Package ‘mLLMCelltype’

February 8, 2026

Type Package

Title Cell Type Annotation Using Large Language Models
Version 2.0.0

Author Chen Yang [aut, cre, cph]

Maintainer Chen Yang <cafferychen777@tamu.edu>

Description Automated cell type annotation for single-cell RNA sequencing data
using consensus predictions from multiple large language models. Integrates
with Seurat objects and provides uncertainty quantification for annotations.
Supports various LLM providers including OpenAl, Anthropic, and Google.
For details see Yang et al. (2025) <doi:10.1101/2025.04.10.647852>.

License MIT + file LICENSE
BugReports https://github.com/cafferychen777/mLLMCelltype/issues

URL https://cafferyang.com/mLLMCelltype/
Encoding UTF-8

Imports dplyr, httr (>= 1.4.0), jsonlite (>= 1.7.0), R6 (>=2.5.0),
digest (>= 0.6.25), magrittr, stats, tools, utils

Suggests knitr, rmarkdown, Seurat
RoxygenNote 7.3.3
Config/build/clean-inst-doc TRUE
VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2026-02-08 10:50:09 UTC

Contents

.qwen_endpoint_cache
annotate_cell_types e e e e
AnthropicProcessor L

https://doi.org/10.1101/2025.04.10.647852
https://github.com/cafferychen777/mLLMCelltype/issues
https://cafferyang.com/mLLMCelltype/

Index

.gwen_endpoint_cache

BaseAPIProcessor. e e e e e e e 8
CacheManager e 10
compare_model_predictionso 12
configure_logger e 14
create_annotation_promptot e e e e e e e e 15
DeepSeekProcessor 15
GeminiProcessor e e 16
get_api_key e 18
get_loggero 18
e Provider L e e e e e 19
GrokProcessor. e e e e 20
interactive_consensus_annotation v e e e e e e e e e 21
list_custom_models 23
list_custom_providers e 23
logging_functions e e 23
MinimaxProcessor e e e 24
mllmcelltype_cache_dir L 25
mllmcelltype_clear_cache 25
OpenAlIProcessor 26
OpenRouterProcessor e 27
register_custom_model 28
register_custom_provider 29
StepFunProcessor L 30
UnifiedLogger e e 31
ZhipuProcessor 34

36

.qwen_endpoint_cache Qwen API Processor

Description

Concrete implementation of BaseAPIProcessor for Qwen models. Handles Qwen-specific API
calls, authentication, and response parsing.

Usage

.gwen_endpoint_cache

Format

An object of class environment of length 0.

annotate_cell_types 3

annotate_cell_types Cell Type Annotation with Multi-LLM Framework

Description

A comprehensive function for automated cell type annotation using multiple Large Language Mod-
els (LLMs). This function supports both Seurat’s differential gene expression results and custom
gene lists as input. It implements a sophisticated annotation pipeline that leverages state-of-the-art
LLMs to identify cell types based on marker gene expression patterns.

* A data frame from Seurat’s FindAllMarkers() function containing differential gene expression
results (must have columns: ’cluster’, ’gene’, and avg_log2FC’). The function will select the
top genes based on avg_log2FC for each cluster.

* A list where each element has a ’genes’ field containing marker genes for a cluster. This can
be in one of these formats:

— Named with cluster IDs: list("0" = list(genes = c(...)), "1" = list(genes = c(...)))
— Named with cell type names: list(t_cells = list(genes = c(...)), b_cells = list(genes = c(...)))
— Unnamed list: list(list(genes = c(...)), list(genes = c(...)))

* Cluster IDs are preserved as-is. The function does not modify or re-index cluster IDs. *'mouse
brain’). This helps provide context for more accurate annotations.

e OpenAl: *gpt-5.2°, *gpt-5.1°, "gpt-5°, *gpt-4.1°, "gpt-40’, *03-pro’, *03’, *04-mini’, "ol’, "ol-
pro’

* Anthropic: ’claude-opus-4-6-20260205°, ’claude-opus-4-5-20251101°, ’claude-sonnet-4-5-
20250929’, ’claude-haiku-4-5-20251001°, ’claude-opus-4-1-20250805’, ’claude-sonnet-4-20250514,
"claude-3-7-sonnet-20250219°

* DeepSeek: 'deepseek-chat’, ’deepseek-reasoner’, ’deepseek-rl’

* Google: ’gemini-3-pro’, *gemini-3-flash’, gemini-2.5-pro’, ’gemini-2.5-flash’, ’gemini-2.0-
flash’

* Alibaba: *qwen3-max’, ’qwen-max-2025-01-25’, ’qwen-plus’

 Stepfun: ’step-3’, ’step-2-16k’, ’step-2-mini’

e Zhipu: 'glm-4.7°, ’glm-4-plus’

e MiniMax: 'minimax-m2.1’, 'minimax-m?2’, "MiniMax-Text-01’

o X.AlL ’grok-4’, *grok-4.1’, ’grok-4-heavy’, "grok-3’, ’grok-3-fast’, ’grok-3-mini’

* OpenRouter: Provides access to models from multiple providers through a single API. Format:
"provider/model-name’

OpenAl models: ’openai/gpt-5.2°, ’openai/gpt-5’, ’openai/o3-pro’, ’openai/o4-mini’

Anthropic models: "anthropic/claude-opus-4.5’, *anthropic/claude-sonnet-4.5’, ’anthropic/claude-
haiku-4.5’

Meta models: *meta-llama/llama-4-maverick’, 'meta-llama/llama-4-scout’, meta-llama/llama-
3.3-70b-instruct’

