
A phylogenetic modelling tutorial using

Phylogenetic Eigenvector Maps (PEM) as

implemented in R package MPSEM (0.4-1).

Guillaume Guénard

January 13, 2022

Contents

1 Introduction 1

2 Preparing the data 2

3 Calculating PEM 5

3.1 Edge weighting function . 5
3.2 Phylogenetic graph . 6
3.3 Building the eigenvector map . 7
3.4 Estimate weighting parameters empirically 10
3.5 Phylogenetic modelling . 10

4 Cross-validating PEM predictions 12

5 Other utility functions 13

5.1 In�uence matrix . 13
5.2 Update and forced PEM parameters 15
5.3 PEM scores . 15
5.4 Miscellaneous . 16

References 16

1 Introduction

Phylogenetic Eigenvector Maps (PEM) is a method to perform phylogenetic
modelling. Phylogenetic modelling consists in modelling trait evolution and pre-
dicting trait values using phylogeny as an explanatory factor (Guénard et al.,
2013). Phylogenetic modelling allows one to predict trait values when it is di�-
cult or impractical to obtain them, for instance when species are rare, extinct, or

1

when information is needed for several species and trait values are only available
for a relatively small number of them (Guénard et al., 2011, 2014).

To apply phylogenetic modelling, one needs to have a set of species with
known phylogeny and trait values (hereafter referred to as the �model species�)
as well as to know the locations, with respect to the phylogeny of the mod-
els species, of the species for which trait values are being predicted (hereafter
referred to as the �target species�). Phylogenetic modelling can be performed
conjointly with trait correlation modelling: it is possible to use other traits
with known (or estimable) values for the target species to help predict a trait
of interest. Phylogenetic trees being acyclic graphs, I will hereby prefer terms
belonging to the graph theory over terms phylogeneticists may be more familiar
with. Therefore I will use �edge� over �branches� and �vertex� over �root�, �node�
or �tip�; safe in cases where I want to be speci�c about what a vertex represents.

The PEM work �ow consists in 1) calculating the in�uence matrix of the
graph, 2) specifying a model of trait evolution along the edges of the phylo-
genetic tree, 3) calculating the left eigenvectors of the weighted and centred
in�uence matrix and 4) use these eigenvectors as descriptors (Guénard et al.,
2013). An R implementation of that approach is found in package MPSEM. MPSEM
is meant to make the aforementioned process as seamless as possible. It is a
work in progress; I welcome anyone to provide relevant suggestions and construc-
tive remarks aimed at making MPSEM a better, more e�cient and user-friendly,
interface to phylogenetic modelling.

Assuming package MPSEM is installed, the �rst step to calculate a PEM is to
load package MPSEM, which depends on packages ape and MASS:

library(MPSEM)

Le chargement a nécessité le package : ape

2 Preparing the data

For the present tutorial, we will use the data set perissodactyla from R pack-
age caper. These data from Purvis and Rambaut (1995) are loaded into your
R workspace as follows:

data(perissodactyla,package="caper")

The perissodactyla data set contains perissodactyla.tree, a phyloge-
netic tree encompassing 18 odd-toed ungulate species:

2

Dicerorhinus sumatrensis
Rhinoceros sondaicus
Rhinoceros unicornis
Diceros bicornis
Ceratotherium simum
Tapirus terrestris
Tapirus pinchaque
Tapirus bairdii
Tapirus indicus
Equus grevyi
Equus burchelli
Equus quagga
Equus ferus
Equus zebra
Equus africanus
Equus hemionus
Equus kiang
Equus onager

as well as perissodactyla.data, a data frame containing trait information
about the species. For the present study we will model the log10 gestation
weight as a function of phylogeny and log10 adult female weight:

Binomial log.female.wt log.neonatal.wt

1 Ceratotherium simum 6.26 4.90
2 Dicerorhinus sumatrensis 5.91 4.54
3 Diceros bicornis 6.18 4.70
4 Equus africanus 5.44 4.40
5 Equus burchelli 5.48 4.48
6 Equus grevyi 5.65 4.60
7 Equus hemionus 5.46 4.40
8 Equus zebra 5.46 4.40
9 Rhinoceros sondaicus 6.15 4.70
10 Rhinoceros unicornis 6.24 4.84
11 Tapirus indicus 5.46 3.92
12 Tapirus pinchaque 5.38 3.70
13 Tapirus terrestris 5.33 3.76

