| Title: | Constraint Multiobjective Sample Allocation |
| Version: | 1.2.3 |
| Description: | Provides a framework for multipurpose optimal resource allocation in survey sampling, extending the classical optimal allocation principles introduced by Tschuprow (1923) and Neyman (1934) to multidomain and multivariate allocation problems. The primary method mosalloc() allows for the consideration of precision and cost constraints at the subpopulation level while minimizing either a vector of sampling errors or survey costs across a broad range of optimal sample allocation problems. The approach supports both single- and multistage designs. For single-stage stratified random sampling, the mosallocSTRS() function offers a user- friendly interface. Sensitivity analysis is supported through the problem's dual variables, which are naturally obtained via the internal use of the Embedded Conic Solver from the 'ECOSolveR' package. See Willems (2025, <doi:10.25353/ubtr-9200-484c-5c89>) for a detailed description of the theory behind 'MOSAlloc'. |
| License: | GPL (≥ 3) |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.3.3 |
| Imports: | ECOSolveR, Matrix |
| Suggests: | parallel, testthat (≥ 3.0.0) |
| NeedsCompilation: | no |
| Packaged: | 2026-01-23 10:46:38 UTC; willemsf |
| Maintainer: | Felix Willems <mail.willemsf+MOSAlloc@gmail.com> |
| Config/testthat/edition: | 3 |
| Author: | Felix Willems |
| Repository: | CRAN |
| Date/Publication: | 2026-01-27 21:10:02 UTC |
Constructor for precision constraints
Description
A helper function for generating precision matrix A
and corresponding right-hand side a under stratified random
sampling (STRS) as input to the multiobjective allocation function
mosalloc().
Usage
constructArestrSTRS(X_var, X_tot, N, list, fpc = TRUE)
Arguments
X_var |
(type: |
X_tot |
(type: |
N |
(type: |
list |
(type: |
fpc |
(type: |
Value
The function constructArestrSTRS() returns a list containing
A (type: matrix) a precision matrix for the
quality restrictions and
a (type: vector) a precision vector for the
corresponding right-hand side
useable as input to the multiobjective allocation function
mosalloc().
Examples
# Artificial population of 50 568 business establishments and 5 business
# sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
# Practical tools for designing and weighting survey samples. Springer.
# https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)
# See also https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360
# file: Code 5.3 constrOptim.example.R
Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes
# Revenues
mh.rev <- c(85, 11, 23, 17, 126) # mean revenue
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0) # standard deviation revenue
# Employees
mh.emp <- c(511, 21, 70, 32, 157) # mean number of employees
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00) # std. dev. employees
# Proportion of establishments claiming research credit
ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)
# Proportion of establishments with offshore affiliates
ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)
# Matrix containing stratum-specific variance components
X_var <- cbind(Sh.rev**2,
Sh.emp**2,
ph.rsch * (1 - ph.rsch) * Nh/(Nh - 1),
ph.offsh * (1 - ph.offsh) * Nh/(Nh - 1))
colnames(X_var) <- c("rev", "emp", "rsch", "offsh")
# Matrix containing stratum-specific totals
X_tot <- cbind(mh.rev, mh.emp, ph.rsch, ph.offsh) * Nh
colnames(X_tot) <- c("rev", "emp", "rsch", "offsh")
# Examples
#----------------------------------------------------------------------------
# Example 1: Assume we require at maximum 5 % relative standard error (RSE)
# for estimates of the proportion of businesses with offshore affiliates.
#
# The input \code{A} and \code{a} to \code{mosalloc} can be calculated as
# follows:
A <- matrix(ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2,
nrow = 1)
a <- sum(ph.offsh * (1 - ph.offsh) * Nh**2/(Nh - 1)
)/sum(Nh * ph.offsh)**2 + 0.05**2
# Using \code{constructArestrSTRS()} this can also be done via
list <- list(list(stratum_id = 1:5, variate = "offsh", measure = "RSE",
bound = 0.05, name = "pop"))
Ac <- constructArestrSTRS(X_var, X_tot, Nh, list, fpc = TRUE)
# or equivalently by
list <- list(list(stratum_id = 1:5, variate = 4, measure = "RSE",
bound = 0.05, name = "pop"))
Ac <- constructArestrSTRS(X_var, X_tot, Nh, list, fpc = TRUE)
# Evaluation of the output
Ac$A - A
Ac$a - a
# Example 2: Assume we require at maximum 5 % relative standard error for
# estimates of the proportion of businesses with offshore affiliates and
# for estimates of the proportion of businesses claiming research credit
# separately for strata 1:2 and 3:5 each.
list <- list(list(stratum_id = 1:2, variate = "offsh", measure = "RSE",
bound = 0.05, name = "D1"),
list(stratum_id = 3:5, variate = "offsh", measure = "RSE",
bound = 0.05, name = "D2"),
list(stratum_id = 1:2, variate = "rsch", measure = "RSE",
bound = 0.05, name = "D1"),
list(stratum_id = 3:5, variate = "rsch", measure = "RSE",
bound = 0.05, name = "D2"))
Ac <- constructArestrSTRS(X_var, X_tot, Nh, list, fpc = TRUE)
Constructor for cost constraints
Description
A helper function for generating cost coefficient matrix
C and corresponding right-hand side c under stratified
random sampling (STRS) as input to the the multiobjective allocation
function mosalloc().
Usage
constructCrestrSTRS(H, list)
Arguments
H |
(type: |
list |
(type: |
Value
The function constructCrestrSTRS() returns a list
C (type: matrix): a cost matrix for the cost
restrictions and
c (type: vector): a cost vector for the corresponding
right-hand side
useable as input to the multiobjective allocation function
mosalloc().
Examples
# Artificial population of 50 568 business establishments and 5 business
# sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
# Practical tools for designing and weighting survey samples. Springer.
# https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)
# See also https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360
# file: Code 5.3 constrOptim.example.R
Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes
H <- length(Nh)
ch <- c(120, 80, 80, 90, 150) # stratum-specific cost of surveying
budget <- 300000
# Examples
#----------------------------------------------------------------------------
# Example 1: Assume we want so specify one overall cost constraint for the
# five strata. The cost of surveying must not exceed 300000 $.
# The input \code{C} and \code{C} to \code{mosalloc} can be specified as
# follows:
C <- matrix(ch, nrow = 1)
c <- as.vector(budget)
# Using \code{constructCrestrSTRS} this can also be done via
list <- list(list(stratum_id = 1:5, c_coef = ch, c_lower = NULL,
c_upper = budget, name = "Overall"))
Cc <- constructCrestrSTRS(H, list)
# Evaluation of the output
Cc$C - C
Cc$c - c
# Example 2: In addition to the overall cost constraint from Example 1,
# we want to specify a minimum sample size for strata 1 to 3.
# The input \code{C} and \code{C} to \code{mosalloc} can be specified as
# follows:
C <- rbind(ch,
ch * c(-1, -1, -1, 0, 0))
c <- c(budget, # Maximum overall survey budget
- 0.5 * budget) # Minimum overall budget for strata 1-3
# Using \code{constructCrestrSTRS} this can also be done via
list <- list(list(stratum_id = 1:5, c_coef = ch, c_lower = NULL,
c_upper = budget, name = "Overall"),
list(stratum_id = 1:3, c_coef = ch[1:3], c_lower = 0.5 * budget,
c_upper = NULL, name = "1to3"))
Cc <- constructCrestrSTRS(H, list)
# Evaluation of the output
Cc$C - C
Cc$c - c
Constructor for cost objective components
Description
A helper function for generating cost matrix D and
fixed cost vector d under stratified random sampling (STRS) as
input to the multiobjective allocation function mosalloc().