Google models: ’google/gemini-3-pro’, ’google/gemini-3-flash’, ’google/gemini-2.5-pro’

annotate_cell_types

— Mistral models: ’mistralai/mistral-large’, *mistralai/magistral-medium-2506’

— Other models: ’deepseek/deepseek-rl’, *deepseek/deepseek-chat-v3.1°, *microsoft/mai-
ds-r1’ Each provider requires a specific API key format and authentication method:

* OpenAl: "sk-..." (obtain from OpenAl platform)

* Anthropic: "sk-ant-..." (obtain from Anthropic console)

* Google: A Google API key for Gemini models (obtain from Google AI)

* DeepSeek: API key from DeepSeek platform

* Qwen: API key from Alibaba Cloud

» Stepfun: API key from Stepfun Al

* Zhipu: API key from Zhipu Al

* MiniMax: API key from MiniMax

* X.AI: API key for Grok models

* OpenRouter: "sk-or-..." (obtain from OpenRouter) OpenRouter provides access to multiple

models through a single API key

The API key can be provided directly or stored in environment variables:

Direct API key
result <- annotate_cell_types(input, tissue_name, model="gpt-5.2",
api_key="sk-...")

Using environment variables

Sys.setenv(OPENAI_API_KEY="sk-...")
Sys.setenv(ANTHROPIC_API_KEY="sk-ant-...")
Sys.setenv(OPENROUTER_API_KEY="sk-or-...")

Then use with environment variables
result <- annotate_cell_types(input, tissue_name, model="claude-sonnet-4-5-20250929",
api_key=Sys.getenv("ANTHROPIC_API_KEY"))

If NA, returns the generated prompt without making an API call, which is useful for reviewing the
prompt before sending it to the APIL. when input is from Seurat’s FindAllMarkers(). Default: 10

* A single character string: Applied to all providers (e.g., "https://api.proxy.com/v1")

* A named list: Provider-specific URLs (e.g., list(openai = "https://openai-proxy.com/v1", an-
thropic = "https://anthropic-proxy.com/v1")). This is useful for:
— Users accessing international APIs through proxies
— Enterprise users with internal API gateways

— Development/testing with local or alternative endpoints If NULL (default), uses official
API endpoints for each provider.

annotate_cell_types 5

Usage

annotate_cell_types(
input,
tissue_name,
model = "gpt-5.2",
api_key = NA,
top_gene_count = 10,
debug = FALSE,
base_urls = NULL

)
Arguments

input Either a data frame from Seurat’s FindAllMarkers() containing columns ’clus-
ter’, *gene’, and "avg_log2FC’, or a list with "genes’ field for each cluster

tissue_name Optional tissue context (e.g., ’human PBMC’, *'mouse brain’) for more accurate
annotations

model Model name to use. Default: *gpt-5.2°. See details for supported models

api_key API key for the selected model provider as a non-empty character scalar. If NA,

returns prompt only.

top_gene_count Number of top genes to use per cluster when input is from Seurat. Default: 10

debug Logical indicating whether to enable debug output. Default: FALSE
base_urls Optional base URLs for API endpoints. Can be a string or named list for custom
endpoints
Value

When api_key is provided: Vector of cell type annotations per cluster. When api_key is NA: The
generated prompt string

See Also

e Seurat::FindAl1lMarkers()
e get_provider()

* process_openai()

Examples

Example 1: Using custom gene lists, returning prompt only (no API call)
annotate_cell_types(
input = list(
t_cells = list(genes = c('CD3D', 'CD3E', 'CD3G', 'CD28')),
b_cells = list(genes = c('CD19', 'CD79A', 'CD79B', 'MS4A1')),
monocytes = list(genes = c('CD14', 'CD68', 'CSF1R', 'FCGR3A'))
),
tissue_name = 'human PBMC',
model = 'gpt-5.2",

api_key = NA # Returns prompt only without making API call
)

Example 2: Using with Seurat pipeline and OpenAI model
Not run:
library(Seurat)

Load example data
data("pbmc_small")

Find marker genes

all.markers <- FindAllMarkers(
object = pbmc_small,
only.pos = TRUE,
min.pct = 0.25,
logfc.threshold = 0.25

)

Set API key in environment variable (recommended approach)
Sys.setenv(OPENAI_API_KEY = "your-openai-api-key")

Get cell type annotations using OpenAI model
openai_annotations <- annotate_cell_types(
input = all.markers,
tissue_name = 'human PBMC',
model = 'gpt-5.2",
api_key = Sys.getenv("OPENAI_API_KEY"),
top_gene_count = 15

)

Example 3: Using Anthropic Claude model
Sys.setenv(ANTHROPIC_API_KEY = "your-anthropic-api-key")

claude_annotations <- annotate_cell_types(
input = all.markers,
tissue_name = 'human PBMC',
model = 'claude-opus-4-6-20260205',
api_key = Sys.getenv("ANTHROPIC_API_KEY"),
top_gene_count = 15

Example 4: Using OpenRouter to access multiple models
Sys.setenv(OPENROUTER_API_KEY = "your-openrouter-api-key")

Access OpenAl models through OpenRouter
openrouter_gpt4_annotations <- annotate_cell_types(
input = all.markers,
tissue_name = 'human PBMC',
model = 'openai/gpt-5.2', # Note the provider/model format
api_key = Sys.getenv("OPENROUTER_API_KEY"),
top_gene_count = 15

annotate_cell_types

AnthropicProcessor 7

Access Anthropic models through OpenRouter
openrouter_claude_annotations <- annotate_cell_types(
input = all.markers,
tissue_name = 'human PBMC',
model = 'anthropic/claude-opus-4.6', # Note the provider/model format
api_key = Sys.getenv("OPENROUTER_API_KEY"),
top_gene_count = 15