Before going any further, it is important to make sure that the species in
the tree object are the same and presented in the same order as those in the
data table. Glancing at the data table, species clearly cannot match since the
latter feature information for only 13 of the 18 species in the tree. We will
therefore match the tip labels of the original tree in the data table using the
binary (Latin) species names in a character vector spmatch. When no matching
element from the data table is found, an NA value appears at the corresponding

3

position in spmatch. We can therefore use these NAs to reference the species
that can be dropped from the tree using ape's function drop.tip() as follows:

spmatch <- match(perissodactyla.tree$tip.label,

perissodactyla.data[,1L])

perissodactyla.tree <- drop.tip(perissodactyla.tree,

perissodactyla.tree$tip.label[is.na(spmatch)])

Now that the data match the tree in content, one needs to verify whether
they do so in order.

cbind(perissodactyla.tree$tip.label,perissodactyla.data[,1L])

[,1] [,2]

[1,] "Dicerorhinus sumatrensis" "Ceratotherium simum"

[2,] "Rhinoceros sondaicus" "Dicerorhinus sumatrensis"

[3,] "Rhinoceros unicornis" "Diceros bicornis"

[4,] "Diceros bicornis" "Equus africanus"

[5,] "Ceratotherium simum" "Equus burchelli"

[6,] "Tapirus terrestris" "Equus grevyi"

[7,] "Tapirus pinchaque" "Equus hemionus"

[8,] "Tapirus indicus" "Equus zebra"

[9,] "Equus grevyi" "Rhinoceros sondaicus"

[10,] "Equus burchelli" "Rhinoceros unicornis"

[11,] "Equus zebra" "Tapirus indicus"

[12,] "Equus africanus" "Tapirus pinchaque"

[13,] "Equus hemionus" "Tapirus terrestris"

Since they do not, we need to recalculate spmatch with the new, reduced,
tree and re-order the data accordingly.

spmatch <- match(perissodactyla.tree$tip.label,

perissodactyla.data[,1L])

perissodactyla.data <- perissodactyla.data[spmatch,]

all(perissodactyla.tree$tip.label==perissodactyla.data[,1L])

[1] TRUE

The last code line is just a last check to guarantee that all species names are
matching. As a last step before we are done with data manipulation, I will put
the binary names in place of the row names and delete the table's �rst row:

rownames(perissodactyla.data) <- perissodactyla.data[,1L]

perissodactyla.data <- perissodactyla.data[,-1L]

Our data of interest now appear as follows:

4

log.female.wt log.neonatal.wt

Dicerorhinus sumatrensis 5.91 4.54
Rhinoceros sondaicus 6.15 4.70
Rhinoceros unicornis 6.24 4.84

Diceros bicornis 6.18 4.70
Ceratotherium simum 6.26 4.90

Tapirus terrestris 5.33 3.76
Tapirus pinchaque 5.38 3.70

Tapirus indicus 5.46 3.92
Equus grevyi 5.65 4.60

Equus burchelli 5.48 4.48
Equus zebra 5.46 4.40

Equus africanus 5.44 4.40
Equus hemionus 5.46 4.40

Finally, for the sake of demonstrating how to obtain predictions, we will
remove the Sumatran rhinoceros (Dicerorhinus sumatrensis, the �rst species on
top of the table) to obtain our training data set perissodactyla.train, keep
the withdrawn data as perissodactyla.test, and calculate a tree without the
target species:

perissodactyla.train <- perissodactyla.data[-1L,,drop=FALSE]

perissodactyla.test <- perissodactyla.data[1L,,drop=FALSE]

perissodactyla.tree.train <- drop.tip(perissodactyla.tree,

tip="Dicerorhinus sumatrensis")