Usage
constructDobjCostSTRS(X_cost, X_fixed, list)
Arguments
X_cost |
(type: |
X_fixed |
(type: |
list |
(type: |
Value
The function constructDobjCostSTRS() returns a list containing
$D (type: matrix): the cost coefficient matrix for
cost objectives and
$d (type: vector): the vector of fixed costs
useable as input to the multiobjective allocation function
mosalloc().
Examples
# Assume we are given two regions stratified into three strata each. We now
# might balance the cost of surveying between both regions.
# Stratum-specific variable cost
ch <- c(25, 40, 33, 18, 53, 21)
names(ch) <- c("R1_S1", "R1_S2", "R1_S3",
"R2_S1", "R2_S2", "R2_S3")
# Stratum-specific fixed cost
cf <- c(55, 50, 55, 50, 55, 50)
names(cf) <- c("R1_S1", "R1_S2", "R1_S3",
"R2_S1", "R2_S2", "R2_S3")
# The input \code{D} and \code{d} to \code{mosalloc()} can be specified as
# follows:
D <- matrix(c(ch[1:3], rep(0, 6), ch[4:6]), 2, 6, byrow = TRUE)
d <- as.vector(c(sum(cf[1:3]), sum(cf[4:6])))
# Using \code{constructDobjCostSTRS()} this can also be done via
X_cost <- matrix(ch, ncol = 1)
colnames(X_cost) <- "$ US"
X_fixed <- matrix(cf, ncol = 1)
colnames(X_fixed) <- "$ US"
list <- list(list(stratum_id = 1:3, c_type = "$ US", name = "R1"),
list(stratum_id = 4:6, c_type = "$ US", name = "R2"))
Dc <- constructDobjCostSTRS(X_cost, X_fixed, list)
# Evaluation of the output
Dc$D - D
Dc$d - d
Constructor for precision objective components
Description
A helper function for generating precision matrix D
and finite population correction d under stratified random
sampling (STRS) as input to the multiobjective allocation function
mosalloc().
Usage
constructDobjPrecisionSTRS(X_var, X_tot, N, list, fpc = TRUE)
Arguments
X_var |
(type: |
X_tot |
(type: |
N |
(type: |
list |
(type: |
fpc |
(type: |
Value
The function constructDobjPrecisionSTRS() returns a list
containing
$D (type: matrix): the precision matrix for quality
objectives and
$d (type: vector): the vector of finite population
corrections
useable as input to the multiobjective allocation function
mosalloc().
Examples
# Artificial population of 50 568 business establishments and 5 business
# sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
# Practical tools for designing and weighting survey samples. Springer.
# https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)
# See also https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360
# file: Code 5.3 constrOptim.example.R
Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes
# Revenues
mh.rev <- c(85, 11, 23, 17, 126) # mean revenue
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0) # standard deviation revenue
# Employees
mh.emp <- c(511, 21, 70, 32, 157) # mean number of employees
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00) # std. dev. employees
# Proportion of estabs claiming research credit
ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)
# Proportion of estabs with offshore affiliates
ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)
budget <- 300000 # overall available budget
n.min <- 100 # minimum stratum-specific sample size
# Matrix containing stratum-specific variance components
X_var <- cbind(Sh.rev**2,
Sh.emp**2,
ph.rsch * (1 - ph.rsch) * Nh/(Nh - 1),
ph.offsh * (1 - ph.offsh) * Nh/(Nh - 1))
colnames(X_var) <- c("rev", "emp", "rsch", "offsh")
# Matrix containing stratum-specific totals
X_tot <- cbind(mh.rev, mh.emp, ph.rsch, ph.offsh) * Nh
colnames(X_tot) <- c("rev", "emp", "rsch", "offsh")
# Examples
#----------------------------------------------------------------------------
# Example 1: Assume we want to minimize the variation of estimates for
# revenue.
#
# The input \code{D} and \code{d} to \code{mosalloc()} can be calculated as
# follows:
D <- matrix(Sh.rev**2 * Nh**2, nrow = 1) # objective variance components
d <- sum(Sh.rev**2 * Nh) # finite population correction
# Using \code{constructDobjPrecisionSTRS()} this can also be done via
list <- list(list(stratum_id = 1:5, variate = "rev", measure = "VAR",
name = "pop"))
Dc <- constructDobjPrecisionSTRS(X_var, X_tot, Nh, list, fpc = TRUE)
# or equivalently by
list <- list(list(stratum_id = 1:5, variate = 1, measure = "VAR",
name = "pop"))
Dc <- constructDobjPrecisionSTRS(X_var, X_tot, Nh, list, fpc = TRUE)
# Evaluate output
Dc$D - D
Dc$d - d
# Example 2: Minimization of the maximum coefficient of variation of
# estimates for the total revenue, the number of employee, the number of
# businesses claimed research credit, and the number of businesses with
# offshore affiliates
# The input \code{D} and \code{d} to \code{mosalloc()} can be calculated as
# follows:
D <- rbind(Sh.rev**2 * Nh**2 / sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2 / sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)
d <- as.vector(D %*% (1 / Nh)) # finite population correction
# Using \code{constructDobjPrecisionSTRS()} this can also be done via
list <- list(list(stratum_id = 1:5, variate = "rev", measure = "relVAR",
name = "pop"),
list(stratum_id = 1:5, variate = "emp", measure = "relVAR",
name = "pop"),
list(stratum_id = 1:5, variate = "rsch", measure = "relVAR",
name = "pop"),
list(stratum_id = 1:5, variate = "offsh", measure = "relVAR",
name = "pop"))
Dc <- constructDobjPrecisionSTRS(X_var, X_tot, Nh, list, fpc = TRUE)
# Evaluation of the output
Dc$D - D
Dc$d - d
Multiobjective sample allocation for constraint multivariate and multidomain optimal allocation in survey sampling
Description
Computes solutions to standard sample allocation problems
under various precision and cost restrictions. The input data is
transformed and parsed to the Embedded COnic Solver (ECOS) from the
'ECOSolveR' package. Multiple survey purposes can be optimized
simultaneously through a weighted Chebyshev minimization. Note that in
the case of multiple objectives, mosalloc() does not necessarily
lead to Pareto optimality. This highly depends on the problem structure.
