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.qwen_endpoint_cache  Qwen API Processor

Description

Concrete implementation of BaseAPIProcessor for Qwen models. Handles Qwen-specific API
calls, authentication, and response parsing.

Usage

.gwen_endpoint_cache

Format

An object of class environment of length 0.
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annotate_cell_types Cell Type Annotation with Multi-LLM Framework

Description

A comprehensive function for automated cell type annotation using multiple Large Language Mod-
els (LLMs). This function supports both Seurat’s differential gene expression results and custom
gene lists as input. It implements a sophisticated annotation pipeline that leverages state-of-the-art
LLMs to identify cell types based on marker gene expression patterns.

* A data frame from Seurat’s FindAllMarkers() function containing differential gene expression
results (must have columns: ’cluster’, ’gene’, and avg_log2FC’). The function will select the
top genes based on avg_log2FC for each cluster.

* A list where each element has a ’genes’ field containing marker genes for a cluster. This can
be in one of these formats:

— Named with cluster IDs: list("0" = list(genes = c(...)), "1" = list(genes = c(...)))
— Named with cell type names: list(t_cells = list(genes = c(...)), b_cells = list(genes = c(...)))
— Unnamed list: list(list(genes = c(...)), list(genes = c(...)))

* Cluster IDs are preserved as-is. The function does not modify or re-index cluster IDs. *'mouse
brain’). This helps provide context for more accurate annotations.

e OpenAl: *gpt-5.2°, *gpt-5.1°, "gpt-5°, *gpt-4.1°, "gpt-40’, *03-pro’, *03’, *04-mini’, "ol’, "ol-
pro’

* Anthropic: ’claude-opus-4-6-20260205°, ’claude-opus-4-5-20251101°, ’claude-sonnet-4-5-
20250929’, ’claude-haiku-4-5-20251001°, ’claude-opus-4-1-20250805’, ’claude-sonnet-4-20250514,
"claude-3-7-sonnet-20250219°

* DeepSeek: 'deepseek-chat’, ’deepseek-reasoner’, ’deepseek-rl’

* Google: ’gemini-3-pro’, *gemini-3-flash’, gemini-2.5-pro’, ’gemini-2.5-flash’, ’gemini-2.0-
flash’

* Alibaba: *qwen3-max’, ’qwen-max-2025-01-25’, ’qwen-plus’

 Stepfun: ’step-3’, ’step-2-16k’, ’step-2-mini’

e Zhipu: 'glm-4.7°, ’glm-4-plus’

e MiniMax: 'minimax-m2.1’, 'minimax-m?2’, "MiniMax-Text-01’

o X.AlL ’grok-4’, *grok-4.1’, ’grok-4-heavy’, "grok-3’, ’grok-3-fast’, ’grok-3-mini’

* OpenRouter: Provides access to models from multiple providers through a single API. Format:
"provider/model-name’

OpenAl models: ’openai/gpt-5.2°, ’openai/gpt-5’, ’openai/o3-pro’, ’openai/o4-mini’

Anthropic models: "anthropic/claude-opus-4.5’, *anthropic/claude-sonnet-4.5’, ’anthropic/claude-
haiku-4.5’

Meta models: *meta-llama/llama-4-maverick’, 'meta-llama/llama-4-scout’, meta-llama/llama-
3.3-70b-instruct’

Google models: ’google/gemini-3-pro’, ’google/gemini-3-flash’, ’google/gemini-2.5-pro’
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— Mistral models: ’mistralai/mistral-large’, *mistralai/magistral-medium-2506’

— Other models: ’deepseek/deepseek-rl’, *deepseek/deepseek-chat-v3.1°, *microsoft/mai-
ds-r1’ Each provider requires a specific API key format and authentication method:

* OpenAl: "sk-..." (obtain from OpenAl platform)

* Anthropic: "sk-ant-..." (obtain from Anthropic console)

* Google: A Google API key for Gemini models (obtain from Google AI)

* DeepSeek: API key from DeepSeek platform

* Qwen: API key from Alibaba Cloud

» Stepfun: API key from Stepfun Al

* Zhipu: API key from Zhipu Al

* MiniMax: API key from MiniMax

* X.AI: API key for Grok models

* OpenRouter: "sk-or-..." (obtain from OpenRouter) OpenRouter provides access to multiple

models through a single API key

The API key can be provided directly or stored in environment variables:

# Direct API key
result <- annotate_cell_types(input, tissue_name, model="gpt-5.2",
api_key="sk-...")

# Using environment variables

Sys.setenv(OPENAI_API_KEY="sk-...")
Sys.setenv(ANTHROPIC_API_KEY="sk-ant-...")
Sys.setenv(OPENROUTER_API_KEY="sk-or-...")

