by rounding their coordinates to a specified pre-
cision and removing duplicates. It can perform multiple trials of this process and return the results
for all or just the best trial.

Usage

precision_thinning(
coordinates,
precision = 4,
trials = 10,
all_trials = FALSE,
priority = NULL

10 rounding_hashing_thinning

Arguments
coordinates A numeric matrix or data frame with two columns representing the longitude
and latitude of points.
precision An integer specifying the number of decimal places to which coordinates should
be rounded. Default is 4.
trials An integer specifying the number of thinning trials to perform. Default is 10.
all_trials A logical value indicating whether to return results for all trials (“TRUE®) or just
the first/best trial (‘FALSE®). Default is ‘FALSE".
priority A of the same length as the number of points with numerical values indicating
the priority of each point. Instead of eliminating points randomly, the points are
preferred accoridng to these values.
Details

The function performs multiple trials to account for randomness in the order of point selection. By
default, it returns the first trial, but setting ‘all_trials = TRUE® will return the results of all trials.

Value

If ‘all_trials is ‘FALSE", returns a logical vector indicating which points were kept in the first trial.
If “all_trials‘ is “TRUE, returns a list of logical vectors, one for each trial.

Examples

Example usage

coordinates <- matrix(c(-123.3656, 48.4284, -123.3657, 48.4285, -123.3658, 48.4286), ncol = 2)
result <- precision_thinning(coordinates, precision = 3, trials = 5, all_trials = TRUE)
print(result)

Example with a single trial and lower precision
result_single <- precision_thinning(coordinates, precision = 2, trials =1, all_trials = FALSE)
print(result_single)

rounding_hashing_thinning
Rounding Hashing Thinning

Description

Performs thinning of geographical coordinates using a hashing approach and rounds the coordinates
to create a grid.

rounding_hashing_thinning 11

Usage

rounding_hashing_thinning(
coordinates,
thin_dist = 10,
trials = 10,
all_trials = FALSE,
euclidean = FALSE,

R = 6371,
seed = NULL
)
Arguments
coordinates A numeric matrix of size (n x 2) containing the longitude and latitude of points,
where each row represents a coordinate pair.
thin_dist A numeric value specifying the distance (in kilometers) within which points
should be considered for thinning.
trials An integer indicating the number of trials to run for the thinning process. More
trials may yield better results.
all_trials A logical value indicating whether to return all trials (“TRUE®) or only the best
trial ("FALSE®).
euclidean Logical value indicating whether to compute the Euclidean distance (‘TRUE‘)
or Haversine distance (‘FALSE®, default).
R A numeric value representing the radius of the Earth in kilometers. Default is
set to 6371.0 km.
seed Optional; an integer seed for reproducibility of results.
Details

This function applies a hashing technique to group coordinates into grid cells, allowing for efficient
thinning based on a specified distance. It can run multiple trials to determine the best set of points
to keep, or return all trials if specified.

Value

A logical vector indicating which points are kept after the thinning process. If ‘all_trials® is “TRUE",
a list of logical vectors will be returned, one for each trial.

Examples

Generate random coordinates
set.seed(123)
coordinates <- matrix(runif (20, min = -180, max = 180), ncol = 2) # 10 random points

Perform rounding hashing thinning
result <- rounding_hashing_thinning(coordinates, thin_dist = 10, trials = 5)
print(result)

12 thin_points

Perform thinning with all trials

all_results <- rounding_hashing_thinning(coordinates, thin_dist = 5000, trials = 5,
all_trials = TRUE)

print(all_results)

Perform thinning with euclidean distance

result_euclidean <- rounding_hashing_thinning(coordinates, thin_dist = 10,
trials = 5, euclidean = TRUE)

print(result_euclidean)

thin_points Spatial Thinning of Points

Description

This function performs spatial thinning of geographic points to reduce point density while main-
taining spatial representation. Points are thinned based on a specified distance, grid, or precision,
and multiple trials can be performed to identify the best thinned dataset.

Usage

thin_points(
data,
long_col = NULL,
lat_col = NULL,
group_col = NULL,
method = c("brute_force”, "kd_tree”, "round_hash”, "grid”, "precision”),
trials = 10,
all_trials = FALSE,
target_points = NULL,
seed = NULL,
verbose = FALSE,

)
Arguments

data A data frame or tibble containing the points to thin. Must contain longitude and
latitude columns.

long_col Name of the column with longitude coordinates (default: "decimallL.ongitude").

lat_col Name of the column with latitude coordinates (default: "decimallLatitude").

group_col Name of the column for grouping points (e.g., species name, year). If NULL,
no grouping is applied.

method Thinning method to use ‘c("brute_force", "kd_tree", "round_hash", "grid", "pre-

cision")‘.

trials Number of thinning iterations to perform (default: 10).

thin_points 13

all_trials If TRUE, returns results of all attempts; if FALSE, returns the best attempt with
the most points retained (default: FALSE).

target_points Optional; a numeric value specifying the exact number of points to keep. If
NULL (default), maximizes the number of kept points.

seed Optional; an integer seed for reproducibility of results.
verbose If TRUE, prints progress messages (default: FALSE).

Additional parameters passed to specific thinning methods (e.g., thin_dist, pre-
cision, resolution, origin, R).

Details

The thinning methods available are: - ‘brute_force*: Uses a brute force approach to thin points. -
‘kd_tree: Uses K-D trees for thinning. - ‘round_hash‘: Uses rounding and hashing for efficient
thinning. - ‘grid‘: Applies a grid-based thinning method. - ‘precision‘: Utilizes precision-based
thinning.

For more information on specific thinning methods and inputs, refer to their respective documenta-

tion: - ‘brute_force_thinning()‘ - ‘grid_thinning()‘ - ‘kd_tree_thinning()‘ - ‘rounding_hashing_thinning()‘
- ‘precision_thinning()*

Value

A tibble of thinned points, or a combined result of all attempts if ‘all_trials‘ is TRUE.

Examples

Generate sample data

set.seed(123)

sample_data <- data.frame(
decimallLongitude = runif (100, -180, 180),
decimallLatitude = runif(100, -90, 90)

)

Perform thinning using K-D tree method
thinned_data <- thin_points(sample_data,

long_col = "decimallongitude”,
lat_col = "decimallLatitude”,
method = "kd_tree",

trials = 5,

verbose = TRUE)

Perform thinning with grouping

sample_data$species <- sample(c(”species_A", "species_B"), 100, replace = TRUE)
thinned_grouped_data <- thin_points(sample_data,

long_col = "decimallLongitude”,

lat_col = "decimallLatitude”,

group_col = "species”,

method = "kd_tree”,
trials = 10)

Index

x datasets
caretta, 4

assign_coords_to_grid, 2
brute_force_thinning, 3
caretta, 4

grid_thinning, 5
kd_tree_thinning, 6
long_lat_to_cartesian, 8
max_thinning_algorithm, 8
precision_thinning, 9
rounding_hashing_thinning, 10

thin_points, 12

14

	assign_coords_to_grid
	brute_force_thinning
	caretta
	grid_thinning
	kd_tree_thinning
	long_lat_to_cartesian
	max_thinning_algorithm
	precision_thinning
	rounding_hashing_thinning
	thin_points
	Index