A strong indicator for Pareto optimality is when the weighted objective
values given by Dbounds are constant over all objective
components or when all components of Qbounds equal 1.
In addition, mosalloc() can handle twice-differential convex
decision functionals (in which case Pareto optimality is ensured).
mosalloc() returns dual variables, enabling a detailed sensitivity
analysis.
Usage
mosalloc(
D,
d,
A = NULL,
a = NULL,
C = NULL,
c = NULL,
l = 2,
u = NULL,
opts = list(sense = "max_precision", f = NULL, df = NULL, Hf = NULL, init_w = 1,
mc_cores = 1L, pm_tol = 1e-05, max_iters = 100L, print_pm = FALSE)
)
Arguments
D |
(type: |
d |
(type: |
A |
(type: |
a |
(type: |
C |
(type: |
c |
(type: |
l |
(type: |
u |
(type: |
opts |
(type: |
Value
mosalloc() returns a list containing the following
components:
$w The initial preference weighting opts$init_w.
$n The vector of optimal sample sizes.
$J The optimal objective vector.
$Objective The objective value with respect to decision
funtional f. NULL if opts$f = NULL.
$Utopian The component-wise univariate optimal
objective vector. NULL if opts$f = NULL.
$Normal The vector normal to the Pareto frontier at
$J.
$dfJ The gradient of opts$f evaluated at $J.
$Sensitivity The dual variables of the objectives and
constraints.
$Qbounds The Quality bounds of the Lorentz cones.
$Dbounds The weighted objective constraints ($w * $J).
$Scalepar An internal scaling parameter.
$Ecosolver A list of ECOSolveR returns including:
...$Ecoinfostring The info string of
ECOSolveR::ECOS_csolve().
...$Ecoredcodes The redcodes of ECOSolveR::ECOS_csolve().
...$Ecosummary Problem summary of ECOSolveR::ECOS_csolve().
$Timing Run time info.
$Iteration A list of internal iterates. NULL if
opts$f = NULL.
Note
Precision optimization (opts$sense == "max_precision",
opts$f == NULL)
The mathematical problem solved is
\min_{n, z, t}\{t: Dz-d\leq w^{-1}t, Az\leq a, Cn\leq c,
1\leq n_iz_i\, \forall i, l\leq n \leq u\}
with \textbf{1}\leq l\leq u \leq N, where
-
n,z\in\mathbb{R}^mandt\in\mathbb{R}are the optimization variables, -
D\in\{M\in\mathbb{R}^{k_D\times m}: \sum_i M_{ij}>0\, \forall j, \sum_j M_{ij}>0\, \forall i\}a matrix of nonnegative objective precision components withk_Dthe number of precision objectives (the number of variables of interest), -
d\in\mathbb{R}^{k_D}the objective right hand-side (RHS), e.g. the finite population correction (fpc), -
A\in\mathbb{R}^{k_A\times m}a nonnegative precision matrix withk_Athe number of precision constraints,a\in \mathbb{R}^{k_A}the corresponding RHS, e.g. fpc + (upper bound to the coefficient of variation)^2, -
C\in\mathbb{R}^{k_C\times m}a cost matrix withk_Cthe number of cost constraint, -
c\in\mathbb{R}^{k_C}the corresponding RHS, -
l,u\in\mathbb{R}^mthe bounds to the sample size vectorn, -
N\in\mathbb{N}^mthe vector of population sizes, and -
wa given strictly positive preference weighting.
Special cases of this formulation are
Neyman-Tschuprow allocation (Neyman, 1934 and Tschuprow, 1923):
\min_n \Big\{\sum_{h=1}^H \Big(\frac{N_h^2S_h^2}{n_h}-N_hS_h^2\Big):\sum_{h=1}^H n_h \leq c\Big\} \quad \Leftrightarrow \quad \min_{n, z, t}\{t: Dz-d\leq t, Cn\leq c, 1\leq n_iz_i\, \forall i\}with
D = (N_1^2S_1^2,\dots,N_H^2S_H^2),d = \sum_{h=1}^H N_hS_h^2,C = (1,\dots,1)andca maximum sample size. Here,His the number of strata,N_hthe size of stratumhandS_h^2the variance of the variable of interest in stratumh.box-constrained optimal allocation:
\min_{n, z, t}\{t: Dz-d\leq t, Cn\leq c, 1\leq n_iz_i\, \forall i, l\leq n \leq u\}with
D = (N_1^2S_1^2,\dots,N_H^2S_H^2),d = \sum_{h=1}^H N_hS_h^2,C = (1,\dots,1)andca maximum sample size (cf. Srikantan, 1963 and Münnich et al., 2012). Here,landuare bounds to the optimal sample size vector.cost and precision constrained univariate optimal allocation:
\min_{n, z, t}\{t: Dz-d\leq t, Az\leq a, Cn\leq c, 1\leq n_iz_i\, \forall i, l\leq n \leq u\}with
k_D = 1(cf. Willems, 2025, Chapter 3).multivariate optimal allocation with weighted sum scalarization:
\min_{n, z, t}\{t: w^\top Dz-w^\top d\leq t, Az\leq a, Cn\leq c, 1\leq n_iz_i\, \forall i, l\leq n \leq u\}where
w\in\mathbb{R}^{k_D}is a strictly positive preference weighting (cf. Folks and Antel, 1965, and Rupp, 2018). Note that for this case the problem reduces to cost and precision constrained univariate optimal allocation. Solutions are ensured to be optimal in the Pareto sense.box-constraint two-stage cluster sampling:
\quad \quad \quad\min_{n_\textbf{I},n_\textbf{II}} \Big\{\Big(\frac{N_\textbf{I}^2 S_\textbf{I}^2}{n_\textbf{I}}-N_\textbf{I}S_\textbf{I}^2\Big) + \frac{N_\textbf{I}}{n_\textbf{I}}\sum_{j=1}^{N_\textbf{I}} \Big(\frac{N_{\textbf{II}j}^2S_{\textbf{II}j}^2}{n_{\textbf{II}j}}- N_{\textbf{II}j}S_{\textbf{II}j}^2\Big): c_{\textbf{I}}n_\textbf{I} + \frac{n_\textbf{I}}{N_\textbf{I}} \sum_{j=1}^{N_\textbf{I}}c_{\textbf{II}j}n_{\textbf{II}j} \leq c_\textrm{max},\hspace{3.5cm}\hspace{9.1cm} l_\textbf{I}\leq n_\textbf{I}\leq u_\textbf{I}, l_\textbf{II}\leq n_\textbf{II}\leq u_\textbf{II} \Big\}\Leftrightarrow \quad \min_{n, z, t}\{t: Dz-d\leq t, Cn\leq c, 1\leq n_iz_i\, \forall i, l\leq n \leq u\}\hspace{4cm}with
D = (N_\textbf{I}^2S_\textbf{I}^2 - N_\textbf{I}\sum_{j=1}^{N_\textbf{I}} N_{\textbf{II}j}S_{\textbf{II}j}^2, N_\textbf{I}N_{\textbf{II}1}^2 S_{\textbf{II}1}^2,\dots, N_\textbf{I}N_{\textbf{II}N_\textbf{I}}^2S_{\textbf{II}N_\textbf{I}}^2),d = N_\textbf{I}S_\textbf{I}^2,C = [C_1, C_2], whereC_1=(c_\textbf{I},l_\textbf{II}^\top,-u_\textbf{II}^\top)^\topandC_2 = [N_\textbf{I}^{-1}c_\textbf{II}^\top;-\textbf{I};\textbf{I}](\textbf{I}is the identity matrix),c = (c_\textrm{max},0,\dots,0)^\top, wherel = (l_\textbf{I},l_\textbf{I}l_\textbf{II}^\top)^\topandu = (u_\textbf{I},u_\textbf{I}u_\textbf{II}^\top)^\top(cf. Willems, 2025, Chapter 3). Here,N_\textbf{I}is the number of clusters,N_{\textbf{II}j}the size of clusterj,S_\textbf{I}^2the between cluster variance andS_{\textbf{II}j}^2the within cluster variances of the variable of interest. Furthermore,c_\textrm{max}is a maximum expected cost,c_\textbf{I}a variable cost for sampling one cluster, andc_{\textbf{II}j}a variable cost for sampling one unit in clusterj. The optimal number of clusters to be drawn and the optimal sample sizes are given throughn = (n_\textbf{I}, n_\textbf{I}n_{\textbf{II}1},\dots, n_\textbf{I}n_{\textbf{II} N_\textbf{I}})^\top.
