Package 'Transition'

July 8, 2025

Type Package

Title Characterise Transitions in Test Result Status in Longitudinal Studies

Version 1.0.0

Date 2025-07-04

Description

Analyse data from longitudinal studies to characterise changes in values of semi-quantitative outcome variables within individual subjects, using high performance C++ code to enable rapid processing of large datasets. A flexible methodology is available for codifying these state transitions.

License MIT + file LICENSE

Imports Rcpp (>= 1.0.14)

LinkingTo Rcpp

RoxygenNote 7.3.2

Encoding UTF-8

Depends R (>= 4.1.0)

LazyData true

URL https://mark-eis.github.io/Transition/

NeedsCompilation yes

Author Mark Eisler [aut, cre, cph] (ORCID: <https://orcid.org/0000-0001-6843-3345>), Ana Rabaza [aut] (ORCID: <https://orcid.org/0000-0002-9713-0797>)

Maintainer Mark Eisler <mark.eisler@bristol.ac.uk>

Repository CRAN

Date/Publication 2025-07-08 10:00:02 UTC

Contents

Transition-pack	age				• •																	2
Blackmore					•											•						3
PreviousDate					• •					•	•	•	•	•		•	•				•	4

Transition-package

eviousResult	
iques \ldots \ldots \ldots 10	0
12	2

Transition-package Characterise Transitions in Test Result Status in Longitudinal Studies

Description

Analyse data from longitudinal studies to characterise changes in values of semi-quantitative outcome variables within individual subjects, using high performance C++ code to enable rapid processing of large datasets. A flexible methodology is available for codifying these state transitions.

Package Content

Index of help topics:

Exercise Histories of Eating-Disordered and
Control Subjects
Find Previous Test Date for Subject
Find Previous Test Result for Subject
Characterise Transitions in Test Result Status
in Longitudinal Studies
Identify Temporal Transitions in Longitudinal
Study Data
Unique Values for Subject, Timepoint and Result

Maintainer

Mark Eisler <mark.eisler@bristol.ac.uk>

Author(s)

Mark Eisler [aut, cre, cph] (ORCID: https://orcid.org/0000-0002-9713-0797) Ana Rabaza [aut] (ORCID: https://orcid.org/0000-0002-9713-0797)

Index

Blackmore

Description

The Blackmore data frame has 945 rows and 4 columns. Blackmore and Davis's data on exercise histories of 138 teenaged girls hospitalized for eating disorders and 98 control subjects.

Usage

Blackmore

Format

This data frame contains the following columns:

- **subject** a factor with subject id codes. There are several observations for each subject, but because the girls were hospitalized at different ages, the number of cases and the age at the last case vary.
- **age** subject's age in years at the time of observation; all but the last observation for each subject were collected retrospectively at intervals of two years, starting at age 8.
- exercise the amount of exercise in which the subject engaged, expressed as estimated hours per week.
- group a factor with levels: control, Control subjects; patient, Eating-disordered patients.

Note

The original version in package **carData** states there are 98 control subjects, but the actual data only have 93 unique values, and that assuming subject id codes with suffixes a and b represent different individuals; otherwise, there are just 87.

Source

Personal communication from Elizabeth Blackmore and Caroline Davis, York University.

References

Davis C, Blackmore E, Katzman DK, Fox J. (2005). Female adolescents with anorexia nervosa and their parents: a case-control study of exercise attitudes and behaviours. *Psychological Medicine* **35**(3):377-386. doi:10.1017/S0033291704003447

```
PreviousDate
```

Description

get_prev_dates() identifies the previous test date for individual subjects and timepoints in a longitudinal study.

add_prev_date() interpolates these previous test dates into a data frame for further analysis.

Usage

```
add_prev_date(
   object,
   subject = "subject",
   timepoint = "timepoint",
   result = "result"
)
get_prev_date(
   object,
   subject = "subject",
   timepoint = "timepoint",
   result = "result"
)
```

Arguments

object	a data.frame (or object coercible by as.data.frame() to a data frame) con- taining the data to be analysed.
subject	character, name of the column (of type integer or factor) identifying indi- vidual study subjects; default "subject".
timepoint	character, name of the column recording time points (as Dates) of testing of subjects; default "timepoint".
result	character, name of the column (of type ordered factor) recording test re- sults; default "result".

Details

See Transitions details.

Value

add_prev_date()

A data.frame based on object, with an added column of class Date containing the values of the previous test dates.

PreviousDate

```
get_prev_date()
```

An vector of length nrow(object), class Date, containing the values of the previous test dates ordered in the exact sequence of the subject and timepoint in object.

See Also

data.frame, Dates, ordered factor.