# Then use with environment variables
result <- annotate_cell_types(input, tissue_name, model="claude-sonnet-4-5-20250929",
api_key=Sys.getenv("ANTHROPIC_API_KEY"))

If NA, returns the generated prompt without making an API call, which is useful for reviewing the
prompt before sending it to the APIL. when input is from Seurat’s FindAllMarkers(). Default: 10

* A single character string: Applied to all providers (e.g., "https://api.proxy.com/v1")

* A named list: Provider-specific URLs (e.g., list(openai = "https://openai-proxy.com/v1", an-
thropic = "https://anthropic-proxy.com/v1")). This is useful for:
— Users accessing international APIs through proxies
— Enterprise users with internal API gateways

— Development/testing with local or alternative endpoints If NULL (default), uses official
API endpoints for each provider.
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Usage

annotate_cell_types(
input,
tissue_name,
model = "gpt-5.2",
api_key = NA,
top_gene_count = 10,
debug = FALSE,
base_urls = NULL

)
Arguments

input Either a data frame from Seurat’s FindAllMarkers() containing columns ’clus-
ter’, *gene’, and "avg_log2FC’, or a list with "genes’ field for each cluster

tissue_name Optional tissue context (e.g., ’human PBMC’, *'mouse brain’) for more accurate
annotations

model Model name to use. Default: *gpt-5.2°. See details for supported models

api_key API key for the selected model provider as a non-empty character scalar. If NA,

returns prompt only.

top_gene_count Number of top genes to use per cluster when input is from Seurat. Default: 10

debug Logical indicating whether to enable debug output. Default: FALSE
base_urls Optional base URLs for API endpoints. Can be a string or named list for custom
endpoints
Value

When api_key is provided: Vector of cell type annotations per cluster. When api_key is NA: The
generated prompt string

See Also

e Seurat::FindAl1lMarkers()
e get_provider()

* process_openai()

Examples

# Example 1: Using custom gene lists, returning prompt only (no API call)
annotate_cell_types(
input = list(
t_cells = list(genes = c('CD3D', 'CD3E', 'CD3G', 'CD28')),
b_cells = list(genes = c('CD19', 'CD79A', 'CD79B', 'MS4A1')),
monocytes = list(genes = c('CD14', 'CD68', 'CSF1R', 'FCGR3A'))
),
tissue_name = 'human PBMC',
model = 'gpt-5.2",



api_key = NA # Returns prompt only without making API call
)

# Example 2: Using with Seurat pipeline and OpenAI model
## Not run:
library(Seurat)

# Load example data
data("pbmc_small")

# Find marker genes

all.markers <- FindAllMarkers(
object = pbmc_small,
only.pos = TRUE,
min.pct = 0.25,
logfc.threshold = 0.25

)

# Set API key in environment variable (recommended approach)
Sys.setenv(OPENAI_API_KEY = "your-openai-api-key")

# Get cell type annotations using OpenAI model
openai_annotations <- annotate_cell_types(
input = all.markers,
tissue_name = 'human PBMC',
model = 'gpt-5.2",
api_key = Sys.getenv("OPENAI_API_KEY"),
top_gene_count = 15

)

# Example 3: Using Anthropic Claude model
Sys.setenv(ANTHROPIC_API_KEY = "your-anthropic-api-key")

claude_annotations <- annotate_cell_types(
input = all.markers,
tissue_name = 'human PBMC',
model = 'claude-opus-4-6-20260205',
api_key = Sys.getenv("ANTHROPIC_API_KEY"),
top_gene_count = 15

# Example 4: Using OpenRouter to access multiple models
Sys.setenv(OPENROUTER_API_KEY = "your-openrouter-api-key")

# Access OpenAl models through OpenRouter
openrouter_gpt4_annotations <- annotate_cell_types(
input = all.markers,
tissue_name = 'human PBMC',
model = 'openai/gpt-5.2', # Note the provider/model format
api_key = Sys.getenv("OPENROUTER_API_KEY"),
top_gene_count = 15

annotate_cell_types
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# Access Anthropic models through OpenRouter
openrouter_claude_annotations <- annotate_cell_types(
input = all.markers,
tissue_name = 'human PBMC',
model = 'anthropic/claude-opus-4.6', # Note the provider/model format
api_key = Sys.getenv("OPENROUTER_API_KEY"),
top_gene_count = 15

)

# Example 5: Using with mouse brain data
mouse_annotations <- annotate_cell_types(
input = mouse_markers, # Your mouse marker genes
tissue_name = 'mouse brain', # Specify correct tissue for context
model = 'gpt-5.2",
api_key = Sys.getenv("OPENAI_API_KEY"),
top_gene_count = 20, # Use more genes for complex tissues
debug = TRUE # Enable debug output
)

## End(Not run)

AnthropicProcessor Anthropic API Processor

Description

Anthropic API Processor
Anthropic API Processor

Details

Concrete implementation of BaseAPIProcessor for Anthropic models. Handles Anthropic-specific
API calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> AnthropicProcessor

Methods
Public methods:

e AnthropicProcessor$new()

e AnthropicProcessor$get_default_api_url()

* AnthropicProcessor$make_api_call()