For the special cases above, solutions are unique and, thus, Pareto optimal.
For the general multiobjective problem formulation this is not the case.
However, a strong indicator for uniqueness of solutions is
n_iz_i = 1\, \forall i (Qbounds) or
Dz-d = w^{-1}t (Dbounds). Uniqueness can be ensured via a
stepwise procedure implemented in mosallocStepwiseFirst().
Precision optimization (opts$sense == "max_precision",
opts$f ==f, opts$f == \nabla f,
opts$f == Hf)
The mathematical problem solved is
\min_{n, z}\{f(Dz-d): Az\leq a, Cn\leq c,
1\leq n_iz_i\, \forall i, l\leq n \leq u\}
with components as specified above and where
f:\mathbb{R}^{k_D}\rightarrow \mathbb{R}, x \mapsto f(x)
is a twice-differentiable convex decision functional.
E.g. a p-norm f(x) = \lVert x \rVert_p with
p\in\mathbb{N}.
Cost optimization (opts$sense == "min_cost")
The mathematical problem solved is
\min_{n, z, t}\{t: Dn-d\leq\textbf{1}t, Az\leq a, Cn\leq c,
1\leq n_iz_i\, \forall i, l\leq n \leq u\}
with 1\leq l\leq u \leq N. Hence, the only difference to
precision optimization is the type of objective constraint
Dn-d\leq\textbf{1}t.
Special cases of this formulation are
the cost optimal allocation (possibly multivariate, i.e.
k_A\geq 2):\min_{n, z, t}\{t: Dn-d\leq\textbf{1}t, Az\leq a, 1\leq n_iz_i\, \forall i\}where
D^\topis a vector of stratum-specific sampling cost anddsome fixed cost.
References
See:
Folks, J.L., Antle, C.E. (1965). Optimum Allocation of Sampling Units to Strata when there are R Responses of Interest. Journal of the American Statistical Association, 60(309), 225-233. doi:10.1080/01621459.1965.10480786.
Münnich, R., Sachs, E., Wagner, M. (2012). Numerical solution of optimal allocation problems in stratified sampling under box constraints. AStA Advances in Statistical Analysis, 96, 435-450. doi:10.1007/s10182-011-0176-z.
Neyman, J. (1934). On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection. Journal of the Royal Statistical Society, 97(4), 558–625.
Tschuprow, A.A. (1923). On the Mathematical Expectation of the Moments of Frequency Distribution in the Case of Correlated Observations. Metron, 2(3,4), 461-493, 646-683.
Rupp, M. (2018). Optimization for Multivariate and Multi-domain Methods in Survey Statistics (Doctoral dissertation). Trier University. doi:10.25353/UBTR-8351-5432-14XX.
Srikantan, K.S. (1963). A Problem in Optimum Allocation. Operations Research, 11(2), 265-274.
Willems, F. (2025). A Framework for Multiobjective and Uncertain Resource Allocation Problems in Survey Sampling based on Conic Optimization (Doctoral dissertation). Trier University. doi:10.25353/ubtr-9200-484c-5c89.
Examples
# Artificial population of 50 568 business establishments and 5 business
# sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
# Practical tools for designing and weighting survey samples. Springer.
# https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)
# See also <https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360>
# file: Code 5.3 constrOptim.example.R
Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes
ch <- c(120, 80, 80, 90, 150) # stratum-specific cost of surveying
# Revenues
mh.rev <- c(85, 11, 23, 17, 126) # mean revenue
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0) # standard deviation revenue
# Employees
mh.emp <- c(511, 21, 70, 32, 157) # mean number of employees
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00) # std. dev. employees
# Proportion of estabs claiming research credit
ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)
# Proportion of estabs with offshore affiliates
ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)
budget <- 300000 # overall available budget
n.min <- 100 # minimum stratum-specific sample size
# Examples
#----------------------------------------------------------------------------
# Example 1: Minimization of the variation of estimates for revenue subject
# to cost restrictions and precision restrictions to the coefficient of
# variation of estimates for the proportion of businesses with offshore
# affiliates.
l <- rep(n.min, 5) # minimum sample size per stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch,
ch * c(-1, -1, -1, 0, 0))
c <- c(budget, # Maximum overall survey budget
- 0.5 * budget) # Minimum overall budget for strata 1-3
# We require at maximum 5 % relative standard error for estimates of
# proportion of businesses with offshore affiliates
A <- matrix(ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2,
nrow = 1)
a <- sum(ph.offsh * (1 - ph.offsh) * Nh**2/(Nh - 1)
)/sum(Nh * ph.offsh)**2 + 0.05**2
D <- matrix(Sh.rev**2 * Nh**2, nrow = 1) # objective variance components
d <- sum(Sh.rev**2 * Nh) # finite population correction
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
sol <- mosalloc(D = D, d = d, A = A, a = a, C = C, c = c, l = l, u = u,
opts = opts)
# Check solution statement of the internal solver to verify feasibility
sol$Ecosolver$Ecoinfostring # [1] "Optimal solution found"
# Check constraints
c(C[1, ] %*% sol$n) # [1] 3e+05
c(C[2, ] %*% sol$n) # [1] -150000
c(sqrt(A %*% (1 / sol$n) - A %*% (1 / Nh))) # 5 % rel. std. err.
