
Package ‘hexify’
January 20, 2026

Title Equal-Area Hex Grids on the 'Snyder' 'ISEA' 'Icosahedron'

Version 0.3.3

Description Provides functions to build and use equal-area hexagonal discrete
global grids using the 'Snyder' 'ISEA' projection ('Snyder' 1992
<doi:10.3138/27H7-8K88-4882-1752>). Implements the 'ISEA' discrete global grid
system ('Sahr', 'White' and 'Kimerling' 2003 <doi:10.1559/152304003100011090>).
Includes a fast 'C++' core for projection and aperture quantization, and
'sf'/'terra'-compatible R wrappers for grid generation and coordinate assignment.
Output is compatible with 'dggridR' for interoperability.

License MIT + file LICENSE

Language en-US

Encoding UTF-8

RoxygenNote 7.3.3

Suggests testthat (>= 3.0.0), lifecycle, knitr, rmarkdown, terra,
raster, ggplot2, RColorBrewer, rnaturalearth, tibble, gridExtra

VignetteBuilder knitr

LinkingTo Rcpp

Imports sf, Rcpp, methods, rlang

URL https://gillescolling.com/hexify/

BugReports https://github.com/gcol33/hexify/issues

Config/testthat/edition 3

Depends R (>= 3.5)

LazyData true

NeedsCompilation yes

Author Gilles Colling [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-3070-6066>)

Maintainer Gilles Colling <gilles.colling051@gmail.com>

Repository CRAN

Date/Publication 2026-01-20 10:10:03 UTC

1

https://doi.org/10.3138/27H7-8K88-4882-1752
https://doi.org/10.1559/152304003100011090
https://gillescolling.com/hexify/
https://github.com/gcol33/hexify/issues
https://orcid.org/0000-0003-3070-6066

2 Contents

Contents
hexify-package . 3
as_dggrid . 3
as_sf . 4
as_tibble.HexData . 5
cells . 5
cell_to_lonlat . 6
cell_to_sf . 6
dgearthstat . 7
dggrid_is_compatible . 8
dgverify . 9
from_dggrid . 9
grid_clip . 10
grid_global . 11
grid_info . 12
grid_rect . 13
HexData-class . 13
HexGridInfo-class . 14
hexify . 15
hexify-conversions . 17
hexify-grid . 17
hexify-stats . 17
hexify_build_icosa . 18
hexify_compare_resolutions . 19
hexify_face_centers . 20
hexify_forward . 20
hexify_forward_to_face . 21
hexify_get_precision . 22
hexify_grid . 22
hexify_heatmap . 23
hexify_inverse . 27
hexify_projection_stats . 28
hexify_roundtrip_test . 28
hexify_set_precision . 29
hexify_set_verbose . 30
hexify_which_face . 30
hexify_world . 31
hex_grid . 32
is_hex_data . 34
is_hex_grid . 34
lonlat_to_cell . 35
n_cells . 36
plot,HexData,missing-method . 36
plot_grid . 38
plot_world . 40

Index 41

hexify-package 3

hexify-package hexify

Description

Core icosahedron and ’Snyder’ projection helpers.

Author(s)

Maintainer: Gilles Colling <gilles.colling051@gmail.com> (ORCID) [copyright holder]

See Also

Useful links:

• https://gillescolling.com/hexify/

• Report bugs at https://github.com/gcol33/hexify/issues

as_dggrid Convert hexify grid to ’dggridR’-compatible grid object

Description

Creates a ’dggridR’-compatible grid specification from a hexify_grid object. The resulting object
can be used with ’dggridR’ functions that accept a dggs object.

Usage

as_dggrid(grid)

Arguments

grid A hexify_grid object from hexify_grid()

Value

A list with ’dggridR’-compatible fields:

pole_lon_deg Longitude of grid pole (default 11.25)
pole_lat_deg Latitude of grid pole (default 58.28252559)
azimuth_deg Grid azimuth rotation (default 0)
aperture Grid aperture (3, 4, or 7)
res Resolution level
topology Grid topology ("HEXAGON")
projection Map projection (’ISEA’)
precision Output decimal precision (default 7)

https://orcid.org/0000-0003-3070-6066
https://gillescolling.com/hexify/
https://github.com/gcol33/hexify/issues

4 as_sf

See Also

Other ’dggridR’ compatibility: dggrid_43h_sequence(), dggrid_is_compatible(), from_dggrid()

as_sf Convert HexData to sf Object

Description

Converts a HexData object to an sf spatial features object. Can create either point geometries (cell
centers) or polygon geometries (cell boundaries).

Usage

as_sf(x, geometry = c("point", "polygon"), ...)

Arguments

x A HexData object

geometry Type of geometry: "point" (default) or "polygon"

... Additional arguments (ignored)

Details

For point geometry, cell centers (cell_cen_lon, cell_cen_lat) are used. For polygon geometry, cell
boundaries are computed using the grid specification.

Value

An sf object

Examples

df <- data.frame(lon = c(0, 10, 20), lat = c(45, 50, 55))
result <- hexify(df, lon = "lon", lat = "lat", area_km2 = 1000)

Get sf points
sf_pts <- as_sf(result)

Get sf polygons
sf_poly <- as_sf(result, geometry = "polygon")

as_tibble.HexData 5

as_tibble.HexData Convert HexData to tibble

Description

Convert HexData to tibble

Usage

as_tibble.HexData(x, ...)

Arguments

x A HexData object

... Additional arguments (ignored)

Value

A tibble

cells Get Cell IDs

Description

Extract the unique cell IDs present in a HexData object.

Usage

cells(x)

Arguments

x A HexData object

Value

A vector of cell IDs

6 cell_to_sf

cell_to_lonlat Convert cell ID to longitude/latitude

Description

Converts DGGS cell IDs back to geographic coordinates (cell centers).

Usage

cell_to_lonlat(cell_id, grid)

Arguments

cell_id Numeric vector of cell IDs

grid A HexGridInfo or HexData object

Value

Data frame with lon_deg and lat_deg columns

See Also

lonlat_to_cell for the forward operation

Examples

grid <- hex_grid(area_km2 = 1000)
cells <- lonlat_to_cell(c(0, 10), c(45, 50), grid)
coords <- cell_to_lonlat(cells, grid)

cell_to_sf Convert cell IDs to sf polygons

Description

Creates sf polygon geometries for hexagonal grid cells.