)

Example 5: Using with mouse brain data
mouse_annotations <- annotate_cell_types(
input = mouse_markers, # Your mouse marker genes
tissue_name = 'mouse brain', # Specify correct tissue for context
model = 'gpt-5.2",
api_key = Sys.getenv("OPENAI_API_KEY"),
top_gene_count = 20, # Use more genes for complex tissues
debug = TRUE # Enable debug output
)

End(Not run)

AnthropicProcessor Anthropic API Processor

Description

Anthropic API Processor
Anthropic API Processor

Details

Concrete implementation of BaseAPIProcessor for Anthropic models. Handles Anthropic-specific
API calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> AnthropicProcessor

Methods
Public methods:

e AnthropicProcessor$new()

e AnthropicProcessor$get_default_api_url()

* AnthropicProcessor$make_api_call()

* AnthropicProcessor$extract_response_content()
* AnthropicProcessor$clone()

8 BaseAPIProcessor

Method new(): Initialize Anthropic processor

Usage:
AnthropicProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default Anthropic API URL

Usage:
AnthropicProcessor$get_default_api_url()

Method make_api_call(): Make API call to Anthropic

Usage:
AnthropicProcessor$make_api_call (chunk_content, model, api_key)

Method extract_response_content(): Extract response content from Anthropic API re-
sponse

Usage:
AnthropicProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.
Usage:
AnthropicProcessor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

BaseAPIProcessor Base API Processor Class

Description

Base API Processor Class

Base API Processor Class

Details

Abstract base class for API processors that provides common functionality including unified log-
ging, error handling, input processing, and response validation. This eliminates code duplication
across all provider-specific processors.

Public fields

provider_name Name of the API provider
logger Unified logger instance
base_url Custom base URL for API endpoints

BaseAPIProcessor 9

Methods
Public methods:

* BaseAPIProcessor$new()

¢ BaseAPIProcessor$process_request()

* BaseAPIProcessor$get_api_url()

e BaseAPIProcessor$get_default_api_url()

* BaseAPIProcessor$make_api_call()

* BaseAPIProcessor$extract_response_content()
* BaseAPIProcessor$clone()

Method new(): Initialize the base API processor

Usage:
BaseAPIProcessor$new(provider_name, base_url = NULL)

Method process_request(): Main entry point for processing API requests

Usage:
BaseAPIProcessor$process_request(prompt, model, api_key)

Method get_api_url(): Getthe API URL to use for requests

Usage:
BaseAPIProcessor$get_api_url()

Method get_default_api_url(): Abstract method to be implemented by subclasses for get-
ting default API URL

Usage:
BaseAPIProcessor$get_default_api_url()

Method make_api_call(): Abstract method to be implemented by subclasses for making the
actual API call

Usage:
BaseAPIProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Abstract method to be implemented by subclasses for
extracting content from response Make API call and extract response content

Usage:
BaseAPIProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.
Usage:
BaseAPIProcessor$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

10 CacheManager

CacheManager Cache Manager Class

Description

Manages caching of consensus analysis results

Public fields

cache_dir Directory to store cache files. Options:

e NULL (default): Uses system cache directory

e "local": Uses .mllmcelltype_cache in current directory
* "temp": Uses temporary directory

» Custom path: Any other string is used as directory path

cache_version Current cache version

Methods
Public methods:

¢ CacheManagers$new()

* CacheManager$get_cache_dir()

e CacheManager$generate_key()

e CacheManager$save_to_cache()

* CacheManager$load_from_cache()
* CacheManagers$has_cache()

* CacheManagers$get_cache_stats()
* CacheManager$clear_cache()

e CacheManager$validate_cache()
¢ CacheManager$clone()

Method new(): Initialize cache manager
e NULL (default): Uses system cache directory via tools: :R_user_dir()
e "local": Uses .mllmcelltype_cache in current directory
» "temp": Uses temporary directory (cleared on R restart)
¢ Custom path: Any other string is used as directory path
Usage:
CacheManager$new(cache_dir = NULL)

Method get_cache_dir(): Get actual cache directory path
Usage:
CacheManagers$get_cache_dir ()

Method generate_key(): Generate cache key from input parameters (improved version)

CacheManager 11

Usage:

CacheManagers$generate_key(
input,
models,
cluster_id,
tissue_name = "",
top_gene_count = 10

Method save_to_cache(): Save results to cache

Usage:
CacheManager$save_to_cache(key, data)

Method load_from_cache(): Load results from cache

Usage:
CacheManager$load_from_cache (key)

Method has_cache(): Check if results exist in cache

Usage:
CacheManagers$has_cache(key)

Method get_cache_stats(): Get cache statistics

Usage:
CacheManagers$get_cache_stats()

Method clear_cache(): Clear all cache

Usage:
CacheManager$clear_cache(confirm = FALSE)

Method validate_cache(): Validate cache content Extract genes from input in a standardized
way Create stable hash from genes list Create stable hash from models list Create stable hash from
tissue_name and top_gene_count Create stable hash from cluster ID

Usage:
CacheManager$validate_cache(key)

Method clone(): The objects of this class are cloneable with this method.

Usage:
CacheManager$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

12 compare_model_predictions

compare_model_predictions
Compare predictions from different models

Description

This function runs the same input through multiple models and compares their predictions. It pro-
vides both individual predictions and a consensus analysis.