#----------------------------------------------------------------------------
# Example 2: Minimization of the maximum relative variation of estimates for
# the total revenue, the number of employee, the number of businesses claimed
# research credit, and the number of businesses with offshore affiliates
# subject to cost restrictions
l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch, ch * c(-1, -1, -1, 0, 0))
c <- c(budget, - 0.5 * budget)
A <- NULL # no precision constraint
a <- NULL # no precision constraint
# Precision components (Variance / Totals^2) for multidimensional objective
D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)
d <- as.vector(D %*% (1 / Nh)) # finite population correction
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
sol <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)
# Obtain optimal objective value
sol$J # [1] 0.0017058896 0.0004396972 0.0006428475 0.0017058896
# Obtain corresponding normal vector
sol$Normal # [1] 6.983113e-01 1.337310e-11 1.596167e-11 3.016887e-01
# => Revenue and offshore affiliates are dominating the solution with a
# ratio of approximately 2:1 (sol$Normal[1] / sol$Normal[4])
#----------------------------------------------------------------------------
# Example 3: Example 2 with preference weighting
w <- c(1, 3.85, 3.8, 1.3) # preference weighting
l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch, ch * c(-1, -1, -1, 0, 0))
c <- c(budget, - 0.5 * budget)
A <- NULL # no precision constraint
a <- NULL # no precision constraint
D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)
d <- as.vector(D %*% (1 / Nh))
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = w,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)
#----------------------------------------------------------------------------
# Example 4: Example 2 with multiple preference weightings for simultaneous
# evaluation
w <- matrix(c(1.0, 1.0, 1.0, 1.0, # matrix of preference weightings
1.0, 3.9, 3.9, 1.3,
0.8, 4.2, 4.8, 1.5,
1.2, 3.5, 4.8, 2.0,
2.0, 1.0, 1.0, 2.0), 5, 4, byrow = TRUE)
w <- w / w[,1] # rescale w (ensure the first weighting to be one)
l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch, ch * c(-1, -1, -1, 0, 0))
c <- c(budget, - 0.5 * budget)
A <- NULL # no precision constraint
a <- NULL # no precision constraint
D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)
d <- as.vector(D %*% (1 / Nh))
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = w,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
sols <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)
lapply(sols, function(sol){sol$Qbounds})
#----------------------------------------------------------------------------
# Example 5: Example 2 where a weighted sum scalarization of the objective
# components is minimized
l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- matrix(ch, nrow = 1)
c <- budget
A <- NULL # no precision constraint
a <- NULL # no precision constraint
# Objective variance components
D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)
d <- as.vector(D %*% (1 / Nh)) # finite population correction
# Simple weighted sum as decision functional
wss <- c(1, 1, 0.5, 0.5) # preference weighting (weighted sum scalarization)
Dw <- wss %*% D
dw <- as.vector(wss %*% d)
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 1000L, print_pm = FALSE)
# Solve weighted sum scalarization (WSS) via mosalloc
sol_wss <- mosalloc(D = Dw, d = dw, C = C, c = c, l = l, u = u, opts = opts)
# Obtain optimal objective values
J <- D %*% (1 / sol_wss$n) - d
# Reconstruct solution via a weighted Chebyshev minimization
wcm <- J[1] / J
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = matrix(wcm, 1),
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 1000L, print_pm = FALSE)
sol_wcm <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)
# Compare solutions
rbind(t(J), sol_wcm$J)
# [,1] [,2] [,3] [,4]
# [1,] 0.00155645 0.0004037429 0.0005934474 0.001327165
# [2,] 0.00155645 0.0004037429 0.0005934474 0.001327165
rbind(sol_wss$n, sol_wcm$n)
# [,1] [,2] [,3] [,4] [,5]
# [1,] 582.8247 236.6479 116.7866 839.5988 841.4825
# [2,] 582.8226 236.6475 116.7871 839.5989 841.4841
rbind(wss, sol_wcm$Normal / sol_wcm$Normal[1])
# [,1] [,2] [,3] [,4]
#wss 1 1.0000000 0.5000000 0.5000000
# 1 0.9976722 0.4997552 0.4997462
#----------------------------------------------------------------------------
# Example 6: Example 1 with two subpopulations and a p-norm as decision
# functional
l <- rep(n.min, 5) # minimum sample size per stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch, ch * c(-1, -1, -1, 0, 0))
c <- c(budget, - 0.5 * budget)
# At maximum 5 % relative standard error for estimates of proportion of
# businesses with offshore affiliates
A <- matrix(ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2,
nrow = 1)
a <- sum(ph.offsh * (1 - ph.offsh) * Nh**2/(Nh - 1)
)/sum(Nh * ph.offsh)**2 + 0.05**2
D <- rbind((Sh.rev**2 * Nh**2)*c(0,0,1,1,0),
(Sh.rev**2 * Nh**2)*c(1,1,0,0,1))# objective variance components
d <- as.vector(D %*% (1 / Nh)) # finite population correction
# p-norm solution
p <- 5 # p-norm
opts = list(sense = "max_precision",
f = function(x) sum(x**p),
df = function(x) p * x**(p - 1),
Hf = function(x) diag(p * (p - 1) * x**(p - 2)),
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 1000L, print_pm = TRUE)
sol <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)
c(sol$Normal/sol$dfJ)/mean(c(sol$Normal/sol$dfJ))
# [1] 0.9999972 1.0000028
#----------------------------------------------------------------------------
# Example 7: Example 2 with p-norm as decision functional and only one
# overall cost constraint
l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- matrix(ch, nrow = 1)
c <- budget
A <- NULL # no precision constraint
a <- NULL # no precision constraint
# Objective precision components
D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)
d <- as.vector(D %*% (1 / Nh)) # finite population correction
# p-norm solution
p <- 5 # p-norm
opts = list(sense = "max_precision",
f = function(x) sum(x**p),
df = function(x) p * x**(p - 1),
Hf = function(x) diag(p * (p - 1) * x**(p - 2)),
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 1000L, print_pm = TRUE)
sol <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)
c(sol$Normal/sol$dfJ)/mean(c(sol$Normal/sol$dfJ))
# [1] 1.0014362 0.9780042 1.0197807 1.0007789
#----------------------------------------------------------------------------
# Example 8: Minimization of sample sizes subject to precision constraints
l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
# We require at maximum 4.66 % relative standard error for the estimate of
# total revenuee, 5 % for the number of employees, 3 % for the proportion of
# businesses claiming research credit, and 3 % for the proportion of
# businesses with offshore affiliates
A <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)
a <- as.vector(A%*%(1 / Nh) + c(0.0466, 0.05, 0.03, 0.03)**2)
# We do not consider any additional sample size or cost constraints
C <- NULL # no cost constraint
c <- NULL # no cost constraint
# Since we minimize the sample size, we define D and d as follows:
D <- matrix(1, nrow = 1, ncol = length(Nh)) # objective cost components
d <- as.vector(0) # vector of possible fixed cost
opts = list(sense = "min_cost", # Sense of optimization is survey cost
f = NULL,
df = NULL,
Hf = NULL,
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = TRUE)
sol <- mosalloc(D = D, d = d, A = A, a = a, l = l, u = u, opts = opts)
sum(sol$n) # [1] 2843.219
sol$J # [1] 2843.219
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# Note: Sample size optimization for two-stage cluster sampling can be
