Package ‘multiRL’

January 26, 2026
Version 0.2.3
Title Reinforcement Learning Tools for Multi-Armed Bandit

Description A flexible general-purpose toolbox for implementing Rescorla-Wagner models
in multi-armed bandit tasks.

As the successor and functional extension of the 'binaryRL' package,
'multiRL' modularizes the Markov Decision Process (MDP) into six core
components. This framework enables users to construct custom models via
intuitive if-else syntax and define latent learning rules for agents.

For parameter estimation, it provides both likelihood-based
inference (MLE and MAP) and simulation-based inference (ABC and
RNN), with full support for parallel processing across subjects.

The workflow is highly standardized, featuring four main functions
that strictly follow the four-step protocol (and ten rules)
proposed by Wilson & Collins (2019) <doi:10.7554/eLife.49547>.

Beyond the three built-in models (TD, RSTD, and Utility), users
can easily derive new variants by declaring which variables are
treated as free parameters.

Maintainer YuKi <hmz1969a@gmail.com>
URL https://yuki-961004.github.io/multiRL/

BugReports https://github.com/yuki-961004/multiRL/issues
License GPL-3

Encoding UTF-8

LazyData TRUE

ByteCompile TRUE

RoxygenNote 7.3.3

Depends R (>=4.1.0)

Imports methods, utils, Rcpp, compiler, future, doFuture, foreach,
doRNG, progressr, ggplot2, scales, grDevices

LinkingTo Rcpp

Suggests stats, GenSA, GA, DEoptim, pso, mirMBO, mlr, ParamHelpers,
smoof, lhs, DiceKriging, rgenoud, cmaes, nloptr, abc,
tensorflow, keras, reticulate

https://doi.org/10.7554/eLife.49547
https://yuki-961004.github.io/multiRL/
https://github.com/yuki-961004/multiRL/issues

2 Contents

NeedsCompilation yes

Author YuKi [aut, cre] (ORCID: <https://orcid.org/0009-0000-1378-1318>),

Xinyu [aut] (ORCID: <https://orcid.org/0009-0004-4974-9191>)

Repository CRAN

Date/Publication 2026-01-26 16:20:14 UTC

Contents
algorithm L e e 3
behrule e 4
COINAMES e e e e e e e e e e e e 5
control e e e e e e e 6
data e e e e e 9
engine_ ABC 10
engine_ RNN e 11
ESHMALE e e e e e e e e e e e e e e 12
estimate. O_ENV e e 15
estimate_1_LBI e 16
estimate_1_MAP 16
estimate_1_MLE e e e 18
estimate_ 2_ABC e e e 19
estimate_ 2_RNN e e e 20
estimate_2_SBI 21
estimation_methods e 21
G p . . e 23
funcs e e e 24
func_alpha. 28
func_beta e e 30
func_delta e 32
func_epsilon. L. 33
func_gamma 35
func_zeta L e s 37
MAB . . e 38
PATAIS Lo e e e e 39
plotmultiRL.replay 43
Policy . . . e 44
PIIOIS . . . o o it e e 45
process_1_input L. 46
process_2_behrule L 48
process_3_record e e e e 48
Process_4_output_Cppo e 49
Process_4_Output_I e e e e e e e 50
ProCess_S_MEtriC o v it i e e e e 50
TCV_d . e s 51
tple . . 53
RSTD . . . e e 55

https://orcid.org/0009-0000-1378-1318
https://orcid.org/0009-0004-4974-9191

algorithm 3

SELHNGS . v o o e e e e e e e e e e e e e e e e 58
summary,multiRL.model-method, 59
SYSIEIML L e e 60
TAB . . . e 61
TD . e 62
Utility . . . o e 63

Index 65

algorithm Algorithm Packages
Description

The package supports the following eight optimization packages for finding the optimal values of
the model’s free parameters. Note that if you use "NLOPT", you must consult its official documen-
tation to input a specific algorithm name. If no local search algorithm is specified, the default local
search method used will be "NLOPT_LN_BOBYQA".

Class

algorithm [Character]

Packages

1. L-BFGS-B (from stats: :optim)

Simulated Annealing (GenSA: :GenSA)
Genetic Algorithm (GA: : ga)

Differential Evolution (DEoptim: : DEoptim)
Bayesian Optimization (n1rMBO: : mbo)
Particle Swarm Optimization (pso: : psoptim)

Covariance Matrix Adapting Evolutionary Strategy (cmaes: :cma_es)

® =Nk wN

Nonlinear Optimization (nloptr: :nloptr)

Example

supported algorithms
algorithm = "L-BFGS-B"
algorithm = "GenSA"
algorithm = "GA"

algorithm = "DEoptim”
algorithm = "Bayesian”
algorithm = "PSO”

algorithm = "CMA-ES"
algorithm = "NLOPT_GN_MLSL"

4 behrule

behrule Behavior Rules

Description

In most instances of the Multi-Armed Bandit (MAB) task, the cue aligns with the response. For
example, you are required to select one of four bandits (A, B, C, or D), receive immediate feedback,
and subsequently update the expected value of the selected bandit.

When the cue and the response are inconsistent, the agent needs to form a latent rule. For example,
in the arrow paradigm of Rmus et al. (2024) doi:10.1371/journal.pcbi.1012119, participants can
only choose left or right, but what they actually need to learn is the value associated with arrows of
different colors.

The final case represents my personal interpretation, when participants have limited working-memory
capacity and an object can be decomposed into many elements, they may update the values of only
a subset of those elements rather than the entire object.

Class
behrule [List]

Slots

e cue [CharacterVector]

A cue refers to the stimulus—or a component of the stimulus—presented in the paradigm. It
represents the internal target the agent selects, which may differ from the actual behavioral
response. For instance, cue is the color of arrows, rather than the direction.

e rsp [CharacterVector]

The rsp represents the action the agent actually makes. It typically has a mapping relation-
ship with the cue. For example, in the arrow paradigm of Rmus et al. (2024) doi:10.1371/
journal.pcbi. 1012119, the agent updates the value associated with the arrow’s color, but the
overt response is the direction corresponding to the currently chosen color arrow.

Example

latent rule

behrule = 1list(
cue = c("Red", "Yellow", "Green”, "Blue"),
rsp = c("Up”, "Down", "Left”, "Right")

)

References

Rmus, M., Pan, T. F., Xia, L., & Collins, A. G. (2024). Artificial neural networks for model identifi-
cation and parameter estimation in computational cognitive models. PLOS Computational Biology,
20(5), e1012119. doi:10.1371/journal.pcbi. 1012119

https://doi.org/10.1371/journal.pcbi.1012119
https://doi.org/10.1371/journal.pcbi.1012119
https://doi.org/10.1371/journal.pcbi.1012119
https://doi.org/10.1371/journal.pcbi.1012119

colnames

colnames Column Names

Description

Users must categorize and inform the program of the column names within their dataset.

Class

colnames [List]

Slots

Tips

. subid [Character]

The column name of subject identifier.

Column name that is exactly "Subject" can be recognized automatically.

. block[Character]

The column name of block index.
Column name that is exactly "Block" can be recognized automatically.

. trial[Character]

The column name of trial index.
Column name that is exactly "Trial" can be recognized automatically.

. object [CharacterVector]

The column names of objects presented in the task, with individual elements separated by
underscores (“_").

Column names that are prefixed with "Object_" can be recognized automatically.

. reward [CharacterVector]

The column names of the reward associated with each object; ensure that every object has its
own corresponding reward.

Column names that are prefixed with "Reward_" can be recognized automatically.

. action [Character]

The column name of the action taken by the agent, which must match an object or one of its
elements.

Column name that is exactly "Action" can be recognized automatically.

. exinfo [CharacterVector]

The column names of extra information that the model may use during the markov decision
process.

Users can use these variables within the model’s functions. see tutorial.

https://yuki-961004.github.io/multiRL/articles/Step_1_run_m.html

6 control

Example

column names

colnames = list(
subid = "Subject”,
block = "Block”,

trial = "Trial”,
object = c("Object_1", "Object_2", "Object_3", "Object_4"),
reward = c("Reward_1", "Reward_2", "Reward_3", "Reward_4"),
action = "Action”,
exinfo = c("Frame”, "NetWorth", "RT", "Mood")
)
control Control Algorithm Behavior
Description

The control argument is a mandatory list used to customize and manage various aspects of the
iterative process, covering everything from optimization settings to model configuration.

Class

control [List]

Note

Different estimation methods require different slots. However, there is no need to worry if you set
unnecessary slots, as this will not affect the execution.

1. Likelihood Based Inference (LBI)

e sample [int]
This parameter denotes the quantity of simulated data generated during the parameter recovery
process.

e iter [int]

This parameter defines the maximum number of iterations. The iterative process will stop
when this value is reached. The default value is 10. It is recommended that you set this value
to at least 100 for formal fitting procedures.

e pars [NumericVector]

Some algorithms require the specification of initial iteration values. If this value is left as the
default NA, the iteration will commence with an initial value set to the lower bound of the
estimate plus 0.01.

control

dash [Numeric]

To prevent the optimal parameter estimates from converging to boundary values when the
number of iterations is insufficient, a small value is added to the lower bound and subtracted
from the upper bound.