Usage

compare_model _predictions(
input,
tissue_name,
models = c("claude-opus-4-6-20260205", "gpt-5.2", "gemini-3-pro”, "deepseek-ri1",
"03-pro”, "grok-4.1"),
api_keys,
top_gene_count = 10,
consensus_threshold = 9.5,
base_urls = NULL

)
Arguments

input Either a data frame from Seurat’s FindAllMarkers() containing columns ’clus-
ter’, ’gene’, and "avg_log2FC’, or a list with ’genes’ field for each cluster

tissue_name Tissue context (e.g., "human PBMC’, "mouse brain’) for more accurate annota-
tions

models Vector of model names to use for comparison. Default includes top models from
each provider

api_keys Named list of API keys for the models, with provider or model names as keys.

Every model in models must resolve to a non-NULL API key.

top_gene_count Number of top genes to use per cluster when input is from Seurat. Default: 10
consensus_threshold
Minimum agreement threshold for consensus (0-1). Default: 0.5. Consensus is

only evaluated when at least two non-missing model predictions are available
for a cluster.

base_urls Optional base URLs for API endpoints. Can be a string or named list for
provider-specific custom endpoints.
Value

List containing individual model predictions and consensus analysis If a cluster has fewer than two
valid predictions after alignment/padding, its consensus-related outputs are NA.

compare_model_predictions 13

Note

This function uses create_standardization_prompt from prompt_templates.R Supported models:
* OpenAl: ’gpt-5.2°, *gpt-5.1°, "gpt-5°, "gpt-4.1°, *gpt-40’, *03-pro’, *03’, 04-mini’, ’ol’, ’ol-
pro’

* Anthropic: ’claude-opus-4-6-20260205°, ’claude-opus-4-5-20251101°, ’claude-sonnet-4-5-
20250929’, ’claude-haiku-4-5-20251001°, ’claude-opus-4-1-20250805’, ’claude-sonnet-4-20250514’,
’claude-3-7-sonnet-20250219°

* DeepSeek: 'deepseek-chat’, ’deepseek-reasoner’, ’deepseek-rl’

* Google: ’gemini-3-pro’, ’gemini-3-flash’, gemini-2.5-pro’, ’gemini-2.5-flash’, ’gemini-2.0-
flash’

e Alibaba: ’qwen3-max’, ’qwen-max-2025-01-25’, ’qwen-plus’
 Stepfun: ’step-3’, ’step-2-16k’, ’step-2-mini’
e Zhipu: 'glm-4.7°, ’glm-4-plus’
e MiniMax: ‘'minimax-m2.1°, ’'minimax-m2’, ’MiniMax-Text-01’
o X.AlL ’grok-4’, ’grok-4.1’, ’grok-4-heavy’, *grok-3’, ’ grok-3-fast’, ’grok-3-mini’
* OpenRouter: Provides access to models from multiple providers through a single API. Format:
"provider/model-name’
— OpenAl models: *openai/gpt-5.2°, *openai/gpt-5°, *openai/o3-pro’, ’openai/o4-mini’
— Anthropic models: *anthropic/claude-opus-4.5°, *anthropic/claude-sonnet-4.5’, ’anthropic/claude-
haiku-4.5’

— Meta models: *meta-llama/llama-4-maverick’, meta-llama/llama-4-scout’, meta-llama/llama-

3.3-70b-instruct’
— Google models: *google/gemini-3-pro’, ’google/gemini-3-flash’, ’google/gemini-2.5-pro’

— Mistral models: ’mistralai/mistral-large’, *mistralai/magistral-medium-2506’

— Other models: ’deepseek/deepseek-rl’, *deepseek/deepseek-chat-v3.1°, *microsoft/mai-

ds-r1’
1. With provider names as keys: list("openai” = "sk-...", "anthropic” = "sk-ant-...",
"openrouter” = "sk-or-...")
2. With model names as keys: list("gpt-5" = "sk-...", "claude-sonnet-4-5-20250929"
="sk-ant-...")

The system first tries to find the API key using the provider name. If not found, it then tries using
the model name. Example:

api_keys <- list(
"openai” = Sys.getenv("OPENAI_API_KEY"),
"anthropic” = Sys.getenv("ANTHROPIC_API_KEY"),
"openrouter” = Sys.getenv("OPENROUTER_API_KEY"),
"claude-opus-4-6-20260205" = "sk-ant-api@3-specific-key-for-opus”

14 configure_logger

Examples

Not run:

Compare predictions using different models

api_keys <- list(
"claude-sonnet-4-5-20250929" = "your-anthropic-key",
"deepseek-reasoner” = "your-deepseek-key",
"gemini-3-pro” = "your-gemini-key",
"gwen3-max" = "your-qwen-key"

)

results <- compare_model_predictions(
input = list(gsi=c('CD4',6'CD3D'), gs2='CD14'),
tissue_name = 'PBMC',
api_keys = api_keys

)

End(Not run)

configure_logger Set global logger configuration

Description

Set global logger configuration

Usage

configure_logger(level = "INFO", console_output = TRUE, json_format = TRUE)

Arguments

level Logging level: "DEBUG", "INFO", "WARN", or "ERROR". Default: "INFO"
console_output Whether to enable console output. Default: TRUE

json_format Whether to use JSON format for log messages. Default: TRUE

Value

Invisible logger object

create_annotation_prompt 15

create_annotation_prompt
Create prompt for cell type annotation

Description

Create prompt for cell type annotation

Usage

create_annotation_prompt(input, tissue_name, top_gene_count = 10)