# reduced to the structure of optimal stratified random samplin when
# considering expected costs. Therefore, mosalloc() can handle such
# designs. A benefit is that mosalloc() allows relatively complex
# sample size restrictions such as box constraints for subsampling.
# Optimal sample sizes at secondary stages have to be reconstructed
# from sol$n.
#
# Example 9: Optimal number of primary sampling units (PSU) and secondary
# sampling units (SSU) in 2-stage cluster sampling.
set.seed(1234)
pop <- data.frame(value = rnorm(100, 100, 35),
cluster = sample(1:4, 100, replace = TRUE))
CI <- 36 # Sampling cost per PSU/cluster
CII <- 10 # Average sampling cost per SSU
NI <- 4 # Number of PSUs/clusters
NII <- table(pop$cluster) # PSU/cluster sizes
S2I <- var(by(pop$value, pop$cluster, sum)) # between cluster variance
S2II <- by(pop$value, pop$cluster, var) # within cluster variances
D <- matrix(c(NI**2 * S2I - NI * sum(NII * S2II), NI * NII**2 * S2II), 1)
d <- as.vector(NI * S2I)
C <- cbind(c(CI, rep(2, NI), -NII),
rbind(rep(CII / NI, 4), -diag(4), diag(4)))
c <- as.vector(c(500, rep(0, 8)))
l <- c(2, rep(4, 4))
u <- c(NI, NI * NII)
opts = list(sense = "max_precision",
f = NULL,
df = NULL,
Hf = NULL,
init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = TRUE)
sol <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)
# Optimum number of clusters to be drawn
sol$n[1] # [1] 2.991551
# Optimum number of elements to be drawn within clusters
sol$n[-1] / sol$n[1] # [1] 12.16454 11.60828 15.87949 12.80266
(Single-stage) stratified random sampling interface for functions
mosalloc() and mosallocStepwiseFirst()
Description
Interface for the functions mosalloc() and
mosallocStepwiseFirst() of the same package which allows for a
user-friendly data handling in the case of single-stage stratified random
sampling.
Usage
mosallocSTRS(
X_var,
X_tot,
N,
listD,
listA = NULL,
listC = NULL,
fpc = TRUE,
l = 2,
u = NULL,
opts,
ForceOptimality = FALSE,
X_cost = NULL,
X_fixed = NULL
)
Arguments
X_var |
(type: |
X_tot |
(type: |
N |
(type: |
listD |
(type: |
listA |
(type: |
listC |
(type: |
fpc |
(type: |
l |
(type: |
u |
(type: |
opts |
(type: |
ForceOptimality |
(type: |
X_cost |
(type: |
X_fixed |
(type: |
Value
A mosaSTRS object or a list of mosaSTRS
objects. A mosaSTRS object is a list containing the
following components:
$sense
Sense of optimzation; max precision or min_cost.
$method
The method used, either weighted sum scalarization (WSS) or weighted
Chebyshev minimization (WCM).
$init_w
The initial preference weightings (opts$init_w).
$opt_w
The optimal weightings w.r.t. opts$init_w as opts$init_w might
not lead to Pareto optimality. NULL if ForceOptimality = FALSE.
$n_opt
The vector of optimal sample sizes.
$objective
The objective values, including the sensitivity and the RSE.
$precision
A data frame corresponding to the precision constraints.
$cost
A data frame corresponding to the cost constraints.
$problem_components
A list containing the input data to the optimization problem.
$output_mosalloc
A list of function returns of mosalloc().
If opts$init_w has multiple rows, the function returns a list
of mosaSTRS objects whose length equals the number of rows.
Examples
# Artificial population of 50 568 business establishments and 5 business
# sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
# Practical tools for designing and weighting survey samples. Springer.
# https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)
# See also https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360
# file: Code 5.3 constrOptim.example.R
Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes
ch <- c(120, 80, 80, 90, 150) # stratum-specific cost of surveying
# Revenues
mh.rev <- c(85, 11, 23, 17, 126) # mean revenue
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0) # standard deviation revenue
# Employees
mh.emp <- c(511, 21, 70, 32, 157) # mean number of employees
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00) # std. dev. employees
# Proportion of estabs claiming research credit
ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)
# Proportion of estabs with offshore affiliates
ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)
budget <- 300000 # overall available budget
n.min <- 100 # minimum stratum-specific sample size
# Matrix containing stratum-specific variance components
X_var <- cbind(Sh.rev**2,
Sh.emp**2,
ph.rsch * (1 - ph.rsch) * Nh/(Nh - 1),
ph.offsh * (1 - ph.offsh) * Nh/(Nh - 1))
colnames(X_var) <- c("rev", "emp", "rsch", "offsh")
# Matrix containing stratum-specific totals
X_tot <- cbind(mh.rev, mh.emp, ph.rsch, ph.offsh) * Nh
colnames(X_tot) <- c("rev", "emp", "rsch", "offsh")
# Examples
#----------------------------------------------------------------------------
# Example 1: Univariate minimization of the variation of estimates for
# revenue subject to cost restrictions and precision restrictions to the
# relative standard error of estimates for the proportion of businesses with
# offshore affiliates. Additionally, there is one overall cost constraint and
# at least half of the provided budget must be spend to strata 1 to 3.
# Specify objectives via listD
listD <- list(list(stratum_id = 1:5, variate = "rev", measure = "relVAR",
name = "pop"))
# Specify precision constraints via listA
listA <- list(list(stratum_id = 1:5, variate = "offsh", measure = "RSE",
bound = 0.05, name = "pop"))
# Specify cost constraints via listC
listC <- list(list(stratum_id = 1:5, c_coef = ch, c_lower = NULL,
c_upper = budget, name = "Overall"),
list(stratum_id = 1:3, c_coef = ch[1:3],
c_lower = 0.5 * budget, c_upper = NULL, name = "1to3"))
# Specify stratum-specific box constraints
l <- rep(n.min, 5) # minimum sample size per stratum
u <- Nh # maximum sample size per stratum
# Specify parameter for mosalloc (method = "WSS")
opts <- list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
method = "WSS", init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
# Run mosallocSTRS with weighted sum scalarization (WSS)
resWSS <- mosallocSTRS(X_var, X_tot, Nh, listD, listA, listC,
fpc = TRUE, l, u, opts)
summary(resWSS)
# Specify parameter for mosalloc (method = "WCM")
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
method = "WCM", init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
# Run mosallocSTRS with weighted Chebyshec minimization (WCM)
resWCM <- mosallocSTRS(X_var, X_tot, Nh, listD, listA, listC,
fpc = TRUE, l, u, opts)
summary(resWCM)