Other transitions: PreviousResult, Transitions, uniques()

Examples

```
## Continuing example from `add_transitions()`
  # subject, timepoint and result arguments all defaults and required types
Blackmore |> str()
  # Integer vector of the previous test dates
get_prev_date(Blackmore)
  # Add column of previous test dates to data frame
add_prev_date(Blackmore) |> head(32)
rm(Blackmore)
###
## Example on formatting numeric values as R dates
# Data frame containing year as numeric: 2018 to 2025
(df <- data.frame(</pre>
    subject = rep(1001:1003),
    timepoint = rep(2018:2025, each = 3),
    result = gl(3, 4, lab = c("jolly", "good", "show"), ordered = TRUE)
   ))
# Convert to R dates
df <- transform(df,</pre>
           timepoint = as.Date(paste(timepoint, "01", "01", sep = "-"))
      )
  # Add column of test result transitions (defaults: cap = 0, modulate = 0)
(df <- add_transitions(df))</pre>
# Format R dates just to show the year
transform(df, timepoint = format(timepoint, "%Y"))
# Data frame containing year and month as numeric: July 2024 to June 2025
(df <- data.frame(</pre>
           subject = 1001:1002,
           year = rep(2024:2025, each = 12),
           month = rep(c(7:12, 1:6), each = 2),
```

```
result = gl(2, 3, lab = c("low", "high"), ordered = TRUE)
))
# Convert to R dates
df <- transform(df, timepoint = as.Date(paste(year, month, "01", sep = "-")))
# Add column of test result transitions (defaults: cap = 0, modulate = 0)
(df <- add_transitions(df))
# Format R dates just to show the month and year
transform(df, timepoint = format(timepoint, "%b-%Y"))
rm(df)</pre>
```

PreviousResult Find Previous Test Result for Subject

Description

get_prev_results() identifies the previous test result for individual subjects and timepoints in a longitudinal study.

add_prev_result() interpolates these previous test results into a data frame for further analysis.

Usage

```
add_prev_result(
   object,
   subject = "subject",
   timepoint = "timepoint",
   result = "result"
)
get_prev_result(
   object,
   subject = "subject",
   timepoint = "timepoint",
   result = "result"
)
```

Arguments

object	a data.frame (or object coercible by as.data.frame() to a data frame) con- taining the data to be analysed.
subject	character, name of the column (of type integer or factor) identifying indi- vidual study subjects; default "subject".

Transitions

timepoint	character, name of the column recording time points (as Dates) of testing of subjects; default "timepoint".
result	character, name of the column (of type ordered factor) recording test re- sults; default "result".

Details

See Transitions details.

Value

```
add_prev_result()
```

A data.frame based on object, with an added column of type ordered factor containing the values of the previous test results.

get_prev_result()

An ordered factor of length nrow(object), containing the values of the previous test results ordered in the exact sequence of the subject and timepoint in object.

See Also

data.frame, Dates, ordered factor.

Other transitions: PreviousDate, Transitions, uniques()

Examples

```
## Continuing example from `add_transitions()`
# subject, timepoint and result arguments all defaults and required types
Blackmore |> str()
# Previous test results as ordered factor
get_prev_result(Blackmore)
# Previous test result as column of data frame
(Blackmore <- add_prev_result(Blackmore)) |> head(32)
rm(Blackmore)
```

Transitions

Identify Temporal Transitions in Longitudinal Study Data

Description

get_transitions() identifies temporal transitions in test results for individual subjects in a longitudinal study.

add_transitions() interpolates these transitions into a data frame for further analysis.

Usage

```
add_transitions(
  object,
  subject = "subject",
  timepoint = "timepoint",
  result = "result",
  transition = "transition",
  cap = 0L,
 modulate = 0L
)
get_transitions(
  object,
  subject = "subject",
  timepoint = "timepoint",
  result = "result",
  cap = 0L,
 modulate = 0L
)
```

Arguments

object	a data.frame (or object coercible by as.data.frame() to a data frame) containing the data to be analysed.
subject	character, name of the column (of type integer or factor) identifying individual study subjects; default "subject".
timepoint	character, name of the column recording time points (as Dates) of testing of subjects; default "timepoint".
result	character, name of the column (of type ordered factor) recording test results; default "result".
transition	character, name to be used for a new column (of type integer) to record transitions; default "transition".
сар	integer, required for calculating transitions; default 0L.
modulate	integer, required for calculating transitions; default 0L.

Details

The data can be presented in any order e.g., ordered by subject, by timepoint, forwards or backwards in time, or entirely at random, and may have unbalanced designs with different time points or numbers of test results per subject. However, the *user* is responsible for ensuring the data contain unique combinations of subject, timepoint and result; if not, outputs will be undefined.

Time points should be formatted as Dates and included in data frame object in the column named as specified by argument timepoint (see *Note*).

Test results should be semi-quantitiative, formatted as ordered factor and included in data frame object in the column named as specified by argument result (see *Note*).

8

Transitions

Temporal transitions in the test results for each subject within the object data.frame are characterised using methods governed by options cap and modulate. If these two parameters are both zero (their defaults), a simple arithmetic difference between the levels of the present and previous result is calculated. Otherwise, if the value of modulate is a positive, non-zero integer, the arithmetic difference is subjected to integer division by that value. Finally, if cap is a positive, non-zero integer, the (possibly modulated) absolute arithmetic difference is capped at that value.