3 Calculating PEM

3.1 Edge weighting function

As previously announced, I use the vocabulary of the graph theory when de-
scribing PEM: a tree is a (directed) graph, a branch is an edge, and the root,
nodes, and tips are vertices. PEM allows one to specify a model of trait evolu-
tion along the edges of the tree. That model is given as a function having edge
lengths as its �rst argument, followed by an arbitrary number of parameters
provided as named arguments. Although PEM allows one to specify di�erent
parameter sets for di�erent parts of the phylogeny as well as arbitrary weight-
ing functions, the current implementation of MPSEM (0.3− 6) only supports the
following power function:

wa,ψ(φj) =

{
ψφ

1−a
2 φj > 0

0 φj = 0,

where a is the steepness parameter describing how abrupt the changes in trait
values occur with time following branching, ψ is the evolution rate of the trait,

5

Distance (φ)

w
a,

 ψ
 (φ

)

0 0.5 1 1.5 2

0.0

0.5

1.0

1.5
 a ψ

0.00 1.00

0.33 1.00

0.67 1.00

1.00 1.00

0.25 0.65

0.75 0.65

0.00 0.40

Figure 1: Values of the edge weighting function used as a model of trait evolution
by MPSEM for di�erent values of steepness (a) and evolution rate (ψ).

and φj is the length of edge j (Guénard et al., 2013). As the steepness pa-
rameter increases, the weight assigned to a given edge increases more sharply
with respect to the phylogenetic distance (or evolutionary time; Fig. 1). In
the context of PEM, the edge weight represent the relative rate of evolution of
the trait; the greater the edge weight, the greater the trait change along that
edge. When a = 0, trait evolution is neutral and therefore proceeds by random
walk along edges. When a = 1, edge weights no longer increase as a function of
edge lengths. That situation corresponds to the scenario in which trait evolu-
tion is driven by the strongest possible natural selection: following a speciation
event, trait either change abruptly (directional selection) at the vertex or do not
change at all (stabilizing selection).

3.2 Phylogenetic graph

The �rst step to build a PEM is to convert the phylogenetic tree. The is done
by giving the tree to function Phylo2DirectedGraph() as follows:

perissodactyla.pgraph <-

Phylo2DirectedGraph(perissodactyla.tree.train)

6

Here's a snipet showing how MPSEM's graph container stores graph informa-
tion:

List of 2

$ edge :List of 3

..$: num [1:21] 13 14 15 16 16 15 17 17 14 18 ...

..$: num [1:21] 14 15 16 1 2 17 3 4 18 19 ...

..$ distance: int [1:21] 9 4 3 1 1 3 1 1 5 2 ...

$ vertex:List of 1

..$ species: logi [1:22] TRUE TRUE TRUE TRUE TRUE TRUE ...

- attr(*, "ev")= int [1:2] 21 22

- attr(*, "class")= chr "graph"

- attr(*, "elabel")= chr [1:21] "E1" "E2" "E3" "E4" ...

- attr(*, "vlabel")= chr [1:22] "Rhinoceros sondaicus" "Rhinoceros unicornis" "Diceros bicornis" "Ceratotherium simum" ...

It is a list of two elements themselves being two lists. The element $edge
is a list containing information about the graph's edges, namely the indices
of their origin and destination vertices (the two �rst unnamed elements) and
an arbitrary number of supplementary elements storing other edge properties.
In the present case, a numeric vector created by Phylo2DirectedGraph() and
called $distance stores the phylogenetic distances (φj), which correspond to
the branch lengths of perissodactyla.tree. The element $vertex is a list
containing an arbitrary number of elements storing vertex properties. In the
present case, a logical vector created by Phylo2DirectedGraph() and called
$species stores whether a given vertex represents a species (i.e., it is a tip).
In addition to edge and vertex information, the container stores other useful
information in the form of attributes: ev stores the number of edges and vertices
whereas elabel and vlabel store edge and vertex labels, respectively.