Usage

cell_to_sf(cell_id = NULL, grid)

Arguments

cell_id Numeric vector of cell IDs. If NULL and x is HexData, uses cells from x.

grid A HexGridInfo or HexData object. If HexData and cell_id is NULL, polygons
are generated for all cells in the data.

dgearthstat 7

Details

When called with a HexData object and no cell_id argument, this function generates polygons for
all unique cells in the data, which is useful for plotting.

Value

sf object with cell_id and geometry columns

See Also

hex_grid for grid specifications, as_sf for converting HexData to sf

Examples

From grid specification
grid <- hex_grid(area_km2 = 1000)
cells <- lonlat_to_cell(c(0, 10, 20), c(45, 50, 55), grid)
polys <- cell_to_sf(cells, grid)

From HexData (all cells)
df <- data.frame(lon = c(0, 10, 20), lat = c(45, 50, 55))
result <- hexify(df, lon = "lon", lat = "lat", area_km2 = 1000)
polys <- cell_to_sf(grid = result)

dgearthstat Get grid statistics for Earth coverage

Description

Calculates statistics about the hexagonal grid at the current resolution, including total number of
cells, cell area, and cell spacing.

Usage

dgearthstat(dggs)

Arguments

dggs Grid specification from hexify_grid()

Value

List with components:

area_km Total Earth surface area in km^2

n_cells Total number of cells at this resolution

cell_area_km2 Average cell area in km^2

8 dggrid_is_compatible

cell_spacing_km

Average distance between cell centers in km

resolution Resolution level

aperture Grid aperture

See Also

Other grid statistics: dg_closest_res_to_area(), hexify_area_to_eff_res(), hexify_compare_resolutions(),
hexify_eff_res_to_area(), hexify_eff_res_to_resolution(), hexify_resolution_to_eff_res()

Examples

grid <- hexify_grid(area = 1000, aperture = 3)
stats <- dgearthstat(grid)

print(sprintf("Resolution %d has %.0f cells",
stats$resolution, stats$n_cells))

print(sprintf("Average cell area: %.2f km^2",
stats$cell_area_km2))

print(sprintf("Average cell spacing: %.2f km",
stats$cell_spacing_km))

dggrid_is_compatible Validate ’dggridR’ grid compatibility with hexify

Description

Checks whether a ’dggridR’ grid object is compatible with hexify functions. Returns TRUE if
compatible, or throws an error describing incompatibilities.

Usage

dggrid_is_compatible(dggs, strict = TRUE)

Arguments

dggs A ’dggridR’ grid object

strict If TRUE (default), throw errors for incompatibilities. If FALSE, return FALSE
instead of throwing errors.

Value

TRUE if compatible, FALSE if not compatible (when strict=FALSE)

See Also

Other ’dggridR’ compatibility: as_dggrid(), dggrid_43h_sequence(), from_dggrid()

dgverify 9

dgverify Verify grid object

Description

Validates that a grid object has all required fields and valid values. This function is called internally
by most hexify functions to ensure grid integrity.

Usage

dgverify(dggs)

Arguments

dggs Grid object to verify (from hexify_grid)

Value

TRUE (invisibly) if valid, otherwise throws an error

Examples

grid <- hexify_grid(area = 1000, aperture = 3)
dgverify(grid) # Should pass silently

Invalid grid will throw error
bad_grid <- list(aperture = 5)
try(dgverify(bad_grid)) # Will error

from_dggrid Convert ’dggridR’ grid object to hexify_grid

Description

Creates a hexify_grid object from a ’dggridR’ dggs object. This allows using hexify functions with
grids created by ’dggridR’ dgconstruct().

Usage

from_dggrid(dggs)

Arguments

dggs A ’dggridR’ grid object from dgconstruct()

10 grid_clip

Details

Only ’ISEA’ projection with HEXAGON topology is fully supported. Other configurations will
generate warnings.

The function validates that the ’dggridR’ grid uses compatible settings:

• Projection must be ’ISEA’ (FULLER not supported)

• Topology must be "HEXAGON" (DIAMOND, TRIANGLE not supported)

• Aperture must be 3, 4, or 7

Value

A hexify_grid object

See Also

Other ’dggridR’ compatibility: as_dggrid(), dggrid_43h_sequence(), dggrid_is_compatible()

grid_clip Clip hexagon grid to polygon boundary

Description

Creates hexagon polygons clipped to a given polygon boundary. This is useful for generating grids
that conform to country borders, study areas, or other irregular boundaries.

Usage

grid_clip(boundary, grid, crop = TRUE)

Arguments

boundary An sf/sfc polygon to clip to. Can be a country boundary, study area, or any
polygon geometry.

grid A HexGridInfo object specifying the grid parameters

crop If TRUE (default), cells are cropped to the boundary. If FALSE, only cells
whose centroids fall within the boundary are kept (no cropping).

Details

The function first generates a rectangular grid covering the bounding box of the input polygon, then
clips or filters cells to the boundary.

When crop = TRUE, hexagons are geometrically intersected with the boundary, which may produce
partial hexagons at the edges. When crop = FALSE, only complete hexagons whose centroids fall
within the boundary are returned.

grid_global 11

Value

sf object with hexagon polygons clipped to the boundary

See Also

grid_rect for rectangular grids, grid_global for global grids

Examples

Get France boundary from built-in world map
france <- hexify_world[hexify_world$name == "France",]

Create grid clipped to France
grid <- hex_grid(area_km2 = 2000)
france_grid <- grid_clip(france, grid)

Plot result
library(ggplot2)
ggplot() +

geom_sf(data = france, fill = "gray95") +
geom_sf(data = france_grid, fill = alpha("steelblue", 0.3),

color = "steelblue") +
theme_minimal()

Keep only complete hexagons (no cropping)
france_grid_complete <- grid_clip(france, grid, crop = FALSE)

grid_global Generate a global hexagon grid

Description

Creates hexagon polygons covering the entire Earth.