Value

add_transitions()

A data.frame based on object, with an added column of type integer containing the values of the test result transitions.

get_transitions()

An integer vector of length nrow(object), containing the values of the test result transitions ordered in the exact sequence of the subject and timepoint in object.

Note

Time points represented by integer or numeric values can be converted to R Dates conveniently using as.Date(). If only *year* information is available, arbitrary values could be used consistently for month and day e.g., 1st of January of each year; likewise, the first day of each month could be used arbitrary, if only the *year* and *month* were known.

Quantitive results available as numeric data can be converted to a semi-quantitative ordered factor conveniently using cut() (see *examples*).

See Also

data.frame, Dates, and ordered factor.

Other transitions: PreviousDate, PreviousResult, uniques()

Examples

```
# Inspect Blackmore data frame using {base} str()
Blackmore |> str()
 # {base} hist() gives insights into the "exercise" column,
     useful for choosing `breaks` and `labels` in cut() below
hist(Blackmore$exercise, include.lowest = TRUE, plot = FALSE)[1:2]
 # Tweak Blackmore data frame by converting "age" to dates for the argument
     timepoint (using an arbitrary "origin" of 1-Jan-2000), and converting
 #
     "exercise" to an ordered factor "result" with {base} cut()
Blackmore <- transform(Blackmore,</pre>
    timepoint = as.Date("2000-01-01") + round(age * 365.25),
    result = cut(
        exercise.
        breaks = seq(0, 30, 2),
        labels = paste0("<=", seq(0, 30, 2)[-1]),
        include.lowest = TRUE,
```

uniques

```
ordered_result = TRUE
   )
)
  # subject, timepoint and result arguments now defaults and required types
Blackmore |> str()
  # Integer vector of test result transitions (defaults: cap = modulate = 0)
get_transitions(Blackmore)
  # Tabulate values of transitions
get_transitions(Blackmore) |> table()
  # Effect of cap argument
get_transitions(Blackmore, cap = 6) |> table()
  # Effect of modulate argument
get_transitions(Blackmore, modulate = 2) |> table()
  # Add column of test result transitions to data frame
add_transitions(Blackmore) |> head(22)
  # Showing transitions as either positive (1) or negative (-1)
     (defaults to modulate = 0)
  #
add_transitions(Blackmore, cap = 1) |> head(14)
rm(Blackmore)
```

uniques

Unique Values for Subject, Timepoint and Result

Description

uniques() identifies unique values for subjects, timepoints and test results in longitudinal study data.

Usage

```
uniques(
  object,
  subject = "subject",
  timepoint = "timepoint",
  result = "result"
)
```

Arguments

```
object
```

a data.frame (or object coercible by as.data.frame() to a data frame) containing the data to be analysed.

10

uniques

subject	character, name of the column (of type integer or factor) identifying individual study subjects; default "subject".
timepoint	character, name of the column recording time points (as Dates) of testing of subjects; default "timepoint".
result	character, name of the column (of type ordered factor) recording test re- sults; default "result".

Details

See Transitions *details*.

Works for subject as either an integer vector or a factor.

Value

A list of three elements

1.	An integer vector or factor of unique subject identifications.
2.	A vector of class Date of unique timepoints in the study.
3.	An ordered factor of unique values for results of the study.

See Also

data.frame, Dates, ordered factor.

Other transitions: PreviousDate, PreviousResult, Transitions

Examples

```
## Continuing example from `add_transitions()`
    # subject, timepoint and result arguments all defaults and required types
    # (native subject is factor)
    uniques(Blackmore)
    #
Blackmore <- transform(Blackmore, subject = as.integer(subject))
    # subject now as integer
Blackmore |> str()
uniques(Blackmore)
```

rm(Blackmore)

Index

```
* datasets
    Blackmore, 3
* package
    Transition-package, 2
* transitions
    PreviousDate. 4
    PreviousResult, 6
    Transitions, 7
    uniques, 10
add_prev_date (PreviousDate), 4
add_prev_result (PreviousResult), 6
add_transitions (Transitions), 7
as.data.frame, 4, 6, 8, 10
as.Date,9
Blackmore, 3
character, 4, 6, 8, 11
cut, 9
data.frame, 4–11
Date, 4, 5, 11
Dates, 4, 5, 7–9, 11
factor, 4, 6, 8, 11
get_prev_date (PreviousDate), 4
get_prev_result (PreviousResult), 6
get_transitions (Transitions), 7
integer, 4, 6, 8, 9, 11
list, 11
nrow, 5, 7, 9
numeric, 9
PreviousDate, 4, 7, 9, 11
PreviousResult, 5, 6, 9, 11
```

Transition (Transition-package), 2

Transition-package, 2 Transitions, *4*, *5*, *7*, *7*, *11* uniques, *5*, *7*, *9*, 10

vector, 11