For instance, if the input parameter bounds are (@, 1), the actual bounds used for fitting will
be [0.00001, 0.99999]. This design prevents the occurrence of Infinite values.

size [int]
Some algorithms, such as Genetic Algorithms (GA), require the specification of initial popula-
tion values. For the definition of the population, users may refer to the relevant documentation
on evolutionary algorithms. The default value is consistent with the standard default in GA,
which is 50.

seed [int]

The random seed controls the reproducibility of each iteration. Specifically, it determines how
the algorithm package generates “random” input parameters when searching for the optimal
parameters. Fixing the seed ensures that the optimal parameters found are the same in every
run. The default value is 123.

core [int]

Since the parameter fitting process for individual subjects is independent, this procedure can
be accelerated using CPU parallelism. This argument specifies the number of subjects to be
fitted simultaneously (the number of parallel threads), with the default set to 1. If the user
wishes to speed up the fitting, they can increase the number of cores appropriately based on
their system specifications.

1.1 Maximum Likelihood Estimation (MLE):

* Nothing special

1.2 Maximum A Posteriori (MAP):

e diff [double]
In the Expectation—-Maximization with Maximum A Posteriori algorithm (EM-MAP), after
estimating the optimal parameters for all subjects in each iteration, the posterior distribution
of each free parameter is calculated, followed by continuous refinement of the prior distri-
bution. The process stops when the change in the log-posterior value is less than the diff,
which defaults to 0.001.

* patience [int]
Given that the Expectation—Maximization with Maximum A Posteriori (EM-MAP) process
can be time-consuming and often encounters non-convergence issues—for instance, when
the log-posterior oscillates around a certain value—the patience parameter is used to man-
age early termination.Specifically, patience is incremented by 1 when the current result is
better than the best previous result, and decremented by 1 when it is worse. The iteration is
prematurely terminated when the patience count reaches zero.

2. Simulation Based Inference (SBI)

e sample [int]

This parameter denotes the quantity of simulated data generated during the parameter recovery
process.

control

e train [int]
This parameter is used to specify the quantity of simulated data utilized when training the
Approximate Bayesian Computation (ABC) or Recurrent Neural Network (RNN) models.

e scope [Character]
This parameter can be defined as individual or shared. The former indicates that a sepa-
rate Approximate Bayesian Computation (ABC) or Recurrent Neural Network (RNN) model
is trained for each dataset, while the latter means that only one Approximate Bayesian Com-
putation (ABC) or Recurrent Neural Network (RNN) model is trained and shared across all
datasets. In the context of the rcv_d function, the default setting is "shared”, whereas in
fit_p, the default is "individual”.

* seed [int]
When performing parameter recovery using Simulation-Based Inference (SBI) estimation
methods, two sets of simulated data are involved: one used to generate the data for recov-
ery, and another used to train the Approximate Bayesian Computation (ABC) or Recurrent
Neural Network (RNN) models. To guarantee the independence of these two datasets, the
seed for generating the training data is automatically multiplied by 2.

* core [int]
Since the parameter fitting process for individual subjects is independent, this procedure can
be accelerated using CPU parallelism. This argument specifies the number of subjects to be
fitted simultaneously (the number of parallel threads), with the default set to 1. If the user
wishes to speed up the fitting, they can increase the number of cores appropriately based
on their system specifications. When estimate = "RNN", since model training is typically
handled by the GPU, setting core > 1 will only accelerate the generation of simulated data.

2.1 Approximate Bayesian Computation (ABC):

* tol [double]
This parameter, aka tolerance, controls how strict the Approximate Bayesian Computation
(ABC) algorithm is when selecting good simulated data. It sets the acceptance rate. For
example, setting tol = @.1 (the default) means only the 10 percent of simulated data that is
closest to your actual data is used.

2.2 Recurrent Neural Network (RNN):

» info [CharacterVector]
The Recurrent Neural Network (RNN) needs to find the mapping relationship between the
dataset and the free parameters. To minimize the time required for this process, we should
only include useful information in the input dataset. The info parameter accepts a character
vector which represents the amount of information (i.e., the specific columns) you deem
necessary for training the Recurrent Neural Network (RNN) model. By default, only the
colnames$object and colnames$action columns are included as input.

e layer [Character]
Recurrent Neural Networks (RNNs) are neural networks where the sequence order is mean-
ingful. Currently, the package supports two types of recurrent layers: Gated Recurrent Unit
(GRU) and Long Short-Term Memory (LSTM). You can specify either of these as the recur-
rent layer in your model.

* units [int]
The number of neurons (or units) in the Recurrent Layer (GRU or LSTM). Conceptually, this
parameter represents the memory capacity and complexity of the network; it dictates how
much information about the sequential trials the model can store and process.

data 9

* batch_size [int]
The number of samples processed before the model’s parameters are updated. Think of this
as the size of a study group; the model reviews this batch of data before adjusting its internal
weights. A larger batch size speeds up calculation but may lead to less optimal convergence.
e epochs [int]
The number of times the learning algorithm will work through the entire training dataset.
This is equivalent to running through the "textbook" multiple times. Each epoch means the
model has seen every training sample once. More epochs allow for more training but increase
the risk of overfitting.

Example

default values
control = list(

LBI
pars = NA,
dash = le-5,
iter = 10,
size = 50,
seed = 123,
core =1,
MLE
MAP
diff = 0.001,
patience = 10,
SBI
sample = 100,
train = 1000,
scope = "individual”,
ABC
tol = 0.1,
#
info = c(colnames$object, colnames$action),
layer = "GRU",
units = 128,
batch_size = 10,
epochs = 100
)
data Dataset Structure
Description

Experimental data from any Multi-Armed Bandit (MAB)-like task.

10 engine_ABC

Class

data [data.frame]

subid block trial object_1 object_2 object_ 3 object 4 reward_l1 reward_2 reward_3 reward_4 action

1 1 1 A B C D 20 0 60 40 A

1 1 2 A B C D 20 40 60 80 B

1 1 3 A B C D 20 0 60 40 C

1 1 4 A B C D 20 40 60 80 D
Details

Each row must contain all information relevant to that trial for running a decision-making task (e.g.,
multi-armed bandit) as well as the feedback received.

In this type of paradigm, the rewards associated with possible actions must be explicitly written in
the table for every trial (aka, tabular case, see Sutton & Barto, 2018, Chapter 2).

Note

The package does not perform any real-time random sampling based on the agent’s choices; there-
fore, Users should pre-define the reward for each possible action in every trial.

You should never ever ever use true randomization to generate rewards.

Doing so would result in different participants interacting with multi-armed bandits that do not share
the same expected values. In such cases, if two participants show different parameter estimates in a
same model, we cannot determine whether the difference reflects stable individual traits or simply
the fact that one participant happened to be lucky while the other was not.

References

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed). MIT
press.

engine_ABC The Engine of Approximate Bayesian Computation (ABC)

Description

Because abc: :abc() requires summary statistics together with the corresponding input parame-
ters, this function converts the generated simulated data into a standardized collection of summary
statistics and input parameters, facilitating subsequent execution of abc: :abc().

engine_RNN 11

Usage

engine_ABC(
data,
colnames,
behrule,
model,
funcs = NULL,
priors,
settings = NULL,
control = control,

)

Arguments
data A data frame in which each row represents a single trial, see data
colnames Column names in the data frame, see colnames
behrule The agent’s implicitly formed internal rule, see behrule
model Reinforcement Learning Model
funcs The functions forming the reinforcement learning model, see funcs
priors Prior probability density function of the free parameters, see priors
settings Other model settings, see settings
control Settings manage various aspects of the iterative process, see control

Additional arguments passed to internal functions.
Value

A List containing a DataFrame of the parameters used to generate the simulated data and the
summary statistics for Approximate Bayesian Computation (ABC).

engine_RNN The Engine of Recurrent Neural Network (RNN)

Description

Because TensorFlow requires numeric arrays and input parameters to learn the mapping between
them when building a Recurrent Neural Network (RNN) model, this function transforms simulated
data into a standardized dataset and invokes TensorFlow to train the model.

12 estimate

Usage

engine_RNN(
data,
colnames,
behrule,
model,
funcs = NULL,
priors,
settings = NULL,
control = control,

)

Arguments
data A data frame in which each row represents a single trial, see data
colnames Column names in the data frame, see colnames
behrule The agent’s implicitly formed internal rule, see behrule
model Reinforcement Learning Model
funcs The functions forming the reinforcement learning model, see funcs
priors Prior probability density function of the free parameters, see priors
settings Other model settings, see settings
control Settings manage various aspects of the iterative process, see control

Additional arguments passed to internal functions.
Value

A specialized TensorFlow-trained Recurrent Neural Network (RNN) object. The model can be
used with the predict() function to make predictions on a new data frame, estimating the input
parameters that are most likely to have generated the given dataset.

estimate Estimate Methods

Description

The method used for parameter estimation, including "MLE" (Maximum Likelihood Estimation),
"MAP" (Maximum A Posteriori), "ABC" (Approximate Bayesian Computation), and "RNN" (Recur-
rent Neural Network).

Class

estimate [Character]

estimate 13

1. Likelihood Based Inference (LBI)

This estimation approach is adopted when latent rules are absent and human behavior aligns with
the value update objective. In other words, it is the estimation method employed when the log-
likelihood can be calculated.