* AnthropicProcessor$extract_response_content()
* AnthropicProcessor$clone()
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Method new(): Initialize Anthropic processor

Usage:
AnthropicProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default Anthropic API URL

Usage:
AnthropicProcessor$get_default_api_url()

Method make_api_call(): Make API call to Anthropic

Usage:
AnthropicProcessor$make_api_call (chunk_content, model, api_key)

Method extract_response_content(): Extract response content from Anthropic API re-
sponse

Usage:
AnthropicProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.
Usage:
AnthropicProcessor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

BaseAPIProcessor Base API Processor Class

Description

Base API Processor Class

Base API Processor Class

Details

Abstract base class for API processors that provides common functionality including unified log-
ging, error handling, input processing, and response validation. This eliminates code duplication
across all provider-specific processors.

Public fields

provider_name Name of the API provider
logger Unified logger instance
base_url Custom base URL for API endpoints
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Methods
Public methods:

* BaseAPIProcessor$new()

¢ BaseAPIProcessor$process_request()

* BaseAPIProcessor$get_api_url()

e BaseAPIProcessor$get_default_api_url()

* BaseAPIProcessor$make_api_call()

* BaseAPIProcessor$extract_response_content()
* BaseAPIProcessor$clone()

Method new(): Initialize the base API processor

Usage:
BaseAPIProcessor$new(provider_name, base_url = NULL)

Method process_request(): Main entry point for processing API requests

Usage:
BaseAPIProcessor$process_request(prompt, model, api_key)

Method get_api_url(): Getthe API URL to use for requests

Usage:
BaseAPIProcessor$get_api_url()

Method get_default_api_url(): Abstract method to be implemented by subclasses for get-
ting default API URL

Usage:
BaseAPIProcessor$get_default_api_url()

Method make_api_call(): Abstract method to be implemented by subclasses for making the
actual API call

Usage:
BaseAPIProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Abstract method to be implemented by subclasses for
extracting content from response Make API call and extract response content

Usage:
BaseAPIProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.
Usage:
BaseAPIProcessor$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.
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CacheManager Cache Manager Class

Description

Manages caching of consensus analysis results

Public fields

cache_dir Directory to store cache files. Options:

e NULL (default): Uses system cache directory

e "local": Uses .mllmcelltype_cache in current directory
* "temp": Uses temporary directory

» Custom path: Any other string is used as directory path

cache_version Current cache version

Methods
Public methods:

¢ CacheManagers$new()

* CacheManager$get_cache_dir()

e CacheManager$generate_key()

e CacheManager$save_to_cache()

* CacheManager$load_from_cache()
* CacheManagers$has_cache()

* CacheManagers$get_cache_stats()
* CacheManager$clear_cache()

e CacheManager$validate_cache()
¢ CacheManager$clone()

Method new(): Initialize cache manager
e NULL (default): Uses system cache directory via tools: :R_user_dir()
e "local": Uses .mllmcelltype_cache in current directory
» "temp": Uses temporary directory (cleared on R restart)
¢ Custom path: Any other string is used as directory path
Usage:
CacheManager$new(cache_dir = NULL)

Method get_cache_dir(): Get actual cache directory path
Usage:
CacheManagers$get_cache_dir ()

Method generate_key(): Generate cache key from input parameters (improved version)
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Usage:

CacheManagers$generate_key(
input,
models,
cluster_id,
tissue_name = "",
top_gene_count = 10

Method save_to_cache(): Save results to cache

Usage:
CacheManager$save_to_cache(key, data)

Method load_from_cache(): Load results from cache

Usage:
CacheManager$load_from_cache (key)

Method has_cache(): Check if results exist in cache

Usage:
CacheManagers$has_cache(key)

Method get_cache_stats(): Get cache statistics

Usage:
CacheManagers$get_cache_stats()

Method clear_cache(): Clear all cache

Usage:
CacheManager$clear_cache(confirm = FALSE)

Method validate_cache(): Validate cache content Extract genes from input in a standardized
way Create stable hash from genes list Create stable hash from models list Create stable hash from
tissue_name and top_gene_count Create stable hash from cluster ID

Usage:
CacheManager$validate_cache(key)

Method clone(): The objects of this class are cloneable with this method.

Usage:
CacheManager$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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compare_model_predictions
Compare predictions from different models

Description

This function runs the same input through multiple models and compares their predictions. It pro-
vides both individual predictions and a consensus analysis.

Usage

compare_model _predictions(
input,
tissue_name,
models = c("claude-opus-4-6-20260205", "gpt-5.2", "gemini-3-pro”, "deepseek-ri1",
"03-pro”, "grok-4.1"),
api_keys,
top_gene_count = 10,
consensus_threshold = 9.5,
base_urls = NULL

)
Arguments

input Either a data frame from Seurat’s FindAllMarkers() containing columns ’clus-
ter’, ’gene’, and "avg_log2FC’, or a list with ’genes’ field for each cluster

tissue_name Tissue context (e.g., "human PBMC’, "mouse brain’) for more accurate annota-
tions

models Vector of model names to use for comparison. Default includes top models from
each provider

api_keys Named list of API keys for the models, with provider or model names as keys.