Arguments
input Either a data frame from Seurat’s FindAllMarkers() or a list for each cluster
where each element is either a character vector of genes or a list containing a
genes field Cluster IDs in named inputs are preserved as-is; unnamed list input
receives sequential IDs starting at "0".
tissue_name Tissue context for the annotation (e.g., ’human PBMC’, *'mouse brain’)

top_gene_count Number of top genes to use per cluster when input is from Seurat. Default: 10

Value

Character string containing the formatted prompt

DeepSeekProcessor DeepSeek API Processor

Description

DeepSeek API Processor
DeepSeek API Processor

Details
Concrete implementation of BaseAPIProcessor for DeepSeek models. Handles DeepSeek-specific
API calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> DeepSeekProcessor

16 GeminiProcessor

Methods
Public methods:

* DeepSeekProcessor$new()

* DeepSeekProcessor$get_default_api_url()

* DeepSeekProcessor$make_api_call()

* DeepSeekProcessor$extract_response_content()
¢ DeepSeekProcessor$clone()

Method new(): Initialize DeepSeek processor
Usage:
DeepSeekProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default DeepSeek API URL

Usage:
DeepSeekProcessor$get_default_api_url()

Method make_api_call(): Make API call to DeepSeek

Usage:
DeepSeekProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Extract response content from DeepSeek API re-
sponse

Usage:
DeepSeekProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.
Usage:
DeepSeekProcessor$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

GeminiProcessor Gemini API Processor

Description

Gemini API Processor

Gemini API Processor

Details

Concrete implementation of BaseAPIProcessor for Gemini models. Handles Gemini-specific API
calls, authentication, and response parsing.

GeminiProcessor 17

Super class

mLLMCelltype: :BaseAPIProcessor -> GeminiProcessor

Methods

Public methods:

¢ GeminiProcessor$new()

* GeminiProcessor$get_default_api_url()

e GeminiProcessor$get_api_url_for_model()

* GeminiProcessor$make_api_call()

* GeminiProcessor$extract_response_content()
* GeminiProcessor$clone()

Method new(): Initialize Gemini processor

Usage:

GeminiProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default Gemini API URL template

Usage:
GeminiProcessor$get_default_api_url()

Method get_api_url_for_model(): Get API URL for specific model

Usage:
GeminiProcessor$get_api_url_for_model (model)

Method make_api_call(): Make API call to Gemini

Usage:
GeminiProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Extract response content from Gemini API response

Usage:
GeminiProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.

Usage:
GeminiProcessor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

18 get_logger

get_api_key Utility functions for API key management

Description

This file contains utility functions for managing API keys and related operations. Get API key for
a specific model

Usage

get_api_key(model, api_keys)

Arguments

model Model name to get API key for

api_keys Named list of API keys with provider or model names as keys
Details

This function retrieves the appropriate API key for a given model by first checking the provider
name and then the model name in the provided API keys list.

Value

API key string for the specified model

get_logger Get the global logger instance

Description

Get the global logger instance

Usage

get_logger()

get_provider 19

get_provider Determine provider from model name

Description

This function determines the appropriate provider (e.g., OpenAl, Anthropic, Google, OpenRouter)
based on the model name. Uses prefix-based matching for efficient and maintainable provider
detection. New models following existing naming conventions are automatically supported.

Usage

get_provider(model)

Arguments
model Character string specifying the model name (e.g., "gpt-5.2", "claude-sonnet-
4.5").
Details

Supported providers and model prefixes:

* OpenAl: gpt-, ol, 03%, 04*, chatgpt-, codex- (e.g., *gpt-5.2’, >03-pro’, *04-mini’)
* Anthropic: claude-* (e.g., *claude-opus-4.6’, ’claude-sonnet-4.5)

* DeepSeek: deepseek-* (e.g., ’deepseek-chat’, ’deepseek-rl’)

* Google: gemini-* (e.g., ’gemini-3-pro’, ’gemini-2.5-flash’)

* Qwen: gqwen*, qwg-* (e.g., 'qwen3-max’, 'qwq-32b’)

 Stepfun: step-* (e.g., step-2-mini’, "step-2-16k”)

e Zhipu: glm-, chatglm (e.g., ’glm-4.7’, ’glm-4-plus’)

* MiniMax: minimax-* (e.g., ‘'minimax-m2.1’, 'minimax-m1”)

* Grok: grok-* (e.g., 'grok-4’, ’grok-4-heavy’)

* OpenRouter: Any model with ’/* in the name (e.g., *openai/gpt-5.2’, anthropic/claude-sonnet-
4.5%)

Value

Character string of the provider name (e.g., "openai”, "anthropic").

20 GrokProcessor

GrokProcessor Grok API Processor

Description

Grok API Processor
Grok API Processor

Details

Concrete implementation of Base APIProcessor for Grok models. Handles Grok-specific API calls,
authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> GrokProcessor

Methods

Public methods:
¢ GrokProcessor$new()
¢ GrokProcessor$get_default_api_url()
* GrokProcessor$make_api_call()
* GrokProcessor$extract_response_content()
* GrokProcessor$clone()

Method new(): Initialize Grok processor
Usage:
GrokProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default Grok API URL
Usage:
GrokProcessor$get_default_api_url()

Method make_api_call(): Make API call to Grok
Usage:
GrokProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Extract response content from Grok API response
Usage:
GrokProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.
Usage:
GrokProcessor$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

interactive_consensus_annotation 21

interactive_consensus_annotation
Interactive consensus building for cell type annotation

Description

This function implements an interactive voting and discussion mechanism where multiple LLMs
collaborate to reach a consensus on cell type annotations, particularly focusing on clusters with low
agreement. The process includes:

1. Initial voting by all LLMs
2. Identification of controversial clusters
3. Detailed discussion for controversial clusters

4. Final summary by a designated LLM (default: Claude)

Usage

interactive_consensus_annotation(
input,
tissue_name,
models = c("claude-opus-4-6-20260205", "gpt-5.2", "gemini-3-pro”, "deepseek-ri1",

"grok-4.1"),

api_keys,
top_gene_count = 10,
controversy_threshold
entropy_threshold = 1,
max_discussion_rounds = 3,
consensus_check_model = NULL,
log_dir = "logs",
cache_dir = NULL,
use_cache = TRUE,
base_urls = NULL,
clusters_to_analyze = NULL,
force_rerun = FALSE

0.7,

)
Arguments
input Either a data frame from Seurat’s FindAllMarkers() function containing dif-
ferential gene expression results (must have columns: ’cluster’, ’gene’, and
“avg_log2FC’), or a list where each element is either a character vector of genes
or a list containing a genes field.
tissue_name Character string specifying the tissue type for context-aware cell type annotation

(e.g., ’human PBMC’, "'mouse brain’). Required.

22

interactive_consensus_annotation

models Character vector of model names to use for consensus annotation. Minimum 2
models required. Supports models from OpenAl, Anthropic, DeepSeek, Google,
Alibaba, Stepfun, Zhipu, MiniMax, X.Al, and OpenRouter.

api_keys Named, non-empty list of API keys. Can use provider names as keys (e.g.,

non

"openai", "anthropic") or model names as keys (e.g., "gpt-5").
top_gene_count Integer specifying the number of top marker genes to use for annotation per
cluster (default: 10).
controversy_threshold
Numeric value between 0 and 1 for consensus proportion threshold. Clusters
below this threshold are considered controversial (default: 0.7).
entropy_threshold
Numeric value for entropy threshold. Higher entropy indicates more disagree-
ment among models (default: 1.0).
max_discussion_rounds
Integer specifying maximum number of discussion rounds for controversial clus-
ters (default: 3).
consensus_check_model
Character string specifying which model to use for consensus checking. If
NULL, uses the first model from the models list.
log_dir Character scalar specifying directory for log files (default: "logs"). This function
reinitializes the session logger with this directory at the start of each call.
cache_dir Character string or NULL. Cache directory for storing results. NULL uses sys-
tem cache, "local" uses current directory, "temp" uses temporary directory, or
specify custom path.
use_cache Logical indicating whether to use caching (default: TRUE).
base_urls Named list or character string specifying custom API base URLs. Useful for
proxies or alternative endpoints. If NULL, uses official endpoints.
clusters_to_analyze
Character or numeric vector specifying which clusters to analyze. If NULL
(default), all clusters are analyzed.
force_rerun Logical indicating whether to force rerun of all specified clusters, ignoring cache.
Only affects controversial cluster discussions (default: FALSE).

Value

A list containing:

e initial_results: Initial voting results, consensus checks, and controversial cluster IDs
* final_annotations: Final annotations keyed by cluster ID

* controversial_clusters: Clusters identified as controversial

» discussion_logs: Detailed discussion logs for controversial clusters

* session_id: Logger session identifier

* voting_results: Backward-compatible alias of initial_results

* discussion_results: Backward-compatible alias of discussion_logs

» final_consensus: Backward-compatible alias of final_annotations

list_custom_models

23

list_custom_models Get list of registered custom models

Description

Get list of registered custom models

Usage

list_custom_models()

list_custom_providers Get list of registered custom providers

Description

Get list of registered custom providers

Usage

list_custom_providers()

logging_functions Convenience functions for logging

Description

Convenience functions for logging

Usage
log_debug(message, context = NULL)

log_info(message, context = NULL)
log_warn(message, context = NULL)

log_error(message, context = NULL)

Arguments

message Log message string

context Optional context information (list or character)
Value

Invisible NULL

24 MinimaxProcessor

MinimaxProcessor Minimax API Processor

Description

Minimax API Processor

Minimax API Processor

Details

Concrete implementation of BaseAPIProcessor for Minimax models. Handles Minimax-specific
API calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor ->MinimaxProcessor

Methods

Public methods:
¢ MinimaxProcessor$new()
e MinimaxProcessor$get_default_api_url()
* MinimaxProcessor$make_api_call()
* MinimaxProcessor$extract_response_content()
e MinimaxProcessor$clone()

Method new(): Initialize Minimax processor
Usage:
MinimaxProcessor$new(base_url = NULL)
Method get_default_api_url(): Get default Minimax API URL
Usage:
MinimaxProcessor$get_default_api_url()
Method make_api_call(): Make API call to Minimax
Usage:
MinimaxProcessor$make_api_call(chunk_content, model, api_key)
Method extract_response_content(): Extractresponse content from Minimax API response
Usage:
MinimaxProcessor$extract_response_content(response, model)
Method clone(): The objects of this class are cloneable with this method.
Usage:
MinimaxProcessor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

mllmcelltype_cache_dir 25

mllmcelltype_cache_dir
Get mLLMCelltype cache location

Description

Display the cache directory location

Usage

mllmcelltype_cache_dir(cache_dir = NULL)

Arguments
cache_dir Cache directory specification. NULL uses system default, "local" uses current
dir, "temp" uses temp dir, or custom path
Value

Invisible cache directory path

Examples

Not run:
mllmcelltype_cache_dir()
mllmcelltype_cache_dir("local")

End(Not run)

mllmcelltype_clear_cache
Clear mLLMCelltype cache

Description

Clear the mLLMCelltype cache

Usage

mllmcelltype_clear_cache(cache_dir = NULL)