3.3 Building the eigenvector map

In MPSEM, PEM are build using function PEM.build(). As an example, let us
assume that the steepness and evolution rate are a = 0.25 and ψ = 2 among
genus Equus, a = 0.8 and ψ = 0.5 among genus Tapirus, and a = 0 and ψ = 1
from the root of the tree up to the vertex where the two latter genera begin as
well as among the other genera. The following �gure will help us �gure out the
indices of the edges involved:

tree <- perissodactyla.tree.train

tree$node.label <- paste("N",1L:tree$Nnode)

plot(tree,show.node.label=TRUE)

edgelabels(1L:nrow(tree$edge),

edge=1L:nrow(tree$edge),bg="white",cex=0.75)

7

Rhinoceros sondaicus

Rhinoceros unicornis

Diceros bicornis

Ceratotherium simum

Tapirus terrestris

Tapirus pinchaque

Tapirus indicus

Equus grevyi

Equus burchelli

Equus zebra

Equus africanus

Equus hemionus

N 1

N 2

N 3

N 4

N 5

N 6
N 7

N 8

N 9
N 10

1

2

3
4

5

6
7

8

9

10
11

12

13

14

15

16
17

18

19

20

21

rm(tree)

Hence, a = 0.25 and ψ = 2 for edges 15− 21, a = 0.8 and ψ = 0.5 for edges
10− 13, and a = 0 and ψ = 1 for edges 1− 9 and 14:

steepness <- rep(0,attr(perissodactyla.pgraph,"ev")[1L])

evol_rate <- rep(1,attr(perissodactyla.pgraph,"ev")[1L])

steepness[15L:21] <- 0.25

evol_rate[15L:21] <- 2

steepness[9L:13] <- 0.8

evol_rate[9L:13] <- 0.5

The PEM is obtained as follows:

perissodactyla.PEM <- PEM.build(perissodactyla.pgraph,

d="distance",sp="species",

a=steepness,psi=evol_rate)

In addition to the phylogenetic graph, function PEM.build() needs d, the
name of the edge property where the phylogenetic distances are stored, sp, the
name of the vertex property specifying what vertex is a species, as well as the
user-speci�ed steepness and evolution rate. When the vectors given to a or psi,
have smaller sizes then the number of edges, values are recycled. The default
values for d and sp are those produced by Phylo2DirectedGraph(), and can

8

therefore be omitted in most cases. The object that MPSEM's use to store PEM
information is rather complex and we will hereby not browse through it. Method
as.data.frame can be used to extract the eigenvector from a PEM. For a set
of n species, that method returns a matrix encompassing n− 1 column vectors
that can be used in model to represent phylogenetic structure in traits. Here
the phylogenetic patterns of variation described by two eigenvectors of the PEM
we calculated above:

layout(matrix(c(1,1,1,2,2,3,3),1L,7L))

par(mar=c(5.1,2.1,4.1,2.1))

plot(perissodactyla.tree.train,x.lim=60,cex=0.75)

plot(y = 1L:nrow(perissodactyla.train), ylab="", xlab = "Loading",

x = as.data.frame(perissodactyla.PEM)[,1L], xlim=0.5*c(-1,1),

axes=FALSE, main = expression(bold(v)[1]))

axis(1) ; abline(v=0)

plot(y = 1L:nrow(perissodactyla.train), ylab="", xlab = "Loading",

x = as.data.frame(perissodactyla.PEM)[,5L], xlim=0.5*c(-1,1),

axes=FALSE, main = expression(bold(v)[5]))

axis(1) ; abline(v=0)

Rhinoceros sondaicus

Rhinoceros unicornis

Diceros bicornis

Ceratotherium simum

Tapirus terrestris

Tapirus pinchaque

Tapirus indicus

Equus grevyi

Equus burchelli

Equus zebra

Equus africanus

Equus hemionus

v1

Loading

−0.4 0.2

v5

Loading

−0.4 0.2

The pattern shown by the �rst eigenvector essentially contrasts Equids and
the other odd-toed ungulate species whereas the pattern shown by the second
eigenvector essentially contrasts tapirs and Rhinocerotids.