1.1 Maximum Likelihood Estimation (MLE): Log-likelihood reflects the similarity between
the human’s observed choice and the model’s prediction. The free parameters (e.g., learning
rate) govern the entire Markov Decision Process, thereby controlling the returning log-likelihood
value. Maximum Likelihood Estimation (MLE) then involves finding the set of free parameters
that maximizes the sum of the log-likelihoods across all trials.

The search for these optimal parameters can be accomplished using various algorithms. For de-
tails, please refer to the documentation for algorithm.

1. The Markov Decision Process (MDP) continuously updates the expected value of each action.

2. These expected values are transformed into action probabilities using the soft-max function.

3. The log-probability of each action is calculated.

4. The likelihood is defined as the product of the human actions and the log-probabilities esti-
mated by the model.

1.2 Maximum A Posteriori (MAP):

Maximum A Posteriori (MAP) is an extension of Maximum Likelihood Estimation (MLE) In
addition to optimizing parameters for each individual subject based on the likelihood, Maximum
A Posteriori incorporates information about the population distribution of the parameters.

1. Perform an initial Maximum Likelihood Estimation (MLE) to find the best-fitting parameters
for each individual subject.

2. Use these best-fitting parameters to estimate the Probability Density Function of the population-
level parameter distribution. (The Expectation—-Maximization with Maximum A Posteriori
estimation (EM-MAP) framework is inspired by the sjgershm/mfit. However, unlike mfit,
which typically assumes a normal distribution for the posterior. In my opinion, the posterior
density is derived based on the specific prior distribution. For example, if the prior follows
an exponential distribution, the estimation remains within the exponential family rather than
being forced into a normal distribution.)

3. Perform Maximum Likelihood Estimation (MLE) again for each subject. However, instead of
returning the log-likelihood, the returned value is the log-posterior. In other words, this step
considers the probability of the best-fitting parameter occurring within its derived population
distribution. This penalization helps avoid finding extreme parameter estimates.

4. The above steps are repeated until the log-posterior converges.

2. Simulation Based Inference (SBI)

Simulation-Based Inference (SBI) can be employed when calculating the log-likelihood is impos-
sible or computationally intractable. Simulation-Based Inference (SBI) generally seeks to establish
a direct relationship between the behavioral data and the parameters, without compressing the be-
havioral data into a single value (log-likelihood).

2.1 Approximate Bayesian Computation (ABC):

The Approximate Bayesian Computation (ABC) model is trained by finding a mapping between
the summary statistics and the free parameters. Once the model is trained, given a new set of
summary statistics, the model can instantly determine the corresponding input parameters.

https://github.com/sjgershm/mfit

14 estimate

1. Generate a large amount of simulated data using randomly sampled input parameters.

2. Compress the simulated data into summary statistics—for instance, by calculating the pro-
portion of times each action was executed within different blocks.

3. Establish the mapping between these summary statistics and the input parameters, which
constitutes training the Approximate Bayesian Computation (ABC) model.

4. Given a new set of summary statistics, the trained model outputs the input parameters most
likely to have generated those statistics.

2.2 Recurrent Neural Network (RNN):

The Recurrent Neural Network (RNN) directly seeks a mapping between the simulated dataset
itself and the input free parameters. When provided with new behavioral data, the trained model
can estimate the input parameters most likely to have generated that specific dataset.

¢ The Recurrent Neural Network (RNN) component included in multiRL is merely a shell
for TensorFlow. Consequently, users who intend to use estimate = "RNN" must first install
TensorFlow.

The Recurrent Neural Network (RNN) model is trained using only state and action data as
the raw dataset by default. In other words, the developer assumes that the only necessary input
information for the Recurrent Neural Network (RNN) comprises the trial-by-trial object presen-
tation (the state) and the agent’s resultant action. This constraint is adopted because excessive
input information may not only interfere with model training but also lead to unnecessary time
consumption.

1. The raw simulated data is limited to the state (object information presented on each trial) and
the action chosen by the agent in response to that state.

2. After the simulated data is generated, it is partitioned into a training set and a validation set,
and the RNN training commences.

3. The iteration stops when both the training and validation sets converge. If the Mean Squared
Error (MSE) of the validation set is high while the MSE of the training set is low, this in-
dicates overfitting, suggesting that the Recurrent Neural Network (RNN) model may lack
generalization ability.

4. Given a new dataset, the trained model infers the input parameters that are most likely to have
generated that dataset.

Example

supported estimate methods

Maximum Likelihood Estimation
estimate = "MLE"

Maximum A Posteriori

estimate = "MAP"

Approximate Bayesian Computation
estimate = "ABC"

Recurrent Neural Network
estimate = "RNN"

estimate_0_ENV 15

estimate_0_ENV Tool for Generating an Environment for Models

Description

This function creates an independent R environment for each model (or object function) when
searching for optimal parameters using an algorithm package. Such isolation is especially impor-
tant when parameter optimization is performed in parallel across multiple subjects. The function
transfers standardized input parameters into a dedicated environment, ensuring that each model is
evaluated in a self-contained and interference-free context.

Usage
estimate_0Q_ENV(
data,
colnames = list(),
behrule,

funcs = list(),
priors = list(),
settings = list(),

)
Arguments
data A data frame in which each row represents a single trial, see data
colnames Column names in the data frame, see colnames
behrule The agent’s implicitly formed internal rule, see behrule
funcs The functions forming the reinforcement learning model, see funcs
priors Prior probability density function of the free parameters, see priors
settings Other model settings, see settings
Additional arguments passed to internal functions.
Value

An environment, multiRL.env contains all variables required by the objective function and is used
to isolate environments during parallel computation.

16 estimate_1_MAP

estimate_1_LBI Likelihood-Based Inference (LBI)

Description

This function provides a unified interface to multiple algorithm packages, allowing different opti-
mization algorithms to be selected for estimating optimal model parameters. The entire optimization
framework is based on the log-likelihood returned by the model (or object function), making this
function a collection of likelihood-based inference (LBI) methods. By abstracting over algorithm-
specific implementations, the function enables flexible and consistent parameter estimation across
different optimization backends.

Usage

estimate_1_LBI(model, env, algorithm, lower, upper, control = list(), ...)
Arguments

model Reinforcement Learning Model

env multiRL.env

algorithm Algorithm packages that multiRL supports, see algorithm

lower Lower bound of free parameters

upper Upper bound of free parameters

control Settings manage various aspects of the iterative process, see control

Additional arguments passed to internal functions.

Value

An S4 object of class multiRL.model generated using the estimated optimal parameters.

estimate_1_MAP Estimation Method: Maximum A Posteriori (MAP)

Description

This function first performs a maximum likelihood estimation (MLE) to obtain the best-fitting pa-
rameters for all subjects based on maximum likelihood. It then computes the likelihood-based
posterior using user-specified prior distributions. Based on the current group-level data, the prior
distributions are subsequently updated. This procedure is iteratively repeated until the likelihood-
based posterior converges. The entire process is referred to as Expectation-Maximization with
Maximum A Posteriori estimation(EM-MAP).

estimate_1_MAP

Usage

estimate_1_MAP(

data,

colnames,

behrule,

ids = NULL,

models,
funcs =
priors,

settings
algorithm,

lowers,
uppers,
control,

Arguments

data
colnames
behrule
ids
models
funcs
priors
settings
algorithm
lowers
uppers

control

Value

NULL,

A data frame in which each row represents a single trial, see data
Column names in the data frame, see colnames

The agent’s implicitly formed internal rule, see behrule

The Subject ID of the participant whose data needs to be fitted.
Reinforcement Learning Models

The functions forming the reinforcement learning model, see funcs
Prior probability density function of the free parameters, see priors
Other model settings, see settings

Algorithm packages that multiRL supports, see algorithm

Lower bound of free parameters in each model.

Upper bound of free parameters in each model.

Settings manage various aspects of the iterative process, see control

Additional arguments passed to internal functions.

17

An S3 object of class DataFrame containing, for each model, the estimated optimal parameters and
associated model fit metrics.

18

estimate_1 _MLE

estimate_1_MLE

Estimation Method: Maximum Likelihood Estimation (MLE)

Description

This function essentially applies estimate_1_LBI() to each subject’s data, estimating subject-
specific optimal parameters based on maximum likelihood. Because the fitting process for each

subject is independent, the procedure can be accelerated using parallel computation.

Usage

estimate_1_MLE(

data,
colnames,
behrule,

ids = NULL,

models,

funcs = NULL,

priors,
settings =
algorithm,
lowers,
uppers,
control,

Arguments

data
colnames
behrule
ids
models
funcs
priors
settings
algorithm
lowers
uppers

control

NULL,

A data frame in which each row represents a single trial, see data
Column names in the data frame, see colnames

The agent’s implicitly formed internal rule, see behrule

The Subject ID of the participant whose data needs to be fitted.
Reinforcement Learning Models

The functions forming the reinforcement learning model, see funcs
Prior probability density function of the free parameters, see priors
Other model settings, see settings

Algorithm packages that multiRL supports, see algorithm

Lower bound of free parameters in each model.

Upper bound of free parameters in each model.

Settings manage various aspects of the iterative process, see control

Additional arguments passed to internal functions.

estimate_2 _ABC

Value

19

An S3 object of class DataFrame containing, for each model, the estimated optimal parameters and
associated model fit metrics.

estimate_2_ABC

Estimation Method: Approximate Bayesian Computation (ABC)

Description

This function takes a large set of simulated data to train an Approximate Bayesian Computation

(ABC) model and then uses the trained model to estimate optimal parameters for the target data.