Usage

grid_global(grid)

Arguments

grid A HexGridInfo object specifying the grid parameters

Details

This function generates a complete global grid by sampling points densely across the globe. For
large grids (many small cells), consider using grid_rect() to generate regional subsets.

12 grid_info

Value

sf object with hexagon polygons

See Also

grid_rect for regional grids

Examples

Coarse global grid
grid <- hex_grid(area_km2 = 100000)
global <- grid_global(grid)
plot(global)

grid_info Get Grid Specification

Description

Extract the grid specification from a HexData object.

Usage

grid_info(x)

Arguments

x A HexData object

Value

A HexGridInfo object

Examples

df <- data.frame(lon = c(0, 10, 20), lat = c(45, 50, 55))
result <- hexify(df, lon = "lon", lat = "lat", area_km2 = 1000)
grid_spec <- grid_info(result)

grid_rect 13

grid_rect Generate a rectangular grid of hexagons

Description

Creates hexagon polygons covering a rectangular geographic region.

Usage

grid_rect(bbox, grid)

Arguments

bbox Bounding box as c(xmin, ymin, xmax, ymax), or an sf/sfc object

grid A HexGridInfo object specifying the grid parameters

Value

sf object with hexagon polygons

See Also

grid_global for global grids

Examples

grid <- hex_grid(area_km2 = 5000)
europe <- grid_rect(c(-10, 35, 30, 60), grid)
plot(europe)

HexData-class HexData Class

Description

An S4 class representing hexified data. Contains the original user data plus cell assignments from
the hexification process.

Details

HexData objects are created by hexify. The original data is preserved in the data slot, while cell
assignments are stored separately in cell_id and cell_center.

Use as.data.frame() to get a combined data frame with cell columns.

14 HexGridInfo-class

Slots

data Data frame or sf object. The original user data (untouched).

grid HexGridInfo object. The grid specification used.

cell_id Numeric vector. Cell IDs for each row of data.

cell_center Matrix. Two-column matrix (lon, lat) of cell centers.

See Also

hexify for creating HexData objects, HexGridInfo-class for grid specifications

HexGridInfo-class HexGridInfo Class

Description

An S4 class representing a hexagonal grid specification. Stores all parameters needed for grid
operations.

Details

Create HexGridInfo objects using the hex_grid constructor function. Do not use new("HexGridInfo",
...) directly.

The aperture can be "3", "4", "7" for standard grids, or "4/3" for mixed aperture grids that start with
aperture 4 and switch to aperture 3.

Slots

aperture Character. Grid aperture: "3", "4", "7", or "4/3" for mixed.

resolution Integer. Grid resolution level (0-30).

area_km2 Numeric. Cell area in square kilometers.

diagonal_km Numeric. Cell diagonal (long diagonal) in kilometers.

crs Integer. Coordinate reference system (default 4326 = ’WGS84’).

See Also

hex_grid for the constructor function, HexData-class for hexified data objects

hexify 15

hexify Assign hexagonal DGGS cell IDs to geographic points

Description

Takes a data.frame or sf object with geographic coordinates and returns a HexData object that
stores the original data plus cell assignments. The original data is preserved unchanged; cell IDs
and centers are stored in separate slots.

Usage

hexify(
data,
grid = NULL,
lon = "lon",
lat = "lat",
area_km2 = NULL,
diagonal = NULL,
resolution = NULL,
aperture = 3,
resround = "nearest"

)

Arguments

data A data.frame or sf object containing coordinates

grid A HexGridInfo object from hex_grid(). If provided, overrides area_km2, res-
olution, and aperture parameters.

lon Column name for longitude (ignored if data is sf)

lat Column name for latitude (ignored if data is sf)

area_km2 Target cell area in km^2 (mutually exclusive with diagonal).

diagonal Target cell diagonal (long diagonal) in km

resolution Grid resolution (0-30). Alternative to area_km2.

aperture Grid aperture: 3, 4, 7, or "4/3" for mixed (default 3)

resround How to round resolution: "nearest", "up", or "down"

Details

For sf objects, coordinates are automatically extracted and transformed to ’WGS84’ (EPSG:4326)
if needed. The geometry column is preserved.

Either area_km2 (or area), diagonal, or resolution must be provided unless a grid object is
supplied.

The HexData return type (default) stores the grid specification so downstream functions like plot(),
hexify_cell_to_sf(), etc. don’t need grid parameters repeated.

16 hexify

Value

A HexData object containing:

• data: The original input data (unchanged)

• grid: The HexGridInfo specification

• cell_id: Numeric vector of cell IDs for each row

• cell_center: Matrix of cell center coordinates (lon, lat)

Use as.data.frame(result) to extract the original data. Use cells(result) to get unique cell
IDs. Use result@cell_id to get all cell IDs. Use result@cell_center to get cell center coordi-
nates.

Grid Specification

You can create a grid specification once and reuse it:

grid <- hex_grid(area_km2 = 1000)
result1 <- hexify(df1, grid = grid)
result2 <- hexify(df2, grid = grid)

See Also

hex_grid for grid specification, HexData-class for return object details, as_sf for converting to
sf

Other hexify main: hexify_grid()

Examples

Simple data.frame
df <- data.frame(

site = c("Vienna", "Paris", "Madrid"),
lon = c(16.37, 2.35, -3.70),
lat = c(48.21, 48.86, 40.42)

)

New recommended workflow: use grid object
grid <- hex_grid(area_km2 = 1000)
result <- hexify(df, grid = grid, lon = "lon", lat = "lat")
print(result) # Shows grid info
plot(result) # Plot with default styling

Direct area specification (grid created internally)
result <- hexify(df, lon = "lon", lat = "lat", area_km2 = 1000)

Extract plain data.frame
df_result <- as.data.frame(result)

With sf object (any CRS)
library(sf)
pts <- st_as_sf(df, coords = c("lon", "lat"), crs = 4326)

hexify-conversions 17

result_sf <- hexify(pts, area_km2 = 1000)

Different apertures
result_ap4 <- hexify(df, lon = "lon", lat = "lat", area_km2 = 1000, aperture = 4)

Mixed aperture (ISEA43H)
result_mixed <- hexify(df, lon = "lon", lat = "lat", area_km2 = 1000, aperture = "4/3")

hexify-conversions Coordinate Conversions

Description

Functions for converting between coordinate systems

hexify-grid Core Grid Construction

Description

Core functions for hexify grid construction and validation

hexify-stats Grid Statistics

Description

Functions for calculating grid statistics and utilities

18 hexify_build_icosa

hexify_build_icosa Initialize icosahedron geometry

Description

Sets up the icosahedron state for ISEA projection. Uses standard ISEA3H orientation by default
(vertex 0 at 11.25E, 58.28N).

