Package ‘genodds’

August 21, 2019

Type Package
Title Generalized Odds Ratios
Version 1.0.0
Date 2019-08-14
Encoding UTF-8
Maintainer Hannah Johns <htjohns@gmail.com>
Description Calculates Agresti’s (1980) \cite{https://www.jstor.org/stable/2530495} generalized odds ratios. For a randomly selected pair of observations from two groups, calculates the odds that the second group will have a higher scoring outcome than that of the first group. Package provides hypothesis testing for if this odds ratio is significantly different to 1 (equal chance).
License GPL (>= 2)
LazyData TRUE
Depends R (>= 2.10)
Imports Rcpp (>= 0.12.3)
LinkingTo Rcpp
RoxygenNote 6.1.1
Suggests testthat (>= 2.1.0)
NeedsCompilation yes
Author Hannah Johns [aut, cre] (<https://orcid.org/0000-0003-2135-0504>)
Repository CRAN
Date/Publication 2019-08-21 09:30:06 UTC

R topics documented:

alteplase ... 2
genodds ... 2
genodds.power ... 4
alteplase

Description

A dataset reconstructing reported outcomes after stroke as reported in Lees et. al. (2010) which pooled the results of several studies.

Usage

alteplase

Format

A data frame with 3669 rows and 3 variables:

- **time** Time interval (minutes) between stroke onset and treatment
- **treat** Type of treatment received
- **mRS** Outcome at 3 months measured using the modified Rankin Scale

References

genodds

Description

Performs Agresti’s Generalized Odds Ratios (GenOR) for two-group ordinal data.

Usage

`genodds(response, group, strata=NULL, alpha=0.05, ties="split", nnt=FALSE, verbose=FALSE, upper=TRUE)`
Arguments

response A (non-empty) vector. Gives the outcome measure. If a factor, level order is used to determine ranking of outcomes.

group A factor vector of equal length to response. Gives the groups for the test. Must take on exactly 2 values.

strata An optional factor vector of equal length to response. Gives treatment blocks to separate comparisons.

alpha The acceptable type 1 error used in the test.

ties A string specifying how ties should be treated. See Details.

nnt A boolean. If TRUE, then print number needed to treat in addition to generalized odds ratios.

verbose A boolean. If TRUE, then print both pooled odds and relative risk ratio matrices regardless of result of statistical test.

upper A boolean specifying if the upper triangle of relative risk ratios should be printed. If FALSE, lower triangle is used instead.

Details

Agresti’s generalized odds ratios (GenOR) calculates the odds that, if a pair of observations are randomly selected from two groups, the outcome in one group is higher than the other. This implementation determines the direction of this comparison using factor levels. Odds are given with reference to observations corresponding to the higher group level resulting in a higher value in response. The opposite direction can be calculated by either calculating 1/genodds, or by specifying response=1-response in function input.

If nnt=TRUE, the Number Needed to Treat (NNT) is printed. NNT is a health economics measure and is related to generalized odds ratios through the formula NNT=1+2/(GenOR-1). It measures the expected number of patients required for a treatment to have impacted a patient’s outcome. In this implementation, a positive NNT occurs when GenOR>1 and corresponds to the number needed to treat in the higher group level to observe a higher response value, while a negative NNT occurs when GenOR<1 and corresponds to the number needed to treat in the higher group level to observe a lower response value. If the confidence interval for GenOR straddles 1, the confidence interval for NNT is given as the union of disjoint intervals.

ties changes how ties are treated. If "split" is provided, then ties are equally split between favoring both groups (following the approach set out by O’Brien et. al. (2006)). If "drop" is provided, then ties are ignored (following the approach set out by Agresti (1980)). By default, "split" is used.

If strata is specified, generalized odds ratios are calculated separately for each individual strata. If in-stratum odds ratios are not significantly different from each other (with significance level alpha), these odds are pooled to obtain a global odds ratio which is adjusted for strata. If in-stratum odds ratios are significantly different, a matrix containing the relative risk ratios between stratum is printed, along with Z-scores corresponding to the significance of these differences. If verbose=TRUE is supplied, both pooled odds and relative risk ratios are printed regardless of if the between-stratum odds ratios are significantly different.

Options verbose, nnt and upper may be re-specified when using print method.
Value

A list with class "Genodds" containing the following:

- pooled_inodds: The pooled log(odds).
- pooled_inconf.int: (1-alpha)% Confidence intervals for pooled log(odds).
- pooled_SElnodds: Standard error of pooled log(odds).
- pooled_SElnull: Standard error of pooled log(odds) under the null hypothesis.
- pooled_p: The p-value of the test of pooled log(odds) = 1.
- pooled_rel_statistic: Statistic of test that strata odds are equal.
- pooled_rel_p: p-value for test that strata odds are equal.
- relative_inodds: A matrix giving the log of the ratio of odds between strata (generalized relative risk ratio).
- relative_selnodds: A matrix containing the standard error of the log(relative risk ratio).
- results: A list containing a summary of each strata measure.
- param.record: A list containing parameters used in the test.

References

Examples

Use the alteplase dataset provided by package and calculate genodds
df <- alteplase
x <- genodds(dfmRS,dftreat,df$time)
print(x,nnt=TRUE)
Usage

genodds.power(p0, p1, N = NULL, power = NULL, alpha = 0.05, ties = "split", w = c(0.5, 0.5), direction = "two.sided")

Arguments

p0 A numeric vector containing the probabilities in control group.
p1 A numeric vector containing the probabilities in treatment group.
N A numeric vector containing total sample sizes.
power A numeric vector containing required total sample size.
alpha Type 1 error.
ties A string specifying how ties should be treated.
w A numeric vector of length 2 specifying the relative weighting of sample size between treatment groups.
direction Direction for hypothesis test. Must be one of "two.sided", "upper.tail" or "lower.tail".

Details

See genodds for explanation of generalized odds ratios.
N provides the total sample size. Sample size per group can be calculated by N*w/sum(w).
When power is supplied, if no sufficient sample size is found then this function will return Inf.

Value

If power is supplied A numeric vector containing required sample sizes to achieve specified powers.
If N is supplied A numeric vector containing power at specified sample sizes.

References

Examples

Provide theoretical distributions of outcomes for each group
Distributions taken from Lees et. al. (2010). See ?alteplase for a citation.
p0 <- c(0.224, 0.191, 0.082, 0.133, 0.136, 0.043, 0.191)
p1 <- c(0.109, 0.199, 0.109, 0.120, 0.194, 0.070, 0.200)

Calculate sample size required to achieve 80% and 90%
power for these distributions
genodds.power(p0, p1, power=c(0.8, 0.9))
genodds.power suggests a total sample size of 619 for 80% power.
Round up to 620 for even sample size per group

Confirm these sample sizes lead to 80% and 90% power
genodds.power(p0,p1,N=c(620,830))
Index

*Topic datasets
 alteplase, 2

alteplase, 2

genodds, 2, 5
genodds.power, 4

print.Genodds (genodds), 2