Usage

estimate_2_ABC(

data,
colnames,
behrule,

ids = NULL,

models,

funcs = NULL,

priors,
settings =
lowers,
uppers,
control,

Arguments

data
colnames
behrule
ids
models
funcs
priors
settings
lowers
uppers

control

NULL,

A data frame in which each row represents a single trial, see data
Column names in the data frame, see colnames

The agent’s implicitly formed internal rule, see behrule

The Subject ID of the participant whose data needs to be fitted.
Reinforcement Learning Models

The functions forming the reinforcement learning model, see funcs
Prior probability density function of the free parameters, see priors
Other model settings, see settings

Lower bound of free parameters in each model.

Upper bound of free parameters in each model.

Settings manage various aspects of the iterative process, see control

Additional arguments passed to internal functions.

20 estimate_2 RNN

Value

An S3 object of class DataFrame containing, for each model, the estimated optimal parameters and
associated model fit metrics.

estimate_2_RNN Estimation Method: Recurrent Neural Network (RNN)

Description

This function takes a large set of simulated data to train an Recurrent Neural Network (RNN) model
and then uses the trained model to estimate optimal parameters for the target data.

Usage
estimate_2_RNN(
data,
colnames,
behrule,
ids = NULL,
models,
funcs = NULL,
priors,
settings,
control,
)
Arguments
data A data frame in which each row represents a single trial, see data
colnames Column names in the data frame, see colnames
behrule The agent’s implicitly formed internal rule, see behrule
ids The Subject ID of the participant whose data needs to be fitted.
models Reinforcement Learning Models
funcs The functions forming the reinforcement learning model, see funcs
priors Prior probability density function of the free parameters, see priors
settings Other model settings, see settings
control Settings manage various aspects of the iterative process, see control
Additional arguments passed to internal functions.
Value

An S3 object of class DataFrame containing, for each model, the estimated optimal parameters and
associated model fit metrics.

estimate_2_SBI 21

estimate_2_SBI Simulated-Based Inference (SBI)

Description

Since both Approximate Bayesian Computation (ABC) and Recurrent Neural Network (RNN) are
simulation-based inference methods, they require a model built from a large amount of simulated
data before running. This model is then used to predict the most likely input parameters correspond-
ing to the real data. Therefore, this function generates random input parameters using user-specified
distributions and produces simulated data based on these parameters.

Usage
estimate_2_SBI(model, env, priors, control = list(), ...)
Arguments
model Reinforcement Learning Model
env multiRL.env
priors Prior probability density function of the free parameters, see priors
control Settings manage various aspects of the iterative process, see control
Additional arguments passed to internal functions.
Value

A List containing, for each model, simulated data generated using randomly sampled parameters.

estimation_methods Estimate Methods

Description

This function provides a unified interface for four estimation methods: Maximum Likelihood Es-
timation (MLE), Maximum A Posteriori (MAP), Approximate Bayesian Computation (ABC), and
Recurrent Neural Network (RNN), allowing users to execute different methods simply by setting
estimate = "??2?".

22

Usage

estimation_methods(
estimate,
data,
colnames,
behrule,
ids = NULL,
models,
funcs = NULL,
priors = NULL,
settings = NULL,

estimation_methods

algorithm,
lowers,
uppers,
control,
)
Arguments
estimate Estimate method that you want to use, see estimate
data A data frame in which each row represents a single trial, see data
colnames Column names in the data frame, see colnames
behrule The agent’s implicitly formed internal rule, see behrule
ids The Subject ID of the participant whose data needs to be fitted.
models Reinforcement Learning Models
funcs The functions forming the reinforcement learning model, see funcs
priors Prior probability density function of the free parameters, see priors
settings Other model settings, see settings
algorithm Algorithm packages that multiRL supports, see algorithm
lowers Lower bound of free parameters in each model.
uppers Upper bound of free parameters in each model.
control Settings manage various aspects of the iterative process, see control
Additional arguments passed to internal functions.
Value

An S3 object of class DataFrame containing, for each model, the estimated optimal parameters and

associated model fit metrics.

fit p

23

fit_p

Step 3: Optimizing parameters to fit real data

Description

Step 3: Optimizing parameters to fit real data

Usage
fit_p(

estimate,

data,

colnames,

behrule,

ids = NULL,

funcs =

priors =
settings

models,

algorithm,

lowers,
uppers,
control,

Arguments

estimate
data
colnames
behrule
ids
funcs
priors
settings
models
algorithm
lowers
uppers

control

NULL,
NULL,

Estimate method that you want to use, see estimate

A data frame in which each row represents a single trial, see data
Column names in the data frame, see colnames

The agent’s implicitly formed internal rule, see behrule

The Subject ID of the participant whose data needs to be fitted.
The functions forming the reinforcement learning model, see funcs
Prior probability density function of the free parameters, see priors
Other model settings, see settings

Reinforcement Learning Models

Algorithm packages that multiRL supports, see algorithm

Lower bound of free parameters in each model.

Upper bound of free parameters in each model.

Settings manage various aspects of the iterative process, see control

Additional arguments passed to internal functions.

24

Value

funcs

An S3 object of classmultiRL.fitting. A List containing, for each model, the estimated optimal

parameters and associated model fit metrics.

Example

fitting
fitting . MLE <- multiRL::fit_p(
estimate = "MLE",

data = multiRL::TAB,
colnames = list(

object = c("L_choice”, "R_choice"),
reward = c("L_reward”, "R_reward"),
action = "Sub_Choose”

),
behrule = list(

cue = C(HAH’ an, ”C”, "D”>,
r.sp - C(HAH’ HBM’ ”C”, MD”)
),

models = list(multiRL::TD, multiRL::RSTD, multiRL::Utility),
settings = list(name = c("TD", "RSTD", "Utility")),

algorithm = "NLOPT_GN_MLSL",

lowers = list(c(@, @), c(0, 0, @), c(@, 0, 0)),
uppers = list(c(1, 5), c(1, 1, 5), c(1, 5, 1)),

control = list(core = 10, iter = 100)

funcs Core Functions

Description

The Markov Decision Process (MDP) underlying Reinforcement Learning can be decomposed into
six fundamental components. By modifying these six functions, an immense number of distinct
Reinforcement Learning models can be created. Users only need to grasp the basic Markov Deci-
sion Process process and subsequently tailor these six functions to construct a unique reinforcement

learning model.

Class

funcs [List]

funcs 25

Details

e Action Select

— Step 1: Agent uses bias_func to apply a bias term to the value of each option.

— Step 2: Agent uses expl_func to decide whether to make a purely random exploratory
choice.

— Step 3: Agent uses prob_func to compute the selection probability for each action.
* Value Update

— Step 4: Agent uses util_func to translate the objective reward into subjective utility.

— Step 5: Agent uses dcay_func to regress the values of unchosen options toward a base-
line.

— Step 6: Agent uses rate_func to update the value of the chosen option.

Learning Rate («)

rate_func is the function that determines the learning rate (o). This function governs how the
model selects the . For instance, you can set different learning rates for different circumstances.
Rather than ’learning’ in a general sense, the learning rate determines whether the agent updates its
expected values (Q-values) using an aggressive or conservative step size across different conditions.

Qnew = Qold +a- (R - Qold)

Soft-Max (3)

prob_func is the function defined by the inverse temperature parameter (/3) and the lapse parameter.

The inverse temperature parameter governs the randomness of choice. If 5 approaches 0, the agent
will choose between different actions completely at random. As [increases, the choice becomes
more dependent on the expected value (();), meaning actions with higher expected values have a
proportionally higher probability of being chosen.

Note: This formula includes a normalization of the (Q);) values.

exp (8 - (Qt(a) — max; Qi(ay;)))

Pt a) =
@ SF exp (8- (Qila;) — max; Qi(a;)))

The function below, which incorporates the constant lapse rate, is a correction to the standard soft-
max rule. This is designed to prevent the probability of any action from becoming exactly O (Wilson
and Collins, 2019 doi: 10.7554/eLife.49547). When the lapse parameter is set to 0.01, every action
has at least a 1% probability of being executed. If the number of available actions becomes exces-
sively large (e.g., greater than 100), it would be more appropriate to set the lapse parameter to a
much smaller value.

Pi(a) = (1 — lapse - Ngpown) - Pi(a) + lapse

https://doi.org/10.7554/eLife.49547

26 funcs

Utility Function (v)

util_func is defined by the utility exponent parameter (). Its purpose is to account for the fact
that the objective reward received by human may hold a different subjective value (utility) across
different subjects.

Note: The built-in function is formulated according to Stevens’ power law.
UR)=R"

Upper Confidence Bound (9)

bias_func is the function defined by the parameter (§). This function signifies that the expected
value of an action is not solely determined by the received reward, but is also influenced by the num-
ber of times the action has been executed. Specifically, an action that has been executed fewer times
receives a larger exploration bias. (Sutton and Barto, 2018) This mechanism prompts exploration
and ensures the agent to execute every action at least once.

. log(N +e)
Bias =0\ ¥y 1010

Epsilon—First, Greedy, Decreasing (¢)

expl_func is the function defined by the parameter (¢) and the constant threshold. This function
controls the probability with which the agent engages in exploration (i.e., making a random choice)
versus exploitation (i.e., making a value-based choice).