Usage

hexify_build_icosa(
vert0_lon = ISEA_VERT0_LON_DEG,
vert0_lat = ISEA_VERT0_LAT_DEG,
azimuth = ISEA_AZIMUTH_DEG

)

Arguments

vert0_lon Vertex 0 longitude in degrees (default ISEA_VERT0_LON_DEG)

vert0_lat Vertex 0 latitude in degrees (default ISEA_VERT0_LAT_DEG)

azimuth Azimuth rotation in degrees (default ISEA_AZIMUTH_DEG)

Details

The icosahedron is initialized lazily at the C++ level when first needed. Manual call is only required
for non-standard orientations.

Value

Invisible NULL. Called for side effect.

See Also

Other projection: hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_projection_stats(), hexify_set_precision(),
hexify_set_verbose(), hexify_which_face()

Examples

Use standard ISEA3H orientation
hexify_build_icosa()

Custom orientation
hexify_build_icosa(vert0_lon = 0, vert0_lat = 90, azimuth = 0)

hexify_compare_resolutions 19

hexify_compare_resolutions

Compare grid resolutions

Description

Generates a table comparing different resolution levels for a given grid configuration. Useful for
choosing appropriate resolution.

Usage

hexify_compare_resolutions(aperture = 3, res_range = 0:15, print = FALSE)

Arguments

aperture Grid aperture (3, 4, or 7)

res_range Range of resolutions to compare (e.g., 1:10)

print If TRUE, prints a formatted table to console. If FALSE (default), returns a data
frame.

Value

If print=FALSE: data frame with columns resolution, n_cells, cell_area_km2, cell_spacing_km,
cls_km. If print=TRUE: invisibly returns the data frame after printing.

See Also

Other grid statistics: dg_closest_res_to_area(), dgearthstat(), hexify_area_to_eff_res(),
hexify_eff_res_to_area(), hexify_eff_res_to_resolution(), hexify_resolution_to_eff_res()

Examples

Get data frame of resolutions 0-10 for aperture 3
comparison <- hexify_compare_resolutions(aperture = 3, res_range = 0:10)
print(comparison)

Print formatted table directly
hexify_compare_resolutions(aperture = 3, res_range = 0:10, print = TRUE)

Find resolution with cells ~1000 km^2
subset(comparison, cell_area_km2 > 900 & cell_area_km2 < 1100)

20 hexify_forward

hexify_face_centers Get icosahedron face centers

Description

Returns the center coordinates of all 20 icosahedral faces.

Usage

hexify_face_centers()

Value

Data frame with 20 rows and columns lon, lat (degrees)

See Also

Other projection: hexify_build_icosa(), hexify_forward(), hexify_forward_to_face(), hexify_get_precision(),
hexify_inverse(), hexify_projection_stats(), hexify_set_precision(), hexify_set_verbose(),
hexify_which_face()

Examples

centers <- hexify_face_centers()
plot(centers$lon, centers$lat)

hexify_forward Forward Snyder projection

Description

Projects geographic coordinates onto the icosahedron, returning face index and planar coordinates
(tx, ty).

Usage

hexify_forward(lon, lat)

Arguments

lon Longitude in degrees

lat Latitude in degrees

Details

tx and ty are normalized coordinates within the triangular face, typically in range [0, 1].

hexify_forward_to_face 21

Value

Named numeric vector: c(face, tx, ty)

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_projection_stats(), hexify_set_precision(),
hexify_set_verbose(), hexify_which_face()

Examples

result <- hexify_forward(16.37, 48.21)
result["face"], result["icosa_triangle_x"], result["icosa_triangle_y"]

hexify_forward_to_face

Forward projection to specific face

Description

Projects to a known face (skips face detection).

Usage

hexify_forward_to_face(face, lon, lat)

Arguments

face Face index (0-19)

lon Longitude in degrees

lat Latitude in degrees

Value

Named numeric vector: c(icosa_triangle_x, icosa_triangle_y)

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_get_precision(),
hexify_inverse(), hexify_projection_stats(), hexify_set_precision(), hexify_set_verbose(),
hexify_which_face()

22 hexify_grid

hexify_get_precision Get current precision settings

Description

Get current precision settings

Usage

hexify_get_precision()

Value

List with tol and max_iters

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_inverse(), hexify_projection_stats(), hexify_set_precision(), hexify_set_verbose(),
hexify_which_face()

hexify_grid Create a hexagonal grid specification

Description

Creates a discrete global grid system (DGGS) object with hexagonal cells at a specified resolution.
This is the main constructor for hexify grids.

Usage

hexify_grid(
area,
topology = "HEXAGON",
metric = TRUE,
resround = "nearest",
aperture = 3,
projection = "ISEA"

)

hexify_heatmap 23

Arguments

area Target cell area in km^2 (if metric=TRUE) or area code

topology Grid topology (only "HEXAGON" supported)

metric Whether area is in metric units (km^2)

resround How to round resolution ("nearest", "up", "down")

aperture Aperture sequence (3, 4, or 7)

projection Projection type (only ’ISEA’ supported currently)

Value

A hexify_grid object containing:

area Target cell area

resolution Calculated resolution level

aperture Grid aperture (3, 4, or 7)

topology Grid topology ("HEXAGON")

projection Map projection ("ISEA")

index_type Index encoding type ("z3", "z7", or "zorder")

See Also

hexify for the main user function, hexify_grid_to_cell for coordinate conversion

Other hexify main: hexify()

Examples

Create a grid with ~1000 km^2 cells
grid <- hexify_grid(area = 1000, aperture = 3)
print(grid)

Create a finer resolution grid (~100 km^2 cells)
fine_grid <- hexify_grid(area = 100, aperture = 3, resround = "up")

hexify_heatmap Create a ggplot2 visualization of hexagonal grid cells

Description

Creates a ggplot2-based visualization of hexagonal grid cells, optionally colored by a value column.
Supports continuous and discrete color scales, projection transformation, and customizable styling.