Every model in models must resolve to a non-NULL API key.

top_gene_count Number of top genes to use per cluster when input is from Seurat. Default: 10
consensus_threshold
Minimum agreement threshold for consensus (0-1). Default: 0.5. Consensus is

only evaluated when at least two non-missing model predictions are available
for a cluster.

base_urls Optional base URLs for API endpoints. Can be a string or named list for
provider-specific custom endpoints.
Value

List containing individual model predictions and consensus analysis If a cluster has fewer than two
valid predictions after alignment/padding, its consensus-related outputs are NA.
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Note

This function uses create_standardization_prompt from prompt_templates.R Supported models:
* OpenAl: ’gpt-5.2°, *gpt-5.1°, "gpt-5°, "gpt-4.1°, *gpt-40’, *03-pro’, *03’, 04-mini’, ’ol’, ’ol-
pro’

* Anthropic: ’claude-opus-4-6-20260205°, ’claude-opus-4-5-20251101°, ’claude-sonnet-4-5-
20250929’, ’claude-haiku-4-5-20251001°, ’claude-opus-4-1-20250805’, ’claude-sonnet-4-20250514’,
’claude-3-7-sonnet-20250219°

* DeepSeek: 'deepseek-chat’, ’deepseek-reasoner’, ’deepseek-rl’

* Google: ’gemini-3-pro’, ’gemini-3-flash’, gemini-2.5-pro’, ’gemini-2.5-flash’, ’gemini-2.0-
flash’

e Alibaba: ’qwen3-max’, ’qwen-max-2025-01-25’, ’qwen-plus’
 Stepfun: ’step-3’, ’step-2-16k’, ’step-2-mini’
e Zhipu: 'glm-4.7°, ’glm-4-plus’
e MiniMax: ‘'minimax-m2.1°, ’'minimax-m2’, ’MiniMax-Text-01’
o X.AlL ’grok-4’, ’grok-4.1’, ’grok-4-heavy’, *grok-3’, ’ grok-3-fast’, ’grok-3-mini’
* OpenRouter: Provides access to models from multiple providers through a single API. Format:
"provider/model-name’
— OpenAl models: *openai/gpt-5.2°, *openai/gpt-5°, *openai/o3-pro’, ’openai/o4-mini’
— Anthropic models: *anthropic/claude-opus-4.5°, *anthropic/claude-sonnet-4.5’, ’anthropic/claude-
haiku-4.5’

— Meta models: *meta-llama/llama-4-maverick’, meta-llama/llama-4-scout’, meta-llama/llama-

3.3-70b-instruct’
— Google models: *google/gemini-3-pro’, ’google/gemini-3-flash’, ’google/gemini-2.5-pro’

— Mistral models: ’mistralai/mistral-large’, *mistralai/magistral-medium-2506’

— Other models: ’deepseek/deepseek-rl’, *deepseek/deepseek-chat-v3.1°, *microsoft/mai-

ds-r1’
1. With provider names as keys: list("openai” = "sk-...", "anthropic” = "sk-ant-...",
"openrouter” = "sk-or-...")
2. With model names as keys: list("gpt-5" = "sk-...", "claude-sonnet-4-5-20250929"
="sk-ant-...")

The system first tries to find the API key using the provider name. If not found, it then tries using
the model name. Example:

api_keys <- list(
"openai” = Sys.getenv("OPENAI_API_KEY"),
"anthropic” = Sys.getenv("ANTHROPIC_API_KEY"),
"openrouter” = Sys.getenv("OPENROUTER_API_KEY"),
"claude-opus-4-6-20260205" = "sk-ant-api@3-specific-key-for-opus”
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Examples

## Not run:

# Compare predictions using different models

api_keys <- list(
"claude-sonnet-4-5-20250929" = "your-anthropic-key",
"deepseek-reasoner” = "your-deepseek-key",
"gemini-3-pro” = "your-gemini-key",
"gwen3-max" = "your-qwen-key"

)

results <- compare_model_predictions(
input = list(gsi=c('CD4',6'CD3D'), gs2='CD14'),
tissue_name = 'PBMC',
api_keys = api_keys

)

## End(Not run)

configure_logger Set global logger configuration

Description

Set global logger configuration

Usage

configure_logger(level = "INFO", console_output = TRUE, json_format = TRUE)

Arguments

level Logging level: "DEBUG", "INFO", "WARN", or "ERROR". Default: "INFO"
console_output Whether to enable console output. Default: TRUE

json_format Whether to use JSON format for log messages. Default: TRUE

Value

Invisible logger object
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create_annotation_prompt
Create prompt for cell type annotation

Description

Create prompt for cell type annotation

Usage

create_annotation_prompt(input, tissue_name, top_gene_count = 10)