€ first: The agent must choose randomly for a fixed number of initial trials. Once the number of
trials exceeds the threshold, the agent must exclusively choose based on value.

Pa) ¢ < threshold, =1
xTr) =
i > threshold, = =10

€ greedy: The agent performs a random choice with probability € and makes a value-based choice
with probability 1 — e.

P(x){e’ rz=1

1—¢e, =0

€ decreasing: The probability of making a random choice gradually decreases as the number of
trials increases throughout the experiment.

1
P(x) — {1??“ x

1+e2? = O

http://incompleteideas.net/book/the-book-2nd.html

funcs 27

Working Memory (¢)

dcay_func is the function defined by the decay rate parameter (¢) and the constant bonus. This
function indicates that at the end of each trial, not only the value of the chosen option will be
changed according to the learning rate, but also the values of the unchosen options also undergo
change.

It is due to the limitations of working memory capacity, the values of the unchosen options are hy-
pothesized to decay back towards their initial value at a rate determined by the decay rate parameter
(¢) (Collins and Frank, 2012 doi:10.1111/j.14609568.2011.07980.x).

Wnew = old + C . (WO - Wold)

Furthermore, Hitchcock, Kim and Frank, (2025) doi:10.1037/xge0001817 suggest that if the feed-
back of the chosen option provides information relevant to the unchosen options, this decay rate
may be enhanced or mitigated by the constant bonus.

Example

inner functions
funcs = list(
Learning Rate
rate_func = multiRL::func_alpha,
Inverse Temperature
prob_func = multiRL::func_beta,
Utility Function (Stevens' Power Law)
util_func = multiRL::func_gamma,
Upper-Confidence-Bound
bias_func = multiRL::func_delta,
Epsilon-First, Greedy, Decreasing
expl_func = multiRL::func_epsilon,
Working Memory System
dcay_func = multiRL::func_zeta

References

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed). MIT
press.

Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory,
not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European
Journal of Neuroscience, 35(7), 1024-1035. doi:10.1111/.14609568.2011.07980.x

Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behav-
ioral data. Elife, 8, e49547. doi:10.7554/eLife.49547

Hitchcock, P. F.,, Kim, J., Frank, M. J. (2025). How working memory and reinforcement learning
interact when avoiding punishment and pursuing reward concurrently. Journal of Experimental
Psychology: General. doi:10.1037/xge0001817

https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1037/xge0001817
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.7554/eLife.49547
https://doi.org/10.1037/xge0001817

28 func_alpha

func_alpha Function: Learning Rate

Description

Qnew = Qold +a- (R - Qold)

Usage
func_alpha(qvalue, reward, params, system, ...)
Arguments
gvalue The expected Q values of different behaviors produced by different systems
when updated to this trial.
reward The feedback received by the agent from the environment at trial(t) following
the execution of action(a)
params Parameters used by the model’s internal functions, see params
system When the agent makes a decision, is a single system at work, or are multiple
systems involved? see system
It currently contains the following information; additional information may be
added in future package versions.
* idinfo:
— subid
— block
— trial
* exinfo: contains information whose column names are specified by the user.
— Frame
- RT
— NetWorth
* behave: includes the following:
— action: the behavior performed by the human in the given trial.
— latent: the object updated by the agent in the given trial.
— simulation: the actual behavior performed by the agent.
Value

A NumericVector containing the updated values computed based on the learning rate.

func_alpha 29

Body
func_alpha <- function(
gvalue,
reward,
params,

)M

list2env(list(...), envir = environment())

If you need extra information(...)

Column names may be lost(C++), indexes are recommended
#e.g.

Trial <- idinfo[3]

Frame <- exinfo[1]

Action <- behave[1]

alpha <- params[["alpha"]]
alphaN <- params[["alphaN"]]
alphaP <- params[["alphaP"]]

Determine the model currently in use based on which parameters are free.

if (
system == "RL" && !(is.null(alpha)) && is.null(alphaN) && is.null(alphaP)
) Ao
model <- "TD"
} else if (
system == "RL"” && is.null(alpha) && !(is.null(alphaN)) && !(is.null(alphaP))
) Ao
model <- "RSTD"
} else if (
system == "WM"
) o
model <- "WM"
alpha <- 1
} else {
stop(”"Unknown Model! Plase modify your learning rate function")
3
TD

if (model == "TD") {
update <- qvalue + alpha * (reward - gvalue)

RSTD

} else if (model == "RSTD" && reward < qgvalue) {
update <- gvalue + alphaN * (reward - qvalue)

} else if (model == "RSTD" && reward >= qgvalue) {

update <- qvalue + alphaP * (reward - qgvalue)
WM

30

func_beta

} else if (model == "wWM") {
update <- gvalue + alpha * (reward - gvalue)

}
return(update)
3
func_beta Function: Soft-Max
Description
Pi(a) = exp(B - (Qi(a) — maxaea Qu(a)))
) (a) =
>areaxp(B - (Qi(a’) — maxy e Qilag)))
Pi(a) = (1 — lapse - Ngpown) - Pi(a) + lapse
Usage
func_beta(qvalue, explor, params, system, ...)
Arguments
gvalue The expected Q values of different behaviors produced by different systems
when updated to this trial.
explor Whether the agent made a random choice (exploration) in this trial.
params Parameters used by the model’s internal functions, see params
system When the agent makes a decision, is a single system at work, or are multiple

systems involved? see system

It currently contains the following information; additional information may be
added in future package versions.
* idinfo:
— subid
— block
— trial
* exinfo: contains information whose column names are specified by the user.
— Frame
- RT
NetWorth

* behave: includes the following:
— action: the behavior performed by the human in the given trial.
— latent: the object updated by the agent in the given trial.
— simulation: the actual behavior performed by the agent.

func_beta

Value

A NumericVector containing the probability of choosing each option.

Body
func_beta <- function(
gvalue,
explor,
params,

H
list2env(list(...), envir = environment())

If you need extra information(...)

Column names may be lost(C++), indexes are recommended
#e.g.

Trial <- idinfo[3]

Frame <- exinfo[1]

Action <- behave[1]

beta <- params[["beta"]]
lapse <- params[["lapse"]]
weight <- params[["weight"]]
capacity <- params[["capacity”]]
sticky <- params[["sticky"]]

index <- which(!is.na(gvalue[[1]1]))
n_shown <- length(index)

n_system <- length(qvalue)

n_options <- length(qvalue[[11])

Assign weights to different systems

if (length(weight) == 1L) {weight <- c(weight, 1 - weight)}
weight <- weight / sum(weight)

if (n_system == 1) {weight <- weight[1]}

Compute the probabilities estimated by different systems
prob_mat <- matrix(@, nrow = n_options, ncol = n_system)

if (explor == 1) {
prob_mat[index,] <- 1 / n_shown
} else {
for (s in seqg_len(n_system)) {
sub_qgvalue <- qvalue[[s]]
exp_stable <- exp(beta * (sub_qvalue - max(sub_gvalue, na.rm = TRUE)))
prob_mat[, s] <- exp_stable / sum(exp_stable, na.rm = TRUE)
}

32 func_delta

3

Weighted average
prob <- as.vector(prob_mat

lapse
prob <- (1 - lapse * n_shown) * prob + lapse

return(prob)
}
func_delta Function: Upper-Confidence-Bound
Description
. log(N +e)
Bias=¢§ -4/ ———5
N +10-10
Usage
func_delta(count, params, ...)
Arguments
count How many times this action has been executed
params Parameters used by the model’s internal functions, see params

It currently contains the following information; additional information may be
added in future package versions.
¢ idinfo:
— subid
— block
— trial
* exinfo: contains information whose column names are specified by the user.
— Frame
- RT
— NetWorth
* behave: includes the following:
— action: the behavior performed by the human in the given trial.
— latent: the object updated by the agent in the given trial.
— simulation: the actual behavior performed by the agent.

func_epsilon 33

Value
A NumericVector containing the bias for each option based on the number of times it has been
selected.

Body

func_delta <- function(
count,
params,

)’

list2env(list(...), envir = environment())

If you need extra information(...)

Column names may be lost(C++), indexes are recommended
#e.g.

Trial <- idinfo[3]

Frame <- exinfo[1]

Action <- behave[1]

delta <- params[["delta"]]

bias <- delta * sqrt(log(count + exp(1)) / (count + 1e-10))

return(bias)
}
func_epsilon Function: efirst, Greedy, Decreasing
Description
€ first:
Pla) = z < threshold, z =1
i > threshold, z =10
€ greedy:
=1
Pla) = €, x
1—¢, =0
€ decreasing:

34 func_epsilon

Usage
func_epsilon(rownum, params, ...)
Arguments
rownum The trial number
params Parameters used by the model’s internal functions, see params
It currently contains the following information; additional information may be
added in future package versions.
* idinfo:
— subid
— block
— trial
* exinfo: contains information whose column names are specified by the user.
— Frame
- RT
— NetWorth
* behave: includes the following:
— action: the behavior performed by the human in the given trial.
— latent: the object updated by the agent in the given trial.
— simulation: the actual behavior performed by the agent.
Value

An int, either O or 1, indicating exploration or exploitation on the current trial.

Body
func_epsilon <- function(
rownum,
params,

X’

list2env(list(...), envir = environment())

If you need extra information(...)

Column names may be lost(C++), indexes are recommended
#e.g.