24 hexify_heatmap

Usage

hexify_heatmap(
data,
value = NULL,
basemap = NULL,
crs = NULL,
colors = NULL,
breaks = NULL,
labels = NULL,
hex_border = "#5D4E37",
hex_lwd = 0.3,
hex_alpha = 0.7,
basemap_fill = "gray90",
basemap_border = "gray50",
basemap_lwd = 0.5,
mask_outside = FALSE,
aperture = 3L,
xlim = NULL,
ylim = NULL,
title = NULL,
legend_title = NULL,
na_color = "gray90",
theme_void = TRUE

)

Arguments

data A HexData object from hexify(), a data frame with cell_id and cell_area columns,
or an sf object with hexagon polygons.

value Column name (as string) to use for fill color. If NULL, cells are drawn with a
uniform fill color. If not specified but data has a ’count’ or ’n’ column, that will
be used automatically.

basemap Optional basemap. Can be:

• NULL: No basemap (default)
• "world": Use built-in hexify_world map (low resolution)
• "world_hires": Use high-resolution map from rnaturalearth (requires pack-

age)
• An sf object: User-supplied vector map

crs Target CRS for the map projection. Can be:

• A numeric EPSG code (e.g., 4326 for ’WGS84’, 3035 for LAEA Europe)
• A proj4 string
• An sf crs object
• NULL to use ’WGS84’ (EPSG:4326)

colors Color palette for the heatmap. Can be:

• A character vector of colors (for manual scale)

hexify_heatmap 25

• A single RColorBrewer palette name (e.g., "YlOrRd", "Greens")
• NULL to use viridis

breaks Numeric vector of break points for binning continuous values, or NULL for
continuous scale. Use Inf and -Inf for open-ended bins.

labels Labels for the breaks (length should be one less than breaks). If NULL, labels
are auto-generated.

hex_border Border color for hexagons

hex_lwd Line width for hexagon borders

hex_alpha Transparency for hexagon fill (0-1)

basemap_fill Fill color for basemap polygons

basemap_border Border color for basemap polygons

basemap_lwd Line width for basemap borders

mask_outside Logical. If TRUE and basemap is provided, mask hexagon portions that fall
outside the basemap polygons.

aperture Grid aperture (default 3), used if data is from hexify()

xlim Optional x-axis limits (in target CRS units) as c(min, max)

ylim Optional y-axis limits (in target CRS units) as c(min, max)

title Plot title

legend_title Title for the color legend

na_color Color for NA values

theme_void Logical. If TRUE (default), use a minimal theme without axes, gridlines, or
background.

Details

This function provides publication-quality heatmap visualizations of hexagonal grids using ggplot2.
It returns a ggplot object that can be further customized with standard ggplot2 functions.

Value

A ggplot2 object that can be further customized or saved.

Color Scales

The function supports three types of color scales:

Continuous Set breaks = NULL for a continuous gradient

Binned Provide breaks vector to bin values into categories

Discrete If value column is a factor, discrete colors are used

26 hexify_heatmap

Projections

Common projections:

4326 ’WGS84’ (unprojected lat/lon)

3035 LAEA Europe

3857 Web Mercator

"+proj=robin" Robinson (world maps)

"+proj=moll" Mollweide (equal-area world maps)

See Also

plot_grid for base R plotting, cell_to_sf to generate polygons manually

Other visualization: plot_world()

Examples

library(hexify)

Sample data with counts
cities <- data.frame(

lon = c(16.37, 2.35, -3.70, 12.5, 4.9),
lat = c(48.21, 48.86, 40.42, 41.9, 52.4),
count = c(100, 250, 75, 180, 300)

)
result <- hexify(cities, lon = "lon", lat = "lat", area_km2 = 5000)

Simple plot (uniform fill, no value mapping)
hexify_heatmap(result)

library(ggplot2)

With world basemap
hexify_heatmap(result, basemap = "world")

Heatmap with value mapping
hexify_heatmap(result, value = "count")

With world basemap and custom colors
hexify_heatmap(result, value = "count",

basemap = "world",
colors = "YlOrRd",
title = "City Density")

Binned values with custom breaks
hexify_heatmap(result, value = "count",

basemap = "world",
breaks = c(-Inf, 100, 200, Inf),
labels = c("Low", "Medium", "High"),
colors = c("#fee8c8", "#fdbb84", "#e34a33"))

hexify_inverse 27

Different projection (LAEA Europe)
hexify_heatmap(result, value = "count",

basemap = "world",
crs = 3035,
xlim = c(2500000, 6500000),
ylim = c(1500000, 5500000))

Customize further with ggplot2
hexify_heatmap(result, value = "count", basemap = "world") +

labs(caption = "Data source: Example") +
theme(legend.position = "bottom")

hexify_inverse Inverse Snyder projection

Description

Converts face plane coordinates back to geographic coordinates.

Usage

hexify_inverse(x, y, face, tol = NULL, max_iters = NULL)

Arguments

x X coordinate on face plane

y Y coordinate on face plane

face Face index (0-19)

tol Convergence tolerance (NULL for default)

max_iters Maximum iterations (NULL for default)

Value

Named numeric vector: c(lon_deg, lat_deg)

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_projection_stats(), hexify_set_precision(), hexify_set_verbose(),
hexify_which_face()

Examples

coords <- hexify_inverse(0.5, 0.3, face = 2)

28 hexify_roundtrip_test

hexify_projection_stats

Get inverse projection statistics

Description

Returns and optionally resets convergence statistics.

Usage

hexify_projection_stats(reset = TRUE)

Arguments

reset Whether to reset statistics after retrieval (default TRUE)

Value

List with statistics (iterations, convergence info, etc.)

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_set_precision(), hexify_set_verbose(),
hexify_which_face()

hexify_roundtrip_test Round-trip accuracy test

Description

Tests the accuracy of the coordinate conversion functions by converting coordinates to cells and
back, measuring the distance between original and reconstructed coordinates.