Arguments

cache_dir Cache directory specification. NULL uses system default, "local” uses current
dir, "temp" uses temp dir, or custom path

26 OpenAIProcessor

Value

Invisible NULL

Examples

Not run:
mllmcelltype_clear_cache()
mllmcelltype_clear_cache("local”)

End(Not run)

OpenAIProcessor OpenAl API Processor

Description

OpenAl API Processor
OpenAl API Processor

Details

Concrete implementation of BaseAPIProcessor for OpenAl models. Handles OpenAl-specific API
calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> OpenAIProcessor

Methods

Public methods:

* OpenAlIProcessor$new()

* OpenAIProcessor$get_default_api_url()

* OpenAIProcessor$make_api_call()

* OpenAlIProcessor$extract_response_content()
* OpenAIProcessor$clone()

Method new(): Initialize OpenAl processor
Usage:
OpenAIProcessor$new(base_url = NULL)
Method get_default_api_url(): Get default OpenAl API URL
Usage:
OpenAIProcessor$get_default_api_url()

Method make_api_call(): Make API call to OpenAl

OpenRouterProcessor 27

Usage:
OpenAIProcessor$make_api_call (chunk_content, model, api_key)
Method extract_response_content(): Extract response content from OpenAl API response
Usage:
OpenAIProcessor$extract_response_content(response, model)
Method clone(): The objects of this class are cloneable with this method.

Usage:
OpenAIProcessor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

OpenRouterProcessor OpenRouter API Processor

Description

OpenRouter API Processor
OpenRouter API Processor

Details

Concrete implementation of BaseAPIProcessor for OpenRouter models. Handles OpenRouter-
specific API calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> OpenRouterProcessor

Methods
Public methods:

¢ OpenRouterProcessor$new()

e OpenRouterProcessor$get_default_api_url()

* OpenRouterProcessor$make_api_call()

* OpenRouterProcessor$extract_response_content()
* OpenRouterProcessor$clone()

Method new(): Initialize OpenRouter processor
Usage:
OpenRouterProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default OpenRouter API URL
Usage:

28 register_custom_model

OpenRouterProcessor$get_default_api_url()

Method make_api_call(): Make API call to OpenRouter

Usage:
OpenRouterProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Extract response content from OpenRouter API re-

sponse

Usage:
OpenRouterProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.

Usage:
OpenRouterProcessor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

register_custom_model Register a custom model for a provider

Description

Register a custom model for a provider

Usage

register_custom_model (model_name, provider_name, model_config = list())

Arguments
model_name Unique name for the custom model

provider_name Name of the provider this model belongs to

model_config List of configuration parameters for the model (e.g., temperature, max_tokens)

Value

Invisible TRUE on success

register_custom_provider

Examples

Not run:
register_custom_model(
model_name = "my_model”,

provider_name = "my_provider”,

model_config = list(
temperature = 0.7,
max_tokens = 2000
)
)

End(Not run)

29

register_custom_provider

Register a custom LLM provider

Description

Register a custom LLLM provider

Usage

register_custom_provider(provider_name, process_fn, description

Arguments

provider_name Unique name for the custom provider

process_fn Function that processes LLM requests. Must accept parameters: prompt, model,
api_key
description Optional description of the provider
Value
Invisible NULL
Examples
Not run:

register_custom_provider(

provider_name = "my_provider”,
process_fn = function(prompt, model, api_key) {

Custom implementation
response <- httr::POST(

url = "your_api_endpoint”,
body = list(prompt = prompt),

encode = "json”

30 StepFunProcessor

return(httr::content(response)$choices[[1]]$text)
}
)

End(Not run)

StepFunProcessor StepFun API Processor

Description

StepFun API Processor
StepFun API Processor

Details

Concrete implementation of Base APIProcessor for StepFun models. Handles StepFun-specific API
calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> StepFunProcessor

Methods
Public methods:

e StepFunProcessor$new()

* StepFunProcessor$get_default_api_url()

e StepFunProcessor$make_api_call()

* StepFunProcessor$extract_response_content()
e StepFunProcessor$clone()

Method new(): Initialize StepFun processor
Usage:
StepFunProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default StepFun API URL
Usage:
StepFunProcessor$get_default_api_url()
Method make_api_call(): Make API call to StepFun
Usage:
StepFunProcessor$make_api_call(chunk_content, model, api_key)

Method extract_response_content(): Extract response content from StepFun API response

Usage:

UnifiedLogger 31

StepFunProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.
Usage:
StepFunProcessor$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

UnifiedLogger Unified Logger for mLLMCelltype Package

Description

Unified Logger for mLLMCelltype Package
Unified Logger for mLLMCelltype Package

Details

This logger provides centralized, multi-level logging with structured output, log rotation, and per-
formance monitoring capabilities.