9

3.4 Estimate weighting parameters empirically

Because users do often not have information about the best set of weight-
ing function parameters to use for modelling, MPSEM as has a function called
PEM.fitSimple() that allows them to empirically estimate a single value of pa-
rameter a for the whole phylogeny1 using restricted maximum likelihood2. That
function requires a response variable that will be used to optimize the steepness
parameter (here the log10 neonate weight) as well as lower and upper bounds
for the admissible parameter values and is called as follows:

perissodactyla.PEM_opt1 <- PEM.fitSimple(

y = perissodactyla.train[,"log.neonatal.wt"],

x = NULL,

w = perissodactyla.pgraph,

d = "distance", sp="species",

lower = 0, upper = 1)

If other traits are to be used in the model (here the log10 female weight),
they are passed to the parameter x as follows:

perissodactyla.PEM_opt2 <- PEM.fitSimple(

y = perissodactyla.train[,"log.neonatal.wt"],

x = perissodactyla.train[,"log.female.wt"],

w = perissodactyla.pgraph,

d = "distance", sp="species",

lower = 0, upper = 1)

The results of the latter calls are PEMs similar to that obtained using
PEM.build(), with additional information resulting from the optimization pro-
cess. It is noteworthy that estimates of the steepness parameter (stored as
element $optim$par of the PEM objects) and, consequently, the resulting phy-
logenetic eigenvectors, will be di�erent depending on the use of auxiliary traits.
In the example above, for instance, a was estimated to 0 by PEM.fitSimple()

when no auxiliary trait is involved (�rst call) and to 0.08 when the female weight
is used as an auxiliary trait (second call).

3.5 Phylogenetic modelling

To model trait values, PEM are used as descriptors in other modelling method.
any suitable method can be used. For instance, package MPSEM contains a util-
ity function called lmforwardsequentialAICc() that does step-wise variable
addition in multiple regression analysis on the basis of the corrected Akaike
Information Criterion (AICc; Hurvich and Tsai, 1993):

1Function PEM.fitSimple() does not estimate parameter ψ because the latter has no e�ect

when its value is assumed to be constant throughout the phylogeny.
2A function to estimate di�erent sets of weighting function parameters for di�erent portions

of the phylogeny has yet to be included in MPSEM.

10

lm1 <- lmforwardsequentialAICc(

y = perissodactyla.train[,"log.neonatal.wt"],

object = perissodactyla.PEM_opt1)

summary(lm1)

##

Call:

lm(formula = as.formula(paste(p1, p2, sep = "")), data = df1)

##

Residuals:

Min 1Q Median 3Q Max

-0.122057 -0.053781 -0.004971 0.055333 0.186364

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.39975 0.02740 160.58 < 2e-16 ***

V_2 -1.31105 0.09491 -13.81 7.7e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 0.09491 on 10 degrees of freedom

Multiple R-squared: 0.9502,Adjusted R-squared: 0.9452

F-statistic: 190.8 on 1 and 10 DF, p-value: 7.699e-08

lm2 <- lmforwardsequentialAICc(

y = perissodactyla.train[,"log.neonatal.wt"],

x = perissodactyla.train[,"log.female.wt",drop=FALSE],

object = perissodactyla.PEM_opt2)

summary(lm2)

##

Call:

lm(formula = as.formula(paste(p1, p2, sep = "")), data = df1)

##

Residuals:

Min 1Q Median 3Q Max

-0.021821 -0.014495 -0.004301 0.005790 0.040584

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.67127 0.13188 -20.256 9.41e-07 ***

log.female.wt 1.23886 0.02307 53.698 2.80e-09 ***

V_1 0.91697 0.02876 31.883 6.33e-08 ***

V_10 -0.09891 0.02481 -3.987 0.00723 **

V_8 0.08275 0.02483 3.333 0.01575 *

V_3 0.07172 0.02499 2.870 0.02843 *

11

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 0.0248 on 6 degrees of freedom