Arguments
input Either a data frame from Seurat’s FindAllMarkers() or a list for each cluster
where each element is either a character vector of genes or a list containing a
genes field Cluster IDs in named inputs are preserved as-is; unnamed list input
receives sequential IDs starting at "0".
tissue_name Tissue context for the annotation (e.g., ’human PBMC’, *'mouse brain’)

top_gene_count Number of top genes to use per cluster when input is from Seurat. Default: 10

Value

Character string containing the formatted prompt

DeepSeekProcessor DeepSeek API Processor

Description

DeepSeek API Processor
DeepSeek API Processor

Details
Concrete implementation of BaseAPIProcessor for DeepSeek models. Handles DeepSeek-specific
API calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> DeepSeekProcessor
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Methods
Public methods:

* DeepSeekProcessor$new()

* DeepSeekProcessor$get_default_api_url()

* DeepSeekProcessor$make_api_call()

* DeepSeekProcessor$extract_response_content()
¢ DeepSeekProcessor$clone()

Method new(): Initialize DeepSeek processor
Usage:
DeepSeekProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default DeepSeek API URL

Usage:
DeepSeekProcessor$get_default_api_url()

Method make_api_call(): Make API call to DeepSeek

Usage:
DeepSeekProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Extract response content from DeepSeek API re-
sponse

Usage:
DeepSeekProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.
Usage:
DeepSeekProcessor$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

GeminiProcessor Gemini API Processor

Description

Gemini API Processor

Gemini API Processor

Details

Concrete implementation of BaseAPIProcessor for Gemini models. Handles Gemini-specific API
calls, authentication, and response parsing.
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Super class

mLLMCelltype: :BaseAPIProcessor -> GeminiProcessor

Methods

Public methods:

¢ GeminiProcessor$new()

* GeminiProcessor$get_default_api_url()

e GeminiProcessor$get_api_url_for_model()

* GeminiProcessor$make_api_call()

* GeminiProcessor$extract_response_content()
* GeminiProcessor$clone()

Method new(): Initialize Gemini processor

Usage:

GeminiProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default Gemini API URL template

Usage:
GeminiProcessor$get_default_api_url()

Method get_api_url_for_model(): Get API URL for specific model

Usage:
GeminiProcessor$get_api_url_for_model (model)

Method make_api_call(): Make API call to Gemini

Usage:
GeminiProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Extract response content from Gemini API response

Usage:
GeminiProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.

Usage:
GeminiProcessor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.
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get_api_key Utility functions for API key management

Description

This file contains utility functions for managing API keys and related operations. Get API key for
a specific model

Usage

get_api_key(model, api_keys)

Arguments

model Model name to get API key for

api_keys Named list of API keys with provider or model names as keys
Details

This function retrieves the appropriate API key for a given model by first checking the provider
name and then the model name in the provided API keys list.

Value

API key string for the specified model

get_logger Get the global logger instance

Description

Get the global logger instance

Usage

get_logger()
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get_provider Determine provider from model name

Description

This function determines the appropriate provider (e.g., OpenAl, Anthropic, Google, OpenRouter)
based on the model name. Uses prefix-based matching for efficient and maintainable provider
detection. New models following existing naming conventions are automatically supported.

Usage

get_provider(model)

Arguments
model Character string specifying the model name (e.g., "gpt-5.2", "claude-sonnet-
4.5").
Details

Supported providers and model prefixes:

* OpenAl: gpt-, ol, 03%, 04*, chatgpt-, codex- (e.g., *gpt-5.2’, >03-pro’, *04-mini’)
* Anthropic: claude-* (e.g., *claude-opus-4.6’, ’claude-sonnet-4.5)

* DeepSeek: deepseek-* (e.g., ’deepseek-chat’, ’deepseek-rl’)

* Google: gemini-* (e.g., ’gemini-3-pro’, ’gemini-2.5-flash’)

* Qwen: gqwen*, qwg-* (e.g., 'qwen3-max’, 'qwq-32b’)

 Stepfun: step-* (e.g., step-2-mini’, "step-2-16k”)

e Zhipu: glm-, chatglm (e.g., ’glm-4.7’, ’glm-4-plus’)

* MiniMax: minimax-* (e.g., ‘'minimax-m2.1’, 'minimax-m1”)

* Grok: grok-* (e.g., 'grok-4’, ’grok-4-heavy’)

* OpenRouter: Any model with ’/* in the name (e.g., *openai/gpt-5.2’, anthropic/claude-sonnet-
4.5%)

Value

Character string of the provider name (e.g., "openai”, "anthropic").
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GrokProcessor Grok API Processor

Description

Grok API Processor
Grok API Processor

Details

Concrete implementation of Base APIProcessor for Grok models. Handles Grok-specific API calls,
authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> GrokProcessor

Methods

Public methods:
¢ GrokProcessor$new()
¢ GrokProcessor$get_default_api_url()
* GrokProcessor$make_api_call()
* GrokProcessor$extract_response_content()
* GrokProcessor$clone()