Public fields

log_dir Directory for storing log files

log_level Current logging level

session_id Unique identifier for the current session
max_log_size Maximum log file size in MB (default: 10MB)
max_log_files Maximum number of log files to keep (default: 5)
enable_console Whether to output to console (default: TRUE)
enable_json Whether to use JSON format (default: TRUE)

performance_stats Performance monitoring statistics

Methods

Public methods:

e UnifiedLogger$new()

¢ UnifiedLogger$debug()

e UnifiedLogger$info()

e UnifiedLogger$warn()

e UnifiedLogger$error()

e UnifiedLogger$log_api_call()

e UnifiedLogger$log_api_request_response()
* UnifiedLogger$log_cache_operation()

32

UnifiedLogger

UnifiedLogger$log_cluster_progress()
UnifiedLogger$log_discussion()
UnifiedLogger$log_model_response()
UnifiedLogger$get_performance_summary()
UnifiedLogger$cleanup_logs()
UnifiedLogger$set_level()
UnifiedLogger$clone()

Method new(): Initialize the unified logger

Usage:
UnifiedLogger$new(
base_dir = "logs",

)

level = "INFO",
max_size = 10,
max_files = 5,
console_output = TRUE,
json_format = TRUE

Method debug(): Log a debug message

Usage:
UnifiedLogger$debug(message, context = NULL)

Method info(): Log an info message

Usage:
UnifiedLogger$info(message, context = NULL)

Method warn(): Log a warning message

Usage:
UnifiedLogger$warn(message, context = NULL)

Method error(): Log an error message

Usage:
UnifiedLogger$error(message, context = NULL)

Method log_api_call(): Log API call performance

Usage:
UnifiedLogger$log_api_call(

)

provider,
model,
duration,
success = TRUE,
tokens = NULL

Method log_api_request_response(): Log complete API request and response for debug-
ging and audit

UnifiedLogger 33

Usage:

UnifiedLogger$log_api_request_response(
provider,
model,
prompt_content,
response_content,
request_metadata = NULL,
response_metadata = NULL

)

Method log_cache_operation(): Log cache operations
Usage:
UnifiedLogger$log_cache_operation(operation, key, size = NULL)

Method log_cluster_progress(): Log cluster annotation progress
Usage:
UnifiedLogger$log_cluster_progress(cluster_id, stage, progress = NULL)

Method log_discussion(): Log detailed cluster discussion with complete model conversations
Usage:
UnifiedLogger$log_discussion(cluster_id, event_type, data = NULL)

Method log_model_response(): Log model response with concise summary in main log and
full text in file
Usage:

UnifiedLogger$log_model_response(
provider,
model,
response,
stage = "annotation”,
cluster_id = NULL

)

Method get_performance_summary(): Get performance summary
Usage:

UnifiedLogger$get_performance_summary()

Method cleanup_logs(): Clean up old log files
Usage:
UnifiedLogger$cleanup_logs(force = FALSE)

Method set_level(): Setlogging level
Usage:
UnifiedLogger$set_level (level)

Method clone(): The objects of this class are cloneable with this method.

34 ZhipuProcessor

Usage:
UnifiedLogger$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

ZhipuProcessor Zhipu API Processor

Description

Zhipu API Processor
Zhipu API Processor

Details

Concrete implementation of BaseAPIProcessor for Zhipu models. Handles Zhipu-specific API
calls, authentication, and response parsing.

Super class

mLLMCelltype: :BaseAPIProcessor -> ZhipuProcessor

Methods
Public methods:

e ZhipuProcessor$new()

* ZhipuProcessor$get_default_api_url()

e ZhipuProcessor$make_api_call()

e ZhipuProcessor$extract_response_content()
* ZhipuProcessor$clone()

Method new(): Initialize Zhipu processor
Usage:
ZhipuProcessor$new(base_url = NULL)

Method get_default_api_url(): Get default Zhipu API URL
Usage:
ZhipuProcessor$get_default_api_url()
Method make_api_call(): Make API call to Zhipu
Usage:
ZhipuProcessor$make_api_call(chunk_content, model, api_key)
Method extract_response_content(): Extract response content from Zhipu API response

Usage:

ZhipuProcessor

ZhipuProcessor$extract_response_content(response, model)

Method clone(): The objects of this class are cloneable with this method.

Usage:
ZhipuProcessor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

35

Index

+ datasets
.qwen_endpoint_cache, 2
.gqwen_endpoint_cache, 2

annotate_cell_types, 3
AnthropicProcessor, 7

process_openai(), 5

register_custom_model, 28
register_custom_provider, 29

Seurat: :FindAllMarkers(), 5

StepFunProcessor, 30

BaseAPIProcessor, 8
UnifiedLogger, 31

CacheManager, 10
compare_model_predictions, 12
configure_logger, 14
create_annotation_prompt, 15

ZhipuProcessor, 34

DeepSeekProcessor, 15

GeminiProcessor, 16
get_api_key, 18
get_logger, 18
get_provider, 19
get_provider(), 5
GrokProcessor, 20

interactive_consensus_annotation, 21

list_custom_models, 23
list_custom_providers, 23
log_debug (logging_functions), 23
log_error (logging_functions), 23
log_info (logging_functions), 23
log_warn (logging_functions), 23
logging_functions, 23

MinimaxProcessor, 24

mLLMCelltype: :BaseAPIProcessor, 7, 15,
17, 20, 24, 26, 27, 30, 34

mllmcelltype_cache_dir, 25

mllmcelltype_clear_cache, 25

OpenAIProcessor, 26
OpenRouterProcessor, 27

36

	.qwen_endpoint_cache
	annotate_cell_types
	AnthropicProcessor
	BaseAPIProcessor
	CacheManager
	compare_model_predictions
	configure_logger
	create_annotation_prompt
	DeepSeekProcessor
	GeminiProcessor
	get_api_key
	get_logger
	get_provider
	GrokProcessor
	interactive_consensus_annotation
	list_custom_models
	list_custom_providers
	logging_functions
	MinimaxProcessor
	mllmcelltype_cache_dir
	mllmcelltype_clear_cache
	OpenAIProcessor
	OpenRouterProcessor
	register_custom_model
	register_custom_provider
	StepFunProcessor
	UnifiedLogger
	ZhipuProcessor
	Index