Multiple R-squared: 0.998,Adjusted R-squared: 0.9963

F-statistic: 587 on 5 and 6 DF, p-value: 5.561e-08

Notice that to pass a single auxiliary trait to lmforwardsequentialAICc()

in the current version of MPSEM, it is mandatory to set drop=FALSE to the bracket
operator so that the variable name be conserved. Failure to do so will preclude
one to make predictions using the resulting linear model. To obtain predictions,
we need to calculate the locations of the target species with respect to the
phylogeny of the model species. This is accomplished by getGraphLocations(),
to which we give the tree for all species (model + targets) and the names (or
indices) of the target species. Then, we use the predict() method for PEM
objects. The latter takes, in addition to the PEM object, the locations of the
target species as obtained by getGraphLocations(), an lm (or glm) object
involving the eigenvectors of the PEM, and a table of auxiliary trait values for
the target species, which can be omitted if no auxiliary trait is present in the
linear model.

perissodactyla.loc <- getGraphLocations(perissodactyla.tree,

targets="Dicerorhinus sumatrensis")

pred <- predict(object=perissodactyla.PEM_opt2,

targets=perissodactyla.loc,

lmobject=lm2,

newdata=perissodactyla.test,

"prediction",0.95)

Here, the predicted neonatal weight for the Sumatran rhinoceros is 26.7 kg
and the bounds of the 95% prediction interval are 17.5 and 40.5 kg, while the
observed value was actually 35 kg.

4 Cross-validating PEM predictions

Here, I will show you how to perform a leave-one-out cross-validation of a data
set using the R code from the previous two sections. Predictions will be added
to table perissodactyla.data:

perissodactyla.data <- data.frame(perissodactyla.data,

predictions = NA, lower = NA, upper = NA)

jackinfo <- list()

for(i in 1L:nrow(perissodactyla.data)) {

jackinfo[[i]] <- list()

jackinfo[[i]][["loc"]] <- getGraphLocations(perissodactyla.tree,

12

targets = rownames(perissodactyla.data)[i])

jackinfo[[i]][["PEM"]] <- PEM.fitSimple(

y = perissodactyla.data[-i,"log.neonatal.wt"],

x = perissodactyla.data[-i,"log.female.wt"],

w = jackinfo[[i]][["loc"]]$x)

jackinfo[[i]][["lm"]] <- lmforwardsequentialAICc(

y = perissodactyla.data[-i,"log.neonatal.wt"],

x = perissodactyla.data[-i,"log.female.wt",drop=FALSE],

object = jackinfo[[i]][["PEM"]])

predictions <- predict(object = jackinfo[[i]][["PEM"]],

targets = jackinfo[[i]][["loc"]],

lmobject = jackinfo[[i]][["lm"]],

newdata = perissodactyla.data[i,"log.female.wt",drop=FALSE],

"prediction",0.95)

perissodactyla.data[i, c("predictions", "lower", "upper")] <-

unlist(predictions)

} ; rm(i, predictions)

Warning in PEM.fitSimple(y = perissodactyla.data[-i, "log.neonatal.wt"],

: No optimum found... Message from optim() - ERROR: ABNORMAL_TERMINATION_IN_LNSRCH.

Status = 52

Because the result of getGraphLocations() includes the phylogenetic graph
with the target species removed has its element $x, it is not necessary to re-
calculate the tree with the target species dropped and the phylogenetic graph
as we did previously for explanatory purposes. Also, I suggest storing the in-
ternal information about each cross-validation steps into a list (hereby called
jackinfo), so it is possible to access the many details of the analyses later on.
From the present cross-validation, we found that the (log) neonatal body mass
can be predicted with a cross-validated R2 of 0.96 (Figure 2).

5 Other utility functions

5.1 In�uence matrix

The in�uence matrix is used internally to calculate PEM. It is a matrix having
as many rows as the number of vertices (species + nodes) and as many columns
as the number of edges. Any given element of the in�uence matrix is coding
whether a vertex, which is represented a row of the matrix is in�uenced an edge,
which is represented by a column of the matrix. In the context of PEM, a vertex
is in�uenced by an edge when the former has ancestors on the latter or, in other
words, when an edge is on the path leading from a tip to the root of the tree.
The in�uence matrix is obtained as follows:

13

3.6 4.0 4.4 4.8

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

Predicted

ob
se

rv
ed

Figure 2: Predicted and observed log10 neonatal body mass for 13 odd-toed
ungulate species.