# The optimal sample sizes vector can also be obtained by
summary(resWCM)$n_opt
# Hint: For univariate allocation problems 'WSS' and 'WCM' are equivalent!
#----------------------------------------------------------------------------
# Example 2: Minimization of the maximum relative variation of estimates for
# the total revenue, the number of employee, the number of businesses claimed
# research credit and the number of businesses with offshore affiliates
# subject to one overall cost constraint and at least half of the provided
# budget must be spend to strata 1 to 3.
# Specify objectives via listD
listD <- list(list(stratum_id = 1:5, variate = "rev", measure = "relVAR",
name = "pop"),
list(stratum_id = 1:5, variate = "emp", measure = "relVAR",
name = "pop"),
list(stratum_id = 1:5, variate = "rsch", measure = "relVAR",
name = "pop"),
list(stratum_id = 1:5, variate = "offsh", measure = "relVAR",
name = "pop"))
# Specify cost constraints via listC
listC <- list(list(stratum_id = 1:5, c_coef = ch, c_lower = NULL,
c_upper = budget, name = "Overall"),
list(stratum_id = 1:3, c_coef = ch[1:3],
c_lower = 0.5 * budget, c_upper = NULL, name = "1to3"))
# Specify stratum-specific box constraints
l <- rep(n.min, 5) # minimum sample size per stratum
u <- Nh # maximum sample size per stratum
# Specify parameter for mosalloc (method = "WSS")
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
method = "WSS", init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
# Run mosallocSTRS with weighted sum scalarization (WSS)
resWSS <- mosallocSTRS(X_var, X_tot, Nh, listD, NULL, listC,
fpc = TRUE, l, u, opts)
summary(resWSS)
# Specify parameter for mosalloc (method = "WCM")
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
method = "WCM", init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
# Run mosallocSTRS with weighted Chebyshec minimization (WCM)
resWCM <- mosallocSTRS(X_var, X_tot, Nh, listD, NULL, listC,
fpc = TRUE, l, u, opts)
summary(resWCM)
# Since the WCM does not necessarily lead to Pareto optimal allocations,
# we might force this via a internal stepwise procedure by setting
# ForceOptimality = TRUE.
resWCM_FO <- mosallocSTRS(X_var, X_tot, Nh, listD, NULL, listC,
fpc = TRUE, l, u, opts, ForceOptimality = TRUE)
summary(resWCM_FO)
#----------------------------------------------------------------------------
# Example 3: Example 2 with multiple sets of preference weightings.
# Define a set of preference weightings, e.g.
w_1 <- c(1, 1, 1, 1)
w_2 <- c(1, 2, 2, 1)
w_3 <- c(1, 5, 5, 1)
# Combine the weightings to a matrix stacked rowwise
w <- rbind(w_1, w_2, w_3)
# Specify parameter for mosalloc() (method = "WCM"; not yet possible with WSS)
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
method = "WCM", init_w = w,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
# Run mosallocSTRS with weighted Chebyshec minimization (WCM)
res <- mosallocSTRS(X_var, X_tot, Nh, listD, NULL, listC, fpc = TRUE,
l, u, opts)
summary(res)
#----------------------------------------------------------------------------
# Example 4: Minimization of survey cost subject to quality restrictions on
# subpopulation level.
X_cost <- matrix(ch, 5, 1, dimnames = list(1:5,"cost"))
# Specify cost objectives via listD
listD <- list(list(stratum_id = 1:5, c_type = "cost", name = "pop"))
# Specify quailty restrictions via listD. Here: 5 % relative standard error
listA <- list(list(stratum_id = 1:2, variate = "rev", measure = "RSE",
bound = 0.05, name = "S1-2"),
list(stratum_id = 3:5, variate = "rev", measure = "RSE",
bound = 0.05, name = "S3-5"),
list(stratum_id = 1:2, variate = "emp", measure = "RSE",
bound = 0.05, name = "S1-2"),
list(stratum_id = 3:5, variate = "emp", measure = "RSE",
bound = 0.05, name = "S3-5"),
list(stratum_id = 1:2, variate = "rsch", measure = "RSE",
bound = 0.05, name = "S1-2"),
list(stratum_id = 3:5, variate = "rsch", measure = "RSE",
bound = 0.05, name = "S3-5"),
list(stratum_id = 1:2, variate = "offsh", measure = "RSE",
bound = 0.05, name = "S1-2"),
list(stratum_id = 3:5, variate = "offsh", measure = "RSE",
bound = 0.05, name = "S3-5"))
# Specify cost constraints
listC <- NULL
# Specify stratum-specific box constraints
l <- rep(n.min, 5) # minimum sample size per stratum
u <- Nh # maximum sample size per stratum
# Specify parameters for mosalloc()
opts = list(sense = "min_cost",
f = NULL, df = NULL, Hf = NULL,
method = "WCM", init_w = 1,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
# Run mosallocSTRS()
res <- mosallocSTRS(X_var, X_tot, Nh, listD, listA, NULL, fpc = TRUE,
l, u, opts, X_cost = X_cost)
summary(res)
# Optimal sample sizes
summary(res)$n_opt
Multiobjective sample allocation for constraint multivariate and multidomain optimal allocation in survey sampling (a stepwise optimality procedure is processed first to force Pareto optimality of the solution)
Description
Computes solutions to standard sample allocation problems
under various precision and cost restrictions. The input data is
transformed and parsed to the Embedded COnic Solver (ECOS) from the
'ECOSolveR' package. Multiple survey purposes are optimized
simultaneously through a stepwise weighted Chebyshev minimization which
forces Pareto optimality of solutions (cf. mosalloc()).
Usage
mosallocStepwiseFirst(
D,
d,
A = NULL,
a = NULL,
C = NULL,
c = NULL,
l = 2,
u = NULL,
opts = list(sense = "max_precision", init_w = 1, mc_cores = 1L, max_iters = 100L)
)
Arguments
D |
(type: matrix) The objective matrix. A matrix of either precision or cost units. |
d |
(type: vector) The objective vector. A vector of either fixed precision components (e.g. finite population corrections) or fixed costs. |
A |
(type: matrix) A matrix of precision units for precision constraints. |
a |
(type: vector) The right-hand side vector ofthe precision constraints. |
C |
(type: matrix) A matrix of cost coefficients for cost constraints |
c |
(type: vector) The right-hand side vector of the cost constraints. |
l |
(type: vector) A vector of lower box constraints. |
u |
(type: vector) A vector of upper box constraints. |
opts |
(type: list)
The options used by the algorithms:
|
Value
The function mosallocStepwiseFirst() returns a list
containing the following components:
$w The initial preference weighting opts$init_w.