Usage

hexify_roundtrip_test(grid, lon, lat, units = "km")

Arguments

grid Grid specification

lon Longitude to test

lat Latitude to test

units Distance units ("km" or "degrees")

hexify_set_precision 29

Value

List with:

original Original coordinates

cell Cell index

reconstructed Reconstructed coordinates

error Distance between original and reconstructed

See Also

Other coordinate conversion: hexify_cell_id_to_quad_ij(), hexify_cell_to_icosa_tri(),
hexify_cell_to_lonlat(), hexify_cell_to_plane(), hexify_cell_to_quad_ij(), hexify_cell_to_quad_xy(),
hexify_grid_cell_to_lonlat(), hexify_grid_to_cell(), hexify_icosa_tri_to_plane(),
hexify_icosa_tri_to_quad_ij(), hexify_icosa_tri_to_quad_xy(), hexify_lonlat_to_cell(),
hexify_lonlat_to_plane(), hexify_lonlat_to_quad_ij(), hexify_quad_ij_to_cell(), hexify_quad_ij_to_icosa_tri(),
hexify_quad_ij_to_xy(), hexify_quad_xy_to_cell(), hexify_quad_xy_to_icosa_tri()

hexify_set_precision Set inverse projection precision

Description

Controls the accuracy/speed tradeoff for inverse Snyder projection.

Usage

hexify_set_precision(
mode = c("fast", "default", "high", "ultra"),
tol = NULL,
max_iters = NULL

)

Arguments

mode Preset mode: "fast", "default", "high", or "ultra"

tol Custom tolerance (overrides mode if provided)

max_iters Custom max iterations (overrides mode if provided)

Value

Invisible NULL

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_projection_stats(), hexify_set_verbose(),
hexify_which_face()

30 hexify_which_face

Examples

hexify_set_precision("high")
hexify_set_precision(tol = 1e-12, max_iters = 100)

hexify_set_verbose Set verbose mode for inverse projection

Description

When enabled, prints convergence information.

Usage

hexify_set_verbose(verbose = TRUE)

Arguments

verbose Logical

Value

Invisible NULL

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_projection_stats(), hexify_set_precision(),
hexify_which_face()

hexify_which_face Determine which face contains a point

Description

Returns the icosahedral face index (0-19) containing the given coordinates.

Usage

hexify_which_face(lon, lat)

Arguments

lon Longitude in degrees

lat Latitude in degrees

hexify_world 31

Value

Integer face index (0-19)

See Also

Other projection: hexify_build_icosa(), hexify_face_centers(), hexify_forward(), hexify_forward_to_face(),
hexify_get_precision(), hexify_inverse(), hexify_projection_stats(), hexify_set_precision(),
hexify_set_verbose()

Examples

face <- hexify_which_face(16.37, 48.21)

hexify_world Simplified World Map

Description

A lightweight sf object containing simplified world country borders, suitable for use as a basemap
when visualizing hexagonal grids.

Usage

hexify_world

Format

An sf object with 177 features and 15 fields:

name Country short name
name_long Country full name
admin Administrative name
sovereignt Sovereignty
iso_a2 ISO 3166-1 alpha-2 country code
iso_a3 ISO 3166-1 alpha-3 country code
iso_n3 ISO 3166-1 numeric code
continent Continent name
region_un UN region
subregion UN subregion
region_wb World Bank region
pop_est Population estimate
gdp_md GDP in millions USD
income_grp Income group classification
economy Economy type
geometry MULTIPOLYGON geometry in ’WGS84’ (EPSG:4326)

32 hex_grid

Source

Simplified from Natural Earth 1:110m Cultural Vectors (https://www.naturalearthdata.com/)

Examples

library(sf)

Plot the built-in world map
plot(st_geometry(hexify_world), col = "lightgray", border = "white")

Filter by continent
europe <- hexify_world[hexify_world$continent == "Europe",]
plot(st_geometry(europe))

hex_grid Create a Hexagonal Grid Specification

Description

Creates a HexGridInfo object that stores all parameters needed for hexagonal grid operations. Use
this to define the grid once and pass it to all downstream functions.

Usage

hex_grid(
area_km2 = NULL,
resolution = NULL,
aperture = 3,
resround = "nearest",
crs = 4326L

)

Arguments

area_km2 Target cell area in square kilometers. Mutually exclusive with resolution.

resolution Grid resolution level (0-30). Mutually exclusive with area_km2.

aperture Grid aperture: 3 (default), 4, 7, or "4/3" for mixed.

resround Resolution rounding when using area_km2: "nearest" (default), "up", or "down".

crs Coordinate reference system EPSG code (default 4326 = ’WGS84’).

Details

Exactly one of area_km2 or resolution must be provided.

When area_km2 is provided, the resolution is calculated automatically using the cell count formula:
N = 10 * aperture^res + 2.

https://www.naturalearthdata.com/

hex_grid 33

Value

A HexGridInfo object containing the grid specification.

One Grid, Many Datasets

A HexGridInfo acts as a shared spatial reference system - like a CRS, but discrete and equal-area.
Define the grid once, then attach multiple datasets without repeating parameters:

Step 1: Define the grid once
grid <- hex_grid(area_km2 = 1000)

Step 2: Attach multiple datasets to the same grid
birds <- hexify(bird_obs, lon = "longitude", lat = "latitude", grid = grid)
mammals <- hexify(mammal_obs, lon = "lon", lat = "lat", grid = grid)
climate <- hexify(weather_stations, lon = "x", lat = "y", grid = grid)

No aperture, resolution, or area needed after step 1 - the grid
travels with the data.

