LRMiss: Linear Regression with Missing Data
Provides methods for linear regression in the presence of missing data,
including missingness in covariates and responses. The package implements two
estimators: oss_estimator(), a low-dimensional semi-supervised method, and
dantzig_missing(), a high-dimensional approach. The tuning parameter can be
selected automatically via cv_dantzig_missing(). See Risebrow and Berrett (2026)
<doi:10.48550/arXiv.2602.13729>. Optional support for the 'gurobi' optimizer via
the 'gurobi' R package (available from Gurobi, see
<https://docs.gurobi.com/projects/optimizer/en/current/reference/r.html>).
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=LRMiss
to link to this page.