Trial <- idinfo[3]

Frame <- exinfo[1]

Action <- behave[1]

epsilon <- params[["epsilon"]]
threshold <- params[["threshold"]]

func_gamma

Determine the model currently in use based on which parameters are free.
if (is.na(epsilon) && threshold > @) {
model <- "first”
} else if (!(is.na(epsilon)) && threshold == @) {
model <- "decreasing”
} else if (!(is.na(epsilon)) && threshold == 1) {
model <- "greedy"
} else {
stop(”"Unknown Model! Plase modify your learning rate function")

3

set.seed(rownum)
Epsilon-First:
if (rownum <= threshold) {
try <- 1
} else if (rownum > threshold && model == "first”) {
try <- 0
Epsilon-Greedy:
} else if (rownum > threshold && model == "greedy"){
try <- sample(
c(1, 9,
prob = c(epsilon, 1 - epsilon),
size = 1
)
Epsilon-Decreasing:
} else if (rownum > threshold && model == "decreasing”) {
try <- sample(
c(1, 0),
prob = c(
1/ (1 + epsilon * rownum),
epsilon * rownum / (1 + epsilon * rownum)
),
size = 1
)
3

return(try)
3

35

func_gamma Function: Utility Function

Description

U(R) = R’

36 func_gamma

Usage
func_gamma(reward, params, ...)
Arguments
reward The feedback received by the agent from the environment at trial(t) following
the execution of action(a)
params Parameters used by the model’s internal functions, see params
It currently contains the following information; additional information may be
added in future package versions.
¢ idinfo:
— subid
- block
— trial
* exinfo: contains information whose column names are specified by the user.
— Frame
- RT
— NetWorth
* behave: includes the following:
— action: the behavior performed by the human in the given trial.
— latent: the object updated by the agent in the given trial.
— simulation: the actual behavior performed by the agent.
Value

A NumericVector of length one representing the subjective value transformed from the objective
reward via the utility function.

Body
func_gamma <- function(
reward,
params,

DAt
list2env(list(...), envir = environment())

If you need extra information(...)

Column names may be lost(C++), indexes are recommended
#e.g.

Trial <- idinfo[3]

Frame <- exinfo[1]

Action <- behave[1]

func_zeta 37

gamma <- params[["gamma"]]

Stevens' Power Law
utility <- sign(reward) * (abs(reward) * gamma)

return(utility)
}
func_zeta Function: Decay Rate
Description
Wnew - old + C . (WO - Wold)

Usage

func_zeta(value®, values, reward, params, system, ...)
Arguments

value@ The initial values for all actions.

values The current expected values for all actions.

reward The feedback received by the agent from the environment at trial(t) following

the execution of action(a)
params Parameters used by the model’s internal functions, see params
system When the agent makes a decision, is a single system at work, or are multiple

systems involved? see system
It currently contains the following information; additional information may be
added in future package versions.
* idinfo:
— subid
— block
— trial
* exinfo: contains information whose column names are specified by the user.
— Frame
- RT
— NetWorth
* behave: includes the following:
— action: the behavior performed by the human in the given trial.
— latent: the object updated by the agent in the given trial.
— simulation: the actual behavior performed by the agent.

38

Value

MAB

A NumericVector representing the values of unchosen options after decay according to the decay

rate.

Body

func_zeta <- function(
valueo,
values,
reward,
params,

M
list2env(list(...), envir = environment())

If you need extra information(...)

Column names may be lost(C++), indexes are recommended
#e.g.

Trial <- idinfo[3]

Frame <- exinfo[1]

Action <- behave[1]

zeta <- params[["zeta"]]
bonus <- params[["bonus"]]

if (reward == 0) {

decay <- values + zeta * (value@ - values)
} else if (reward < 0) {

decay <- values + zeta * (value@ - values) + bonus
} else if (reward > 0) {

decay <- values + zeta * (value@ - values) - bonus

3

return(decay)

MAB Simulated Multi-Arm Bandit Dataset

Description

A simulated multi-armed bandit (MAB) dataset featuring a complex stimulus-response structure.
The set of four distinct stimuli (red, blue, yellow, green) is not isomorphic to the set of four available
choices (up, down, left, right). Crucially, multiple stimuli may map to the same underlying choice
(e.g., Red and Blue both map to Up’). This design requires the reinforcement learning model
to learn the latent mapping from observable stimuli to the set of potential actions, making it a

challenging test case for model fitting.

params 39

Format

A data frame with 9000 rows and 12 columns:

Subject Subject ID, an integer ranging from 1 to 30.
Block Block number, an integer ranging from 1 to 6.
Trial Trial number within each block, an integer (1 to 50).

Object_1, Object_2, Object_3, Object_4 Stimulus-response combinations (string) for four ob-
jects, formatted as "Color_Direction" (e.g., "Red_Up"). Each column is independently bal-
anced and shuffled.

Reward_1, Reward_2, Reward_3, Reward_4 Reward values for four choice arms (Decks), fol-
lowing the classic lowa Gambling Task (IGT) structure with adjusted values.
* Reward_1 (Bad): High gain (+100) with high frequency, mid-sized fine (-250). Long-
term net loss.

* Reward_2 (Bad): High gain (+100) with low frequency, large fine (-1250). Long-term net
loss.

* Reward_3 (Good): Low gain (+50) with high frequency, small fine (-50). Long-term net
gain.
* Reward_4 (Good): Low gain (+50) with low frequency, mid-sized fine (-250). Long-term
net gain.
Rewards are balanced at the Block level.

Action The simulated choice made by the subject on that trial (string), randomly sampled from
"Up", "Down", "Left", or "Right".

params Model Parameters

Description

The names of all these parameters are not necessarily fixed. You can define the parameters you need
and set their names according to the functions used in your custom model. You must only ensure
that the parameter names defined here are consistent with those used in your model’s functions, and
that their names do not conflict with each other.

Class

params [List]

Note

The parameters are divided into three types: free, fixed, and constant. This classification is
not mandatory, any parameter can be treated as a free parameter depending on the user’s specifi-
cation. By default, the learning rate alpha and the inverse-temperature beta are the required free
parameters.

40 params

Slots

free:

e alpha [double]
Learning Rate alpha specifies how aggressively or conservatively the agent adopts the pre-
diction error (the difference between the observed reward and the expected value).
A value closer to 1 indicates a more aggressive update of the value function, meaning the
agent relies more heavily on the current observed reward. Conversely, a value closer to
0 indicates a more conservative update, meaning the agent trusts its previously established
expected value more.

* beta [double]
The inverse temperature parameter, beta, is a crucial component of the soft-max function.
It reflects the extent to which the agent’s decision-making relies on the value differences
between various available options.
A higher value of beta signifies more rational decision-making; that is, the probability of
executing actions with higher expected value is greater. Conversely, a lower beta value sig-
nifies more stochastic decision-making, where the probability of executing different actions
becomes nearly equal, regardless of the differences in their expected values.

fixed:

e gamma [double]
The physical reward received is often distinct from the psychological value perceived by an
individual. This concept originates in psychophysics, specifically Stevens’ Power Law.
Note: The default utility function is defined as y = 2" and v = 1, which assumed that the
physical quantity is equivalent to the psychological quantity.

* delta [double]
This parameter represents the weight given to the number of times an option has been se-
lected. Following the Upper Confidence Bound (UCB) algorithm proposed by Sutton and
Barto (2018) options that have been selected less frequently should be assigned a higher
exploratory bias.
Note: With the default set to 0.1, a bias value is effectively applied only to options that have
never been chosen. Once an action has been executed even a single time, the assigned bias
value approaches zero.

e epsilon [double]
This parameter governs the Exploration-Exploitation trade-off and can be used to implement
three distinct strategies by adjusting epsilon and threshold:
When set to € greedy: epsilon represents the probability that the agent will execute a ran-
dom exploratory action throughout the entire experiment, regardless of the estimated value.
When set to € decreasing: The probability of the agent making a random choice decreases
as the number of trials increases. The rate of this decay is influenced by epsilon.
By default, epsilon is set to NA, which corresponds to the €™ first model. In this model, the
agent always selects randomly before a specified trial (threshold = 1).

* zeta [double]
Collins and Frank, (2012) doi:10.1111/j.14609568.2011.07980.x proposed that in every trial,
not only the chosen option undergoes value updating, but the expected values of unchosen
options also decay towards their initial value, due to the constraints of working memory. This
specific parameter represents the rate of this decay.
Note: A larger value signifies a faster decay from the learned value back to the initial value.
The default value is set to 0, which assumes that no such working memory system exists.

http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1111/j.1460-9568.2011.07980.x

params 41

constant:

* seed [int] This seed controls the random choice of actions in the reinforcement learning
model when the sample () function is called to select actions based on probabilities estimated
by the softmax. It is not the seed used by the algorithm package when searching for optimal
input parameters. In most cases, there is no need to modify this value; please keep it at the
default value of 123.

e Q0 [double]

This parameter represents the initial value assigned to each action at the start of the Markov
Decision Process. As argued by Sutton and Barto (2018), initial values are often set to be
optimistic (i.e., higher than all possible rewards) to encourage exploration. Conversely, an
overly low initial value might lead the agent to cease exploring other options after receiving
the first reward, resulting in repeated selection of the initially chosen action.