Step 3: Work at the cell level
Once hexified, lon/lat no longer matter - cell_id is the shared key
bird_counts <- aggregate(species ~ cell_id, data = as.data.frame(birds), length)
mammal_richness <- aggregate(species ~ cell_id, data = as.data.frame(mammals),

function(x) length(unique(x)))

Join datasets by cell_id - guaranteed to align because same grid
combined <- merge(bird_counts, mammal_richness, by = "cell_id")

Step 4: Visual confirmation
All datasets produce identical grid overlays
plot(birds) # See the grid
plot(mammals) # Same grid, different data

See Also

hexify for assigning points to cells, HexGridInfo-class for class documentation

Examples

Create grid by target area
grid <- hex_grid(area_km2 = 1000)
print(grid)

Create grid by resolution
grid <- hex_grid(resolution = 8, aperture = 3)

Create grid with different aperture
grid4 <- hex_grid(area_km2 = 500, aperture = 4)

34 is_hex_grid

Create mixed aperture grid
grid43 <- hex_grid(area_km2 = 1000, aperture = "4/3")

Use grid in hexify
df <- data.frame(lon = c(0, 10, 20), lat = c(45, 50, 55))
result <- hexify(df, lon = "lon", lat = "lat", grid = grid)

is_hex_data Check if object is HexData

Description

Check if object is HexData

Usage

is_hex_data(x)

Arguments

x Object to check

Value

Logical

is_hex_grid Check if object is HexGridInfo

Description

Check if object is HexGridInfo

Usage

is_hex_grid(x)

Arguments

x Object to check

Value

Logical

lonlat_to_cell 35

lonlat_to_cell Convert longitude/latitude to cell ID

Description

Converts geographic coordinates to DGGS cell IDs using a grid specification.

Usage

lonlat_to_cell(lon, lat, grid)

Arguments

lon Numeric vector of longitudes in degrees

lat Numeric vector of latitudes in degrees

grid A HexGridInfo or HexData object, or legacy hexify_grid

Details

This function accepts either a HexGridInfo object from hex_grid() or a HexData object from
hexify(). If a HexData object is provided, its grid specification is extracted automatically.

Value

Numeric vector of cell IDs

See Also

cell_to_lonlat for the inverse operation, hex_grid for creating grid specifications

Examples

grid <- hex_grid(area_km2 = 1000)
cells <- lonlat_to_cell(lon = c(0, 10), lat = c(45, 50), grid = grid)

Or use HexData object
df <- data.frame(lon = c(0, 10, 20), lat = c(45, 50, 55))
result <- hexify(df, lon = "lon", lat = "lat", area_km2 = 1000)
cells <- lonlat_to_cell(lon = 5, lat = 48, grid = result)

36 plot,HexData,missing-method

n_cells Get Number of Cells

Description

Get the number of unique cells in a HexData object.

Usage

n_cells(x)

Arguments

x A HexData object

Value

Integer count of unique cells

plot,HexData,missing-method

Plot HexData objects

Description

Default plot method for HexData objects. Draws hexagonal grid cells with an optional basemap.

Usage

S4 method for signature 'HexData,missing'
plot(
x,
y,
basemap = TRUE,
clip_basemap = TRUE,
basemap_fill = "gray90",
basemap_border = "gray50",
basemap_lwd = 0.5,
grid_fill = "#E69F00",
grid_border = "#5D4E37",
grid_lwd = 0.8,
grid_alpha = 0.7,
fill = NULL,
show_points = FALSE,
point_size = "auto",

plot,HexData,missing-method 37

point_color = "red",
crop = TRUE,
crop_expand = 0.1,
main = NULL,
...

)

Arguments

x A HexData object from hexify()

y Ignored (for S4 method compatibility)

basemap Basemap specification:

• TRUE or "world": Use built-in world map
• FALSE or NULL: No basemap
• sf object: Custom basemap

clip_basemap Clip basemap to data extent (default TRUE). Clipping temporarily disables S2
spherical geometry to avoid edge-crossing errors.

basemap_fill Fill color for basemap (default "gray90")

basemap_border Border color for basemap (default "gray50")

basemap_lwd Line width for basemap borders (default 0.5)

grid_fill Fill color for grid cells (default "#E69F00" - amber/orange)

grid_border Border color for grid cells (default "#5D4E37" - dark brown)

grid_lwd Line width for cell borders (default 0.8)

grid_alpha Transparency for cell fill (0-1, default 0.7)

fill Column name for fill mapping (optional)

show_points Show original points on top of cells (default FALSE). Points are jittered within
their assigned hexagon.

point_size Size of points. Can be:

• A number (direct cex value)
• A preset defining what fraction of a hex cell one point covers: "tiny" (~2\

"large" (~20\

point_color Color of points (default "red")

crop Crop to data extent (default TRUE)

crop_expand Expansion factor for crop (default 0.1)

main Plot title

... Additional arguments passed to base plot()

Details

This function generates polygon geometries for the cells present in the data and plots them. Poly-
gons are computed on demand, not stored, to minimize memory usage.

38 plot_grid

Value

Invisibly returns the HexData object

See Also

hexify_heatmap for ggplot2 plotting

Examples

df <- data.frame(lon = runif(100, -10, 10), lat = runif(100, 40, 50))
result <- hexify(df, lon = "lon", lat = "lat", area_km2 = 1000)

Basic plot (basemap shown by default)
plot(result)

Without basemap
plot(result, basemap = FALSE)

Custom styling
plot(result,

grid_fill = "lightblue", grid_border = "darkblue",
basemap_fill = "ivory")

Show jittered points (auto-sized based on density)
plot(result, show_points = TRUE)

Control point size with presets
plot(result, show_points = TRUE, point_size = "small")
plot(result, show_points = TRUE, point_size = "large")

plot_grid Plot hexagonal grid clipped to a polygon boundary

Description

A convenience function that creates a grid, clips it to a boundary polygon, and plots the result in a
single call.

Usage

plot_grid(
boundary,
grid,
crop = TRUE,
boundary_fill = "gray95",
boundary_border = "gray40",
boundary_lwd = 0.5,
grid_fill = "steelblue",

plot_grid 39

grid_border = "steelblue",
grid_lwd = 0.3,
grid_alpha = 0.3,
title = NULL,
expand = 0.05

)

Arguments

boundary An sf/sfc polygon to clip to (e.g., country boundary)

grid A HexGridInfo object from hex_grid()

crop If TRUE (default), cells are cropped to boundary. If FALSE, only complete
hexagons within boundary are shown.

boundary_fill Fill color for the boundary polygon (default "gray95")
boundary_border

Border color for boundary (default "gray40")

boundary_lwd Line width for boundary (default 0.5)

grid_fill Fill color for grid cells (default "steelblue")

grid_border Border color for grid cells (default "steelblue")

grid_lwd Line width for cell borders (default 0.3)

grid_alpha Transparency for cell fill (0-1, default 0.3)

title Plot title. If NULL (default), auto-generates title with cell area.

expand Expansion factor for plot limits (default 0.05)

Details

This is a convenience wrapper around grid_clip() that handles the common use case of visualiz-
ing a hexagonal grid over a geographic region.

