Type: Package
Title: Copula-Based Simultaneous Stochastic Frontier Models
Version: 0.1.0
Description: Provides estimation procedures for copula-based stochastic frontier models for cross-sectional data. The package implements maximum likelihood estimation of stochastic frontier models allowing flexible dependence structures between inefficiency and noise terms through various copula families (e.g., Gaussian and Student-t). It enables estimation of technical efficiency scores, log-likelihood values, and information criteria (AIC and BIC). The implemented framework builds upon stochastic frontier analysis introduced by Aigner, Lovell and Schmidt (1977) <doi:10.1016/0304-4076(77)90052-5> and the copula theory described in Joe (2014, ISBN:9781466583221). Empirical applications of copula-based stochastic frontier models can be found in Wiboonpongse et al. (2015) <doi:10.1016/j.ijar.2015.06.001> and Maneejuk et al. (2017, ISBN:9783319562176).
License: GPL-3
Encoding: UTF-8
RoxygenNote: 7.3.3
Imports: stats, graphics, truncnorm, VineCopula
NeedsCompilation: no
Packaged: 2026-02-15 04:02:34 UTC; Acer
Author: Woraphon Yamaka [aut, cre], Paravee Maneejuk [aut], Nuttaphong Kaewtathip [aut]
Maintainer: Woraphon Yamaka <woraphon.econ@gmail.com>
Repository: CRAN
Date/Publication: 2026-02-18 19:00:02 UTC

Technical efficiency measure.

Description

Computing and plotting the technical efficiency.

Usage

TE1(theta,Y,X,family)

Arguments

theta

The estimated parameters form the model

Y

Vector of dependent variable

X

Matrix of independent variable

family

Copula function eg. Gaussain=1, Student-t=2 (see, Vinecopula package)

Details

Computing and plotting the technical efficiency.

Value

Output

Technical efficiency series.

plot

Plot of technical efficiency.

Author(s)

Woraphon Yamaka

References

Wiboonpongse, A., Liu, J., Sriboonchitta, S., & Denoeux, T. (2015). Modeling dependence between error components of the stochastic frontier model using copula: application to intercrop coffee production in Northern Thailand. International Journal of Approximate Reasoning, 65, 34-44.

Examples

## Required packages
#example simulation data
data=sfa.simu(nob=50, alpha=c(1,2,0.5),sigV=1,sigU=0.5,family=1,rho=0.5)

# Select familty  copula upper and lower bouubd ( look at CDVine package)
# family=1   # 1 is Gaussian, 2 is Student-t, 3 is Clayton and so on....

#Gaussian (-.99, .99)
#Student t (-.99, .99)
#Clayton (0.1, Inf)

model=copSFM(Y=data$Y,X=data$X,family=1,RHO=0.5,LB=-0.99,UB=0.99)

#EX: Plot the technical efficiency
te1=TE1(model$result[,1],Y=data$Y,X=data$X,family=1)

Copula based Stochastic frontier Model

Description

In the standard stochastic frontier model, the two-sided error term V and the one-sided technical inefficiency error term W are assumed to be independent. In this paper, we relax this assumption by modeling the dependence between V and W using copulas. Nine copula families are considered and their parameters are estimated using maximum simulated likelihood.

Usage

copSFM(Y,X,family,RHO,LB,UB,verbose = FALSE)

Arguments

Y

vector of dependent variable

X

matrix of independent variable

family

Copula function eg. Gaussain=1, Student-t=2 (see, Vinecopula package)

RHO

The initail value of the copula parameter

LB

The lower bound of the copula parameter

UB

The upper bound of the copula parameter

verbose

Logical; if TRUE, prints progress messages during optimization.

Details

herefore, the above copula families and relevant rotated copula can potentially capture the appropriate dependence between two random variables. Other popular copula families, such as Gaussain, Student,t Clayton, Gumbel etc.

Value

result

The result contain the estimated parameters, standard errors, t-stat, and p-value

AIC

Akaiki Information Criteria

BIC

Bayesian Information Criteria

Loglikelihood

Maximum Log-likelihood function

Author(s)

Woraphon Yamaka and Paravee MAneejuk

References

Wiboonpongse, A., Liu, J., Sriboonchitta, S., & Denoeux, T.(2015). Modeling dependence between error components of the stochastic frontier model using copula: application to intercrop coffee production in Northern Thailand. International Journal of Approximate Reasoning, 65, 34-44.

Maneejuk, P., Yamaka, W., & Sriboonchitta, S.(2017). Analysis of global competitiveness using copula-based stochastic frontier kink model. In Robustness in Econometrics (pp. 543-559). Springer, Cham.

Examples


#example simulation data
data=sfa.simu(nob=50, alpha=c(1,2,0.5),sigV=1,sigU=0.5,family=1,rho=0.5)

# Select familty  copula upper and lower bouubd ( look at CDVine package)
# family=1   # 1 is Gaussian, 2 is Student-t, 3 is Clayton and so on....

#Gaussian (-.99, .99)
#Student t (-.99, .99)
#Clayton (0.1, Inf)
model=copSFM(Y=data$Y,X=data$X,family=1,RHO=0.5,LB=-0.99,UB=0.99)

Simulate Data for Stochastic Frontier Analysis

Description

Simulates data for the copula-based stochastic frontier model.

Usage

sfa.simu(nob, alpha, sigV, sigU, family, rho)

Arguments

nob

Number of observations.

alpha

Coefficient vector.

sigV

Standard deviation of noise term V.

sigU

Standard deviation of inefficiency term U.

family

Copula family code.

rho

Copula dependence parameter.

Value

A list containing simulated output and inputs.

Examples


set.seed(1)
sim <- sfa.simu(nob = 20, alpha = c(1, 0.5, -0.2), sigV = 1, sigU = 1, family = 1, rho = 0.2)