Method new(): Initialize Grok processor
Usage:
GrokProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default Grok API URL
Usage:
GrokProcessor$get_default_api_url()

Method make_api_call(): Make API call to Grok
Usage:
GrokProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Extract response content from Grok API response
Usage:
GrokProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.
Usage:
GrokProcessor$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.



interactive_consensus_annotation 21

interactive_consensus_annotation
Interactive consensus building for cell type annotation

Description

This function implements an interactive voting and discussion mechanism where multiple LLMs
collaborate to reach a consensus on cell type annotations, particularly focusing on clusters with low
agreement. The process includes:

1. Initial voting by all LLMs
2. Identification of controversial clusters
3. Detailed discussion for controversial clusters

4. Final summary by a designated LLM (default: Claude)

Usage

interactive_consensus_annotation(
input,
tissue_name,
models = c("claude-opus-4-6-20260205", "gpt-5.2", "gemini-3-pro”, "deepseek-ri1",

"grok-4.1"),

api_keys,
top_gene_count = 10,
controversy_threshold
entropy_threshold = 1,
max_discussion_rounds = 3,
consensus_check_model = NULL,
log_dir = "logs",
cache_dir = NULL,
use_cache = TRUE,
base_urls = NULL,
clusters_to_analyze = NULL,
force_rerun = FALSE

0.7,

)
Arguments
input Either a data frame from Seurat’s FindAllMarkers() function containing dif-
ferential gene expression results (must have columns: ’cluster’, ’gene’, and
“avg_log2FC’), or a list where each element is either a character vector of genes
or a list containing a genes field.
tissue_name Character string specifying the tissue type for context-aware cell type annotation

(e.g., ’human PBMC’, "'mouse brain’). Required.
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models Character vector of model names to use for consensus annotation. Minimum 2
models required. Supports models from OpenAl, Anthropic, DeepSeek, Google,
Alibaba, Stepfun, Zhipu, MiniMax, X.Al, and OpenRouter.

api_keys Named, non-empty list of API keys. Can use provider names as keys (e.g.,

non

"openai", "anthropic") or model names as keys (e.g., "gpt-5").
top_gene_count Integer specifying the number of top marker genes to use for annotation per
cluster (default: 10).
controversy_threshold
Numeric value between 0 and 1 for consensus proportion threshold. Clusters
below this threshold are considered controversial (default: 0.7).
entropy_threshold
Numeric value for entropy threshold. Higher entropy indicates more disagree-
ment among models (default: 1.0).
max_discussion_rounds
Integer specifying maximum number of discussion rounds for controversial clus-
ters (default: 3).
consensus_check_model
Character string specifying which model to use for consensus checking. If
NULL, uses the first model from the models list.
log_dir Character scalar specifying directory for log files (default: "logs"). This function
reinitializes the session logger with this directory at the start of each call.
cache_dir Character string or NULL. Cache directory for storing results. NULL uses sys-
tem cache, "local" uses current directory, "temp" uses temporary directory, or
specify custom path.
use_cache Logical indicating whether to use caching (default: TRUE).
base_urls Named list or character string specifying custom API base URLs. Useful for
proxies or alternative endpoints. If NULL, uses official endpoints.
clusters_to_analyze
Character or numeric vector specifying which clusters to analyze. If NULL
(default), all clusters are analyzed.
force_rerun Logical indicating whether to force rerun of all specified clusters, ignoring cache.
Only affects controversial cluster discussions (default: FALSE).

Value

A list containing:

e initial_results: Initial voting results, consensus checks, and controversial cluster IDs
* final_annotations: Final annotations keyed by cluster ID

* controversial_clusters: Clusters identified as controversial

» discussion_logs: Detailed discussion logs for controversial clusters

* session_id: Logger session identifier

* voting_results: Backward-compatible alias of initial_results

* discussion_results: Backward-compatible alias of discussion_logs

» final_consensus: Backward-compatible alias of final_annotations
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list_custom_models Get list of registered custom models

Description

Get list of registered custom models

Usage

list_custom_models()

list_custom_providers Get list of registered custom providers

Description

Get list of registered custom providers

Usage

list_custom_providers()

logging_functions Convenience functions for logging

Description

Convenience functions for logging

Usage
log_debug(message, context = NULL)

log_info(message, context = NULL)
log_warn(message, context = NULL)

log_error(message, context = NULL)

Arguments

message Log message string

context Optional context information (list or character)
Value

Invisible NULL
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MinimaxProcessor Minimax API Processor

Description

Minimax API Processor

Minimax API Processor

Details

Concrete implementation of BaseAPIProcessor for Minimax models. Handles Minimax-specific
API calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor ->MinimaxProcessor

Methods

Public methods:
¢ MinimaxProcessor$new()
e MinimaxProcessor$get_default_api_url()
* MinimaxProcessor$make_api_call()
* MinimaxProcessor$extract_response_content()
e MinimaxProcessor$clone()