$n The vector of optimal sample sizes.
$J The optimal objective vector.
$Objective The objective value with respect to decision
funtional f. NULL if opts$f = NULL.
$Utopian Always NULL (consitency to mosalloc()
output). NULL if opts$f = NULL.
$Normal The vector normal to the Pareto frontier at
$J.
$dfJ Always NULL (consitency to mosalloc()
output).
$Sensitivity The dual variables of the objectives and
constraints.
$Qbounds The Quality bounds of the Lorentz cones.
$Dbounds The weighted objective constraints ($w * $J).
$Scalepar An internal scaling parameter.
$Ecosolver A list of ECOSolveR returns including:
...$Ecoinfostring The info string of
ECOSolveR::ECOS_csolve().
...$Ecoredcodes The redcodes of ECOSolveR::ECOS_csolve().
...$Ecosummary Problem summary of ECOSolveR::ECOS_csolve().
$Timing Run time info.
$Iteration Always NULL (consitency to
mosalloc() output).
References
See:
Willems, F. (2025). A Framework for Multiobjective and Uncertain Resource Allocation Problems in Survey Sampling based on Conic Optimization (Doctoral dissertation). Trier University. doi:10.25353/ubtr-9200-484c-5c89.
Examples
# Artificial population of 50 568 business establishments and 5 business
# sectors (data from Valliant, R., Dever, J. A., & Kreuter, F. (2013).
# Practical tools for designing and weighting survey samples. Springer.
# https://doi.org/10.1007/978-1-4614-6449-5, Example 5.2 pages 133-9)
# See also https://umd.app.box.com/s/9yvvibu4nz4q6rlw98ac/file/297813512360
# file: Code 5.3 constrOptim.example.R
Nh <- c(6221, 11738, 4333, 22809, 5467) # stratum sizes
ch <- c(120, 80, 80, 90, 150) # stratum-specific cost of surveying
# Revenues
mh.rev <- c(85, 11, 23, 17, 126) # mean revenue
Sh.rev <- c(170.0, 8.8, 23.0, 25.5, 315.0) # standard deviation revenue
# Employees
mh.emp <- c(511, 21, 70, 32, 157) # mean number of employees
Sh.emp <- c(255.50, 5.25, 35.00, 32.00, 471.00) # std. dev. employees
# Proportion of estabs claiming research credit
ph.rsch <- c(0.8, 0.2, 0.5, 0.3, 0.9)
# Proportion of estabs with offshore affiliates
ph.offsh <- c(0.06, 0.03, 0.03, 0.21, 0.77)
budget <- 300000 # overall available budget
n.min <- 100 # minimum stratum-specific sample size
#----------------------------------------------------------------------------
# Problem: Minimization of the maximum relative variation of estimates for
# the total revenue, the number of employee, the number of businesses claimed
# research credit and the number of businesses with offshore affiliates
# subject to cost restrictions
l <- rep(n.min, 5) # minimum sample size ber stratum
u <- Nh # maximum sample size per stratum
C <- rbind(ch, ch * c(-1, -1, -1, 0, 0))
c <- c(budget, - 0.5 * budget)
A <- NULL # no precision constraint
a <- NULL # no precision constraint
# Variance components for multidimensional objective
D <- rbind(Sh.rev**2 * Nh**2/sum(Nh * mh.rev)**2,
Sh.emp**2 * Nh**2/sum(Nh * mh.emp)**2,
ph.rsch * (1 - ph.rsch) * Nh**3/(Nh - 1)/sum(Nh * ph.rsch)**2,
ph.offsh * (1 - ph.offsh) * Nh**3/(Nh - 1)/sum(Nh * ph.offsh)**2)
d <- as.vector(D %*% (1 / Nh)) # finite population correction
opts = list(sense = "max_precision",
init_w = 1,
mc_cores = 1L,
max_iters = 100L)
res1 <- mosallocStepwiseFirst(D = D, d = d, C = C, c = c, l = l, u = u,
opts = opts)
w <- res1$J[1] / res1$J
w # [1] 1.000000 3.879692 2.653655 1.000000
opts = list(sense = "max_precision",
init_w = w,
mc_cores = 1L,
max_iters = 100L)
res2 <- mosallocStepwiseFirst(D = D, d = d, C = C, c = c, l = l, u = u,
opts = opts)
res2$w # [1] 1.000000 3.879692 2.653655 1.000000
# Compare to function mosalloc (without stepwise procedure)
opts = list(sense = "max_precision",
f = NULL, df = NULL, Hf = NULL,
init_w = w,
mc_cores = 1L, pm_tol = 1e-05,
max_iters = 100L, print_pm = FALSE)
res3 <- mosalloc(D = D, d = d, C = C, c = c, l = l, u = u, opts = opts)
# Compare objectives
rbind(res1$J, res2$J, res3$J)
# [,1] [,2] [,3] [,4]
#[1,] 0.00170589 0.0004396972 0.0006428453 0.00170589
#[2,] 0.00170589 0.0004396971 0.0006428420 0.00170589
#[3,] 0.00170589 0.0004396971 0.0006428440 0.00170589
# Compare optimal sample sizes
rbind(res1$n, res2$n, res3$n)
# [,1] [,2] [,3] [,4] [,5]
# [1,] 958.0510 290.7446 147.1789 602.8856 638.2686
# [2,] 958.0455 290.7447 147.1871 602.8847 638.2692
# [3,] 958.0488 290.7446 147.1822 602.8853 638.2688
Print a summary.mosaSTRS object
Description
Print-function for class summary.mosaSTRS.
Usage
## S3 method for class 'summary.mosaSTRS'
print(x, ...)
Arguments
x |
an object inheriting from class |
... |
some methods for this generic require additional arguments. None are used in this method. |
Value
Invisibly returns x.
Summary a mosaSTRS object
Description
Summary-function for class mosaSTRS
Usage
## S3 method for class 'mosaSTRS'
summary(object, ...)
Arguments
object |
an object inheriting from class |
... |
some methods for this generic require additional arguments. None are used in this method. |
Value
Either a summary.mosaSTRS object for a mosaSTRS
object or a list of summary.mosaSTRS objects for a list of
mosaSTRS objects. A summary.mosaSTRS object is a list
containing the following components:
$vname Name of object.
$sense
Sense of optimzation; max precision or min_cost.
$method
The method used weighted sum scalarization (WSS) or weighted Chebyshev
minimization (WCM).
$objout
A data frame corresponding to the objectives, including the values, the
sensitivity, the weights and the RSE.
$precision
A data frame corresponding to the precision constraints.
$cost
A data frame corresponding to the cost constraints.
$n_opt
A vector of optimal sample sizes w.r.t the weights.