14

res <- PEMInfluence(perissodactyla.pgraph)

5.2 Update and forced PEM parameters

The calculation of the in�uence matrix performed by PEM.build() for a given
phylogenetic graph need not be done every time new weighting function pa-
rameters are to be tried. For that reason, MPSEM provides a function called
PEM.updater() that takes a previously calculated PEM object, applies new
edge weighting, and recalculates the phylogenetic eigenvectors:

res <- PEM.updater(object = perissodactyla.PEM, a = 0, psi = 1)

The result of PEM.build() and PEM.updater() does not contain all the
information necessary to predict trait values. Hence, neither of these func-
tions is given information about the response variable and auxiliary traits. To
perform these preliminary calculations, MPSEM provides the user with function
PEM.forcedSimple() that produce the same output as PEM.fitSimple() with
user-provided values of weighting parameters. It is called as follows:

res <- PEM.forcedSimple(

y = perissodactyla.train[,"log.neonatal.wt"],

x = perissodactyla.train[,"log.female.wt"],

w = perissodactyla.pgraph,

a = steepness, psi = evol_rate)

It is noteworthy that function PEM.forcedSimple() can actually apply dif-
ferent weighting parameters for di�erent edges, in spite of what the adjective
�Simple� in its name may suggest.

5.3 PEM scores

PEM scores are the values of target species on the eigenfunctions underlying the
PEM. These scores are calculated from the graph locations and a PEM object
using function Locations2PEMscores() as follows:

scores <- Locations2PEMscores(object = perissodactyla.PEM_opt2,

gsc = perissodactyla.loc)

The function is used internally by the predict method for PEM objects, and
therefore need not be called when performing linear phylogenetic modelling as
exempli�ed above. It comes in handy when the PEM is used together with other
modelling approaches (e.g. multivariate regression trees, linear discriminant
analysis, arti�cial neural networks) that have predict methods that are not
specially adapted for phylogenetic modelling.

15

5.4 Miscellaneous

MPSEM comes with functions, some implemented in C language, to simulate quan-
titative traits evolution by Ornstein-Uhlenbeck process on potentially large phy-
logenies (Butler and King, 2004). These functions are only useful to perform
simulations, which is a rather advanced matter outside the scope of the present
tutorial. I refer the user to MPSEM's help �les for further details.

In addition to function Phylo2DirectedGraph(), which we have seen previ-
ously MPSEM also has built-in graph manipulation functions to populate a graph
with vertices, add and remove vertices and edges, etc. These functions were
mainly intended to be called internally by MPSEM's functions. They were made
visible upon loading the package because of their potential usefulness to some
advanced applications that are outside the scope of the present tutorial. Again,
I refer the user to MPSEM's help �les for further details.

References

Butler, M. A. and King, A. A. (2004). Phylogenetic comparative analysis: A
modeling approach for adaptive evolution. Am. Nat., 164:683�695.

Guénard, G., Legendre, P., and Peres-Neto, P. (2013). Phylogenetic eigenvector
maps (PEM): a framework to model and predict species traits. Meth. Ecol.

Evol., 4:1120�1131.

Guénard, G., von der Ohe, P. C., de Zwart, D., Legendre, P., and Lek, S.
(2011). Using phylogenetic information to predict species tolerances to toxic
chemicals. Ecol. Appl., 21:3178�3190.

Guénard, G., von der Ohe, P. C., Walker, S. C., Lek, S., and Legendre, P.
(2014). Using phylogenetic information and chemical properties to predict
species tolerances to pesticides. Proc. R. Soc. B, 281(20133239):20133239.

Hurvich, C. M. and Tsai, C.-L. (1993). A corrected Akaike information criterion
for vector autoregressive model selection. J. Time Ser. Anal., 14:271�279.

Purvis, A. and Rambaut, A. (1995). Comparative analysis by independent
contrasts (CAIC): an Apple Macintosh application for analysing comparative
data. Comput. Appl. Biosci., 11:247�251.

16