Method new(): Initialize Minimax processor
Usage:
MinimaxProcessor$new(base_url = NULL)
Method get_default_api_url(): Get default Minimax API URL
Usage:
MinimaxProcessor$get_default_api_url()
Method make_api_call(): Make API call to Minimax
Usage:
MinimaxProcessor$make_api_call(chunk_content, model, api_key)
Method extract_response_content(): Extractresponse content from Minimax API response
Usage:
MinimaxProcessor$extract_response_content(response, model)
Method clone(): The objects of this class are cloneable with this method.
Usage:
MinimaxProcessor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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mllmcelltype_cache_dir
Get mLLMCelltype cache location

Description

Display the cache directory location

Usage

mllmcelltype_cache_dir(cache_dir = NULL)

Arguments
cache_dir Cache directory specification. NULL uses system default, "local" uses current
dir, "temp" uses temp dir, or custom path
Value

Invisible cache directory path

Examples

## Not run:
mllmcelltype_cache_dir()
mllmcelltype_cache_dir("local")

## End(Not run)

mllmcelltype_clear_cache
Clear mLLMCelltype cache

Description

Clear the mLLMCelltype cache

Usage

mllmcelltype_clear_cache(cache_dir = NULL)

Arguments

cache_dir Cache directory specification. NULL uses system default, "local” uses current
dir, "temp" uses temp dir, or custom path
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Value

Invisible NULL

Examples

## Not run:
mllmcelltype_clear_cache()
mllmcelltype_clear_cache("local”)

## End(Not run)

OpenAIProcessor OpenAl API Processor

Description

OpenAl API Processor
OpenAl API Processor

Details

Concrete implementation of BaseAPIProcessor for OpenAl models. Handles OpenAl-specific API
calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> OpenAIProcessor

Methods

Public methods:

* OpenAlIProcessor$new()

* OpenAIProcessor$get_default_api_url()

* OpenAIProcessor$make_api_call()

* OpenAlIProcessor$extract_response_content()
* OpenAIProcessor$clone()

Method new(): Initialize OpenAl processor
Usage:
OpenAIProcessor$new(base_url = NULL)
Method get_default_api_url(): Get default OpenAl API URL
Usage:
OpenAIProcessor$get_default_api_url()

Method make_api_call(): Make API call to OpenAl
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Usage:
OpenAIProcessor$make_api_call (chunk_content, model, api_key)
Method extract_response_content(): Extract response content from OpenAl API response
Usage:
OpenAIProcessor$extract_response_content(response, model)
Method clone(): The objects of this class are cloneable with this method.

Usage:
OpenAIProcessor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

OpenRouterProcessor OpenRouter API Processor

Description

OpenRouter API Processor
OpenRouter API Processor

Details

Concrete implementation of BaseAPIProcessor for OpenRouter models. Handles OpenRouter-
specific API calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> OpenRouterProcessor

Methods
Public methods:

¢ OpenRouterProcessor$new()

e OpenRouterProcessor$get_default_api_url()

* OpenRouterProcessor$make_api_call()

* OpenRouterProcessor$extract_response_content()
* OpenRouterProcessor$clone()

Method new(): Initialize OpenRouter processor
Usage:
OpenRouterProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default OpenRouter API URL
Usage:
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OpenRouterProcessor$get_default_api_url()

Method make_api_call(): Make API call to OpenRouter

Usage:
OpenRouterProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Extract response content from OpenRouter API re-

sponse

Usage:
OpenRouterProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.

Usage:
OpenRouterProcessor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

register_custom_model Register a custom model for a provider

Description

Register a custom model for a provider

Usage

register_custom_model (model_name, provider_name, model_config = list())

Arguments
model_name Unique name for the custom model

provider_name Name of the provider this model belongs to

model_config  List of configuration parameters for the model (e.g., temperature, max_tokens)

Value

Invisible TRUE on success
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Examples

## Not run:
register_custom_model(
model_name = "my_model”,

provider_name = "my_provider”,

model_config = list(
temperature = 0.7,
max_tokens = 2000
)
)

## End(Not run)
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register_custom_provider

Register a custom LLM provider

Description

Register a custom LLLM provider

Usage

register_custom_provider(provider_name, process_fn, description

Arguments

provider_name Unique name for the custom provider

process_fn Function that processes LLM requests. Must accept parameters: prompt, model,
api_key
description Optional description of the provider
Value
Invisible NULL
Examples
## Not run:

register_custom_provider(

provider_name = "my_provider”,
process_fn = function(prompt, model, api_key) {

# Custom implementation
response <- httr::POST(

url = "your_api_endpoint”,
body = list(prompt = prompt),

encode = "json”
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return(httr::content(response)$choices[[1]]$text)
}
)

## End(Not run)

StepFunProcessor StepFun API Processor

Description

StepFun API Processor
StepFun API Processor

Details

Concrete implementation of Base APIProcessor for StepFun models. Handles StepFun-specific API
calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> StepFunProcessor