The default value is set to NA, which implies that the agent will use the first observed reward as
the initial value for that action. When combined with Upper Confidence Bound, this setting
ensures that every option is selected at least once, and their first rewards are immediately
memorized.

Note: This is what I consider the reasonable setting. If you think this interpretation unsuit-
able, you may explicitly set Q@ to O or another optimistic initial value instead.

* reset [double]

If changes may occur between blocks, you can choose whether to reset the learned values for
each option. By default, no reset is applied. For example, setting reset = @ means that upon
entering a new block, the values of all options are reset to 0. In addition, if Q@ is also set to 0,
this implies that the learning rate on the first trial of each block will be 100

e lapse [double]

Wilson and Collins, (2019) doi:10.7554/eLife.49547 introduced the concept of the Lapse
Rate, which represents the probability that a subject makes a error (lapse). This parameter
ensures that every option has a minimum probability of being chosen, preventing the proba-
bility from reaching zero. This is a very reasonable assumption and, crucially, it avoids the
numerical instability issue where log(P) = log(0) results in -Inf.

Note: The default value here is set to 0.01, meaning every action has at least 1% probability
of being executed by the agent. If the paradigm you use have a large number of available
actions, a 1% minimum probability for each action might be unreasonable. You can adjust
this value to be even smaller.

e threshold [double]

This parameter represents the trial number before which the agent will select completely
randomly.

Note: The default value is set to 1, meaning that only the very first trial involves a purely
random choice by the agent.

* bonus [double]

Hitchcock, Kim and Frank, (2025) doi:10.1037/xge0001817 introduced modifications to the
working memory model, positing that the value of unchosen options is not merely subject to
decay toward the initial value. They suggest that the outcome obtained after selecting an op-
tion might, to some extent, provide information about the value of the unchosen options. This
information, referred to as a reward bonus, also influences the value update of the unchosen
options.

Note: The default value for this bonus is 0, which assumes that no such bonus value change
exists.

e weight [NumericVector]

http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.7554/eLife.49547
https://doi.org/10.1037/xge0001817

42

Example

TD
para
fr

)7

fi

))

co

params

The weight parameter governs the policy integration stage. After each cognitive system
(e.g., reinforcement learning (RL) and working memory (WM)) calculates action probabili-
ties using a soft-max function based on its internal value estimates, the agent combines these
suggestions into a single choice probability.

The default is 1, which is equivalent to weight = c(1,). This represents exclusive reliance
on the first system (typically the incremental Reinforcement Learning system).

In a dual-system model (e.g., RL + WM), setting weight = 0.5 implies that the agent places
equal trust in both the long-term RL rewards and the immediate WM memory.

capacity [double]

This parameter represents the maximum number of stimulus-action associations an individual
can actively maintain in working memory weight = weighto * min(1, (capacity/ns)).
This parameter determines the extent to which working memory (WM) Q-values are pri-
oritized during decision-making. When the stimulus set size (ns) is within the capacity
(capacity), the model fully relies on the working memory system, resulting in a working
memory weight of 1. However, if ns exceeds capacity, the decision-making process par-
tially integrates Q-values from the reinforcement learning (RL) system.

sticky [double]

The sticky parameter (represented as kappa in Collins, 2025 doi:10.1038/54156202502340-
0) quantifies the extent to which an agent tends to repeat the physical action performed in the
previous trial. It captures a form of motor inertia that is fundamentally stimulus-independent.
Example: Consider a paradigm with four keys (e.g., Up, Down, Left, Right). If an agent
pressed "Up" in the previous trial, they might press "Up" again in the current trial, simply
due to a reluctance to switch their physical response (i.e., motor stickiness).

It is imperative that the definition of sticky aligns with the participant’s actual physical exe-
cution. If a task involves choosing between four bandits (A, B, C, D) displayed on the left
or right of a screen, sticky should track the repetition of the physical position (Left or Right)
rather than the bandit’s identity (A/B/C/D). If your experimental paradigm dissociates the
value-updating entities (e.g., bandit IDs) from the physical response dimensions (e.g., spatial
locations), you must define the sticky term based on the actual motor response.

ms = list(

ee = list(
alpha = x[11],
beta = x[2]
xed = list(
gamma = 1,
delta = 0.1,
epsilon = NA_real_,
zeta = 0
nstant = list(
Q0 = NA_real_,
lapse = 0.01,

threshold = 1,
bonus = 0,

https://doi.org/10.1038/s41562-025-02340-0
https://doi.org/10.1038/s41562-025-02340-0

plot.multiRL.replay 43

weight =

capacity

sticky =
)

(ST

)

References

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed). MIT
press.

Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory,
not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European
Journal of Neuroscience, 35(7), 1024-1035. doi:10.1111/.14609568.2011.07980.x

Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behav-
ioral data. Elife, 8, e49547. doi:10.7554/eLife.49547

Hitchcock, P. F., Kim, J., Frank, M. J. (2025). How working memory and reinforcement learning
interact when avoiding punishment and pursuing reward concurrently. Journal of Experimental
Psychology: General. doi:10.1037/xge0001817

Collins, A. G. (2025). A habit and working memory model as an alternative account of human
reward-based learning. Nature Human Behaviour, 1-13. doi:10.1038/s41562025023400

plot.multiRL.replay plot.multiRL.replay

Description
plot.multiRL.replay
Usage
S3 method for class 'multiRL.replay'’
plot(x, y = NULL, model = NULL, param = NULL, ...)
Arguments
X multiRL.replay
y NULL
model The name of model that you want to plot
param The name of parameter that you want to plot
extra
Value

An S3 object of class ggplot?2

https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.7554/eLife.49547
https://doi.org/10.1037/xge0001817
https://doi.org/10.1038/s41562-025-02340-0

44

policy

policy

Policy of Agent

Description

The term "policy" in this context is debatable, but the core meaning is whether the model itself acts
based on the probabilities it estimates.

Class

policy [Character]

Detail

"On-Policy": The agent converts the expected value of each action into a probability distri-
bution using the soft-max function. It then utilizes a sample() function to randomly select
an action to execute based on these estimated probabilities. Under this mechanism, actions
with higher expected values have a greater likelihood of being selected. Once an action is
performed, the feedback received (reward or penalty) is used to update the expected value of
that action, which in turn influences the probability of choosing different actions in the future.

"Off-Policy": The agent directly replicates human behavior. Consequently, in most cases, this
ensures that the rewards obtained by the agent in each trial are identical to those obtained
by the human. This also results in the value update trajectories for different actions being
exactly the same as the trajectories experienced by the human. In this scenario, a previous
choice does not influence subsequent value updates. Because all actions are copied from
the human, the trajectory of value updates will not diverge due to differences in individual
samples. Essentially, in this specific case, the sample() step does not exist.

Metaphor

"On-Policy": The agent completes an examination paper independently and then checks its
answers against the ground truth to see if they are correct. If it makes a mistake, it re-attempts
the task (adjusting the input parameters). This process repeats until its answers are sufficiently
close to the standard answers, or until the degree of similarity can no longer be improved. In
other words, the agent has found the optimal parameters within the given model to imitate
human behavior as closely as possible.

"Off-Policy": The agent sees the standard answers to the exam directly. It does not personally
complete any of the papers; instead, it acts as an observer trying to understand the underlying
logic behind the standard answers. Even if there are a few answers that the agent cannot even
understand at all, they will ignore these outliers in order to maximize its overall accuracy.

priors 45

priors Density and Random Function

Description

Users must specify one of the two function types (stats::?func). Either the Density Function
(d-func) or the Random Function (r-func)

* Density Function (stats::dfunc) represents the prior distribution the free parameters are
assumed to follow

* Random Function (stats: : rfunc) represents the sampling distribution for generating random
numbers

Users do not need to memorize when to input the d-func or the r-func; the program will handle the
necessary conversion automatically. Since this conversion function relies on regular expressions
for string transformation, it is relatively brittle. Users must strictly follow the examples provided
below.

Class

priors [List]

Density Function

standard format dfunc (Only the numerical values can be modified.)
function(x) {stats::dbeta(x, shapel = 2, shape2 = 2, log = TRUE)}
function(x) {stats::dexp(x, rate = 1, log = TRUE)}

function(x) {stats::dunif(x, min = @, max = 1, log = TRUE)}
function(x) {stats::dnorm(x, mean = 0.5, sd = 0.1, log = TRUE)}
function(x) {stats::dlnorm(x, meanlog = 0.5, sdlog = ©.1, log = TRUE)}
function(x) {stats::dgamma(x, shape = 2, rate = 3, log = TRUE)}
function(x) {stats::dlogis(x, location = @, scale = 1, log = TRUE)}

Random Function

standard format rfunc (Only the numerical values can be modified.)
function(x) {stats::rbeta(n = 1, shapel = 2, shape2 = 2)}

function(x) {stats::rexp(n =1, rate = 1)}
function(x) {stats::runif(n = 1, min = @, max =
function(x) {stats::rnorm(n = 1, mean = 0.5, sd = 0.1)}
function(x) {stats::rlnorm(n = 1, meanlog = 0.5, sdlog = ©0.1)}
function(x) {stats::rgamma(n = 1, shape = 2, rate = 3)}
function(x) {stats::rlogis(n 1, location = 0@, scale = 1)}

[b;