Value

A ggplot object that can be further customized

See Also

grid_clip for the underlying clipping function, hex_grid for grid specification

Examples

Plot grid over France
france <- hexify_world[hexify_world$name == "France",]
grid <- hex_grid(area_km2 = 2000)
plot_grid(france, grid)

Customize colors
plot_grid(france, grid,

grid_fill = "coral", grid_alpha = 0.5,

40 plot_world

boundary_fill = "lightyellow")

Keep only complete hexagons
plot_grid(france, grid, crop = FALSE)

Add ggplot2 customizations
library(ggplot2)
plot_grid(france, grid) +

labs(subtitle = "ISEA3H Discrete Global Grid") +
theme_void()

plot_world Quick world map plot

Description

Simple wrapper to plot the built-in world map.

Usage

plot_world(fill = "gray90", border = "gray50", ...)

Arguments

fill Fill color for countries

border Border color for countries

... Additional arguments passed to plot()

Value

NULL invisibly. Creates a plot as side effect.

See Also

Other visualization: hexify_heatmap()

Examples

Quick world map
plot_world()

Custom colors
plot_world(fill = "lightblue", border = "darkblue")

Index

∗ ’dggridR’ compatibility
as_dggrid, 3
dggrid_is_compatible, 8
from_dggrid, 9

∗ coordinate conversion
hexify_roundtrip_test, 28

∗ datasets
hexify_world, 31

∗ grid statistics
dgearthstat, 7
hexify_compare_resolutions, 19

∗ hexify main
hexify, 15
hexify_grid, 22

∗ projection
hexify_build_icosa, 18
hexify_face_centers, 20
hexify_forward, 20
hexify_forward_to_face, 21
hexify_get_precision, 22
hexify_inverse, 27
hexify_projection_stats, 28
hexify_set_precision, 29
hexify_set_verbose, 30
hexify_which_face, 30

∗ visualization
hexify_heatmap, 23
plot_world, 40

as_dggrid, 3, 8, 10
as_sf, 4, 7, 16
as_tibble.HexData, 5

cell_to_lonlat, 6, 35
cell_to_sf, 6, 26
cells, 5

dg_closest_res_to_area, 8, 19
dgearthstat, 7, 19
dggrid_43h_sequence, 4, 8, 10

dggrid_is_compatible, 4, 8, 10
dgverify, 9

from_dggrid, 4, 8, 9

grid_clip, 10, 39
grid_global, 11, 11, 13
grid_info, 12
grid_rect, 11, 12, 13

hex_grid, 7, 14, 16, 32, 35, 39
HexData-class, 13
HexGridInfo-class, 14
hexify, 13, 14, 15, 23, 33
hexify-conversions, 17
hexify-grid, 17
hexify-package, 3
hexify-stats, 17
hexify_area_to_eff_res, 8, 19
hexify_build_icosa, 18, 20–22, 27–31
hexify_cell_id_to_quad_ij, 29
hexify_cell_to_icosa_tri, 29
hexify_cell_to_lonlat, 29
hexify_cell_to_plane, 29
hexify_cell_to_quad_ij, 29
hexify_cell_to_quad_xy, 29
hexify_compare_resolutions, 8, 19
hexify_eff_res_to_area, 8, 19
hexify_eff_res_to_resolution, 8, 19
hexify_face_centers, 18, 20, 21, 22, 27–31
hexify_forward, 18, 20, 20, 21, 22, 27–31
hexify_forward_to_face, 18, 20, 21, 21, 22,

27–31
hexify_get_precision, 18, 20, 21, 22,

27–31
hexify_grid, 16, 22
hexify_grid_cell_to_lonlat, 29
hexify_grid_to_cell, 23, 29
hexify_heatmap, 23, 38, 40
hexify_icosa_tri_to_plane, 29

41

42 INDEX

hexify_icosa_tri_to_quad_ij, 29
hexify_icosa_tri_to_quad_xy, 29
hexify_inverse, 18, 20–22, 27, 28–31
hexify_lonlat_to_cell, 29
hexify_lonlat_to_plane, 29
hexify_lonlat_to_quad_ij, 29
hexify_projection_stats, 18, 20–22, 27,

28, 29–31
hexify_quad_ij_to_cell, 29
hexify_quad_ij_to_icosa_tri, 29
hexify_quad_ij_to_xy, 29
hexify_quad_xy_to_cell, 29
hexify_quad_xy_to_icosa_tri, 29
hexify_resolution_to_eff_res, 8, 19
hexify_roundtrip_test, 28
hexify_set_precision, 18, 20–22, 27, 28,

29, 30, 31
hexify_set_verbose, 18, 20–22, 27–29, 30,

31
hexify_which_face, 18, 20–22, 27–30, 30
hexify_world, 31

is_hex_data, 34
is_hex_grid, 34

lonlat_to_cell, 6, 35

n_cells, 36

plot,HexData,missing-method, 36
plot_grid, 26, 38
plot_world, 26, 40

	hexify-package
	as_dggrid
	as_sf
	as_tibble.HexData
	cells
	cell_to_lonlat
	cell_to_sf
	dgearthstat
	dggrid_is_compatible
	dgverify
	from_dggrid
	grid_clip
	grid_global
	grid_info
	grid_rect
	HexData-class
	HexGridInfo-class
	hexify
	hexify-conversions
	hexify-grid
	hexify-stats
	hexify_build_icosa
	hexify_compare_resolutions
	hexify_face_centers
	hexify_forward
	hexify_forward_to_face
	hexify_get_precision
	hexify_grid
	hexify_heatmap
	hexify_inverse
	hexify_projection_stats
	hexify_roundtrip_test
	hexify_set_precision
	hexify_set_verbose
	hexify_which_face
	hexify_world
	hex_grid
	is_hex_data
	is_hex_grid
	lonlat_to_cell
	n_cells
	plot,HexData,missing-method
	plot_grid
	plot_world
	Index