Methods
Public methods:

e StepFunProcessor$new()

* StepFunProcessor$get_default_api_url()

e StepFunProcessor$make_api_call()

* StepFunProcessor$extract_response_content()
e StepFunProcessor$clone()

Method new(): Initialize StepFun processor
Usage:
StepFunProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default StepFun API URL
Usage:
StepFunProcessor$get_default_api_url()
Method make_api_call(): Make API call to StepFun
Usage:
StepFunProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Extract response content from StepFun API response

Usage:
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StepFunProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.
Usage:
StepFunProcessor$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

UnifiedLogger Unified Logger for mLLMCelltype Package

Description

Unified Logger for mLLMCelltype Package
Unified Logger for mLLMCelltype Package

Details

This logger provides centralized, multi-level logging with structured output, log rotation, and per-
formance monitoring capabilities.

Public fields

log_dir Directory for storing log files

log_level Current logging level

session_id Unique identifier for the current session
max_log_size Maximum log file size in MB (default: 10MB)
max_log_files Maximum number of log files to keep (default: 5)
enable_console Whether to output to console (default: TRUE)
enable_json Whether to use JSON format (default: TRUE)

performance_stats Performance monitoring statistics

Methods

Public methods:

e UnifiedLogger$new()

¢ UnifiedLogger$debug()

e UnifiedLogger$info()

e UnifiedLogger$warn()

e UnifiedLogger$error()

e UnifiedLogger$log_api_call()

e UnifiedLogger$log_api_request_response()
* UnifiedLogger$log_cache_operation()
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UnifiedLogger$log_cluster_progress()
UnifiedLogger$log_discussion()
UnifiedLogger$log_model_response()
UnifiedLogger$get_performance_summary()
UnifiedLogger$cleanup_logs()
UnifiedLogger$set_level()
UnifiedLogger$clone()

Method new(): Initialize the unified logger

Usage:
UnifiedLogger$new(
base_dir = "logs",

)

level = "INFO",
max_size = 10,
max_files = 5,
console_output = TRUE,
json_format = TRUE

Method debug(): Log a debug message

Usage:
UnifiedLogger$debug(message, context = NULL)

Method info(): Log an info message

Usage:
UnifiedLogger$info(message, context = NULL)

Method warn(): Log a warning message

Usage:
UnifiedLogger$warn(message, context = NULL)

Method error(): Log an error message

Usage:
UnifiedLogger$error(message, context = NULL)

Method log_api_call(): Log API call performance

Usage:
UnifiedLogger$log_api_call(

)

provider,
model,
duration,
success = TRUE,
tokens = NULL

Method log_api_request_response(): Log complete API request and response for debug-
ging and audit
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Usage:

UnifiedLogger$log_api_request_response(
provider,
model,
prompt_content,
response_content,
request_metadata = NULL,
response_metadata = NULL

)

Method log_cache_operation(): Log cache operations
Usage:
UnifiedLogger$log_cache_operation(operation, key, size = NULL)

Method log_cluster_progress(): Log cluster annotation progress
Usage:
UnifiedLogger$log_cluster_progress(cluster_id, stage, progress = NULL)

Method log_discussion(): Log detailed cluster discussion with complete model conversations
Usage:
UnifiedLogger$log_discussion(cluster_id, event_type, data = NULL)

Method log_model_response(): Log model response with concise summary in main log and
full text in file
Usage:

UnifiedLogger$log_model_response(
provider,
model,
response,
stage = "annotation”,
cluster_id = NULL

)

Method get_performance_summary(): Get performance summary
Usage:

UnifiedLogger$get_performance_summary()

Method cleanup_logs(): Clean up old log files
Usage:
UnifiedLogger$cleanup_logs(force = FALSE)

Method set_level(): Setlogging level
Usage:
UnifiedLogger$set_level (level)

Method clone(): The objects of this class are cloneable with this method.
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Usage:
UnifiedLogger$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

ZhipuProcessor Zhipu API Processor

Description

Zhipu API Processor
Zhipu API Processor

Details

Concrete implementation of BaseAPIProcessor for Zhipu models. Handles Zhipu-specific API
calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> ZhipuProcessor

Methods
Public methods:

e ZhipuProcessor$new()

* ZhipuProcessor$get_default_api_url()

e ZhipuProcessor$make_api_call()

e ZhipuProcessor$extract_response_content()
* ZhipuProcessor$clone()

Method new(): Initialize Zhipu processor
Usage:
ZhipuProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default Zhipu API URL
Usage:
ZhipuProcessor$get_default_api_url()
Method make_api_call(): Make API call to Zhipu
Usage:
ZhipuProcessor$make_api_call(chunk_content, model, api_key)
Method extract_response_content(): Extract response content from Zhipu API response

Usage:
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ZhipuProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.

Usage:
ZhipuProcessor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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