46 process_1_input

Example
TD
params = list(
free = list(
alpha = x[11],
beta = x[2]
),
fixed = list(
gamma = 1,
delta = 0.1,
epsilon = NA_real_,
zeta = 0
),
constant = list(
seed = 123,
Q0 = NA_real_,
reset = NA_real_,
lapse = 0.01,
threshold = 1,
bonus = 9,
weight = 1,
capacity = 0,
sticky = @
)
)

priors = list(
alpha = function(x) {stats::rbeta(n = 1, shapel = 2, shape2 = 2)},
beta = function(x) {stats::rexp(n = 1, rate = 1)}

process_1_input multiRL.input

Description

multiRL.input

Usage

process_1_input(
data,
colnames = list(),
funcs = list(),
params = list(),
priors,

process_1_input 47

settings = list(),

)

Arguments
data A data frame in which each row represents a single trial, see data
colnames Column names in the data frame, see colnames
funcs The functions forming the reinforcement learning model, see funcs
params Parameters used by the model’s internal functions, see params
priors Prior probability density function of the free parameters, see priors
settings Other model settings, see settings

Additional arguments passed to internal functions.
Value

An S4 object of class multiRL. input.

data A DataFrame containing the trial-level raw data.

colnames An S4 object of class multiRL.colnames, specifying the column names used in the
input data.

features An S4 object of class multiRL.features, containing standardized representations of
states and actions transformed from the raw data.

params An S4 object of class multiRL.params, containing model parameters.

priors A List specifying prior distributions for free parameters.

funcs An S4 object of class multiRL. funcs, containing functions used in model.

settings An S4 object of class multiRL.settings, storing global settings for model estimation.
elements A int indicating the number of elements within states.

subid A Character string identifying the subject.

n_block A int value indicating the number of blocks.

n_trial A int value indicating the number of trials.

n_rows A int value indicating the number of rows in the data.

extra A List containing additional user-defined information.

48 process_3_record

process_2_behrule multiRL.behrule

Description

multiRL.behrule

Usage

process_2_behrule(behrule, ...)

Arguments

behrule The agent’s implicitly formed internal rule, see behrule

Additional arguments passed to internal functions.

Value
An S4 object of class multiRL.behrule.
cue A CharacterVector containing the cue (state) presented on each trial.

rsp A CharacterVector containing the set of possible actions available to the agent.

extra A List containing additional user-defined information.

process_3_record multiRL.record

Description

multiRL.record

Usage

process_3_record(input, behrule, ...)
Arguments

input multiRL.input

behrule multiRL.behrule

Additional arguments passed to internal functions.

process_4_output_cpp 49

Value

An S4 object of class multiRL. record.

input An S4 object of class multiRL.input, containing the raw data, column specifications, pa-
rameters and ...

behrule An S4 object of class multiRL.behrule, defining the latent learning rules.

result An S4 object of class multiRL.result, which is empty for now, storing trial-level outputs
of the Markov Decision Process.

extra A List containing additional user-defined information.

process_4_output_cpp multiRL.output

Description

multiRL.output

Usage

process_4_output_cpp(record, extra)

Arguments

record multiRL.record

extra A list of extra information passed from R.
Value

An S4 object of class multiRL.output.

input An object of class multiRL.input, containing the raw data, column specifications, param-
eters and ...

behrule An object of class multiRL.behrule, defining the latent learning rules.

result An object of class multiRL.result, storing trial-level outputs of the Markov Decision
Process.

extra A List containing additional user-defined information.

50 process_5_metric

process_4_output_r multiRL.output

Description

multiRL.output

Usage
process_4_output_r(record, ...)
Arguments
record multiRL.record
Additional arguments passed to internal functions.
Value

An S4 object of class multiRL.output.

input An object of class multiRL. input, containing the raw data, column specifications, param-
eters and ...

behrule An object of class multiRL.behrule, defining the latent learning rules.

result An object of class multiRL.result, storing trial-level outputs of the Markov Decision
Process.

extra A List containing additional user-defined information.

process_5_metric multiRL.metric

Description

multiRL.metric

Usage

process_5_metric(output, ...)
Arguments

output multiRL.output

Additional arguments passed to internal functions.

rcv_d 51

Value

An S4 object of class multiRL.metric.

input An S4 object of class multiRL.input, containing the raw data, column specifications, pa-
rameters and ...

behrule An S4 object of class multiRL.behrule, defining the latent learning rules.

result An S4 object of class multiRL. result, storing trial-level outputs of the Markov Decision
Process.

sumstat An S4 object of class multiRL.sumstat, providing summary statistics across different
estimation methods.

extra A List containing additional user-defined information.

rcv_d Step 2: Generating fake data for parameter and model recovery

Description

Step 2: Generating fake data for parameter and model recovery

Usage

rcv_d(
estimate,
data,
colnames,
behrule,
id = NULL,
models,
funcs = NULL,
priors = NULL,
settings = NULL,
algorithm,
lowers,
uppers,
control,

Arguments

estimate Estimate method that you want to use, see estimate
data A data frame in which each row represents a single trial, see data
colnames Column names in the data frame, see colnames

behrule The agent’s implicitly formed internal rule, see behrule

52

id

models
funcs
priors
settings
algorithm
lowers
uppers

control

Value

rev_d

The ID of the subject whose experimental structure (e.g., trial order) will be used
as the template for generating all simulated data. Defaults to the first subject

found in the input data.

Reinforcement Learning Models

The functions forming the reinforcement learning model, see funcs

Prior probability density function of the free parameters, see priors

Other model settings, see settings

Algorithm packages that multiRL supports, see algorithm

Lower bound of free parameters in each model.

Upper bound of free parameters in each model.

Settings manage various aspects of the iterative process, see control

Additional arguments passed to internal functions.

An S3 object of class multiRL.recovery.

simulate A List containing, for each model, the parameters used to simulate the data.

recovery A List containing, for each model, the parameters estimated as optimal by the algo-

rithm.

Example

recovery
recovery.MLE <- multiRL::rcv_d(

estimate = "MLE",

data = multiRL::TAB,
colnames = list(
object = c("L_choice”,
reward = c("L_reward”,
action = "Sub_Choose”
)7
behrule = list(
cue = c("A", "B", "C",
rsp = c("A", "B", "C",

models
priors = list(
list(

alpha = function(x) {stats::rbeta(n

"R_choice"),
"R_reward"),

llDH> ,
MDH)

list(multiRL::TD, multiRL::RSTD, multiRL::Utility),

beta = function(x) {stats::rexp(n = 1, rate = 1)}

),
list(

1, shapel = 2, shape2 = 2)},

1pl_e 53

alphaN = function(x) {stats::rbeta(n = 1, shapel = 2, shape2 = 2)},
alphaP = function(x) {stats::rbeta(n = 1, shapel = 2, shape2 = 2)},
beta = function(x) {stats::rexp(n = 1, rate = 1)}

),

list(
alpha = function(x) {stats::rbeta(n 1, shapel = 2, shape2 = 2)},

beta = function(x) {stats::rexp(n = 1, rate = 1)},
gamma = function(x) {stats::rbeta(n = 1, shapel = 2, shape2 = 2)}
)

),
settings = list(name = c("TD", "RSTD", "Utility")),

algorithm = "NLOPT_GN_MLSL",

lowers = list(c(@, @), c(0, 0, @), c(0, 0, 0)),
uppers = list(c(1, 5), c(1, 1, 5), c(1, 5, 1)),
control = list(core = 10, sample = 100, iter = 100)

rpl_e Step 4: Replaying the experiment with optimal parameters

Description

Step 4: Replaying the experiment with optimal parameters

Usage

rpl_e(
result,
free_params = NULL,
data,
colnames,
behrule,
ids = NULL,
models,
funcs = NULL,
priors = NULL,
settings = NULL,

)
Arguments
result Result from rcv_d or fit_p
free_params In order to prevent ambiguity regarding the free parameters, their names can be

explicitly defined by the user.

data A data frame in which each row represents a single trial, see data

54

colnames
behrule
ids
models
funcs
priors

settings

Value

Column names in the data frame, see colnames

The agent’s implicitly formed internal rule, see behrule

The Subject ID of the participant whose data needs to be fitted.
Reinforcement Learning Models

The functions forming the reinforcement learning model, see funcs
Prior probability density function of the free parameters, see priors
Other model settings, see settings

Additional arguments passed to internal functions.

pl_e

An S3 object of class multiRL.replay. A List containing, for each subject and each fitted model,
the estimated optimal parameters, along with the resulting multiRL.model and multiRL.summary
objects obtained by replaying the model with those parameters.

Example

info
data =
colname
objec
rewar
actio
)
behrule
cue =
rsp =

)

replay.
resul

data
colna
behru

model
setti

omit

)

replay.
resul

data
colna

multiRL: :TAB

s = list(

t = c¢("L_choice"”, "R_choice"),
d = c("L_reward”, "R_reward"),
n = "Sub_Choose”

= list(

C(HAH’ an’ HCH’ HDH)’
C(HAH, MBH’ HCH’ ”DH)

recovery <- multiRL::rpl_e(
t = recovery.MLE,

= data,

mes = colnames,

le = behrule,

s = list(multiRL::TD, multiRL::RSTD, multiRL::Utility),
ngs = list(name = c("TD", "RSTD", "Utility")),

= c("data”, "funcs")
fitting <- multiRL::rpl_e(
t = fitting.MLE,

= data,
mes = colnames,

RSTD 55

behrule = behrule,

models = list(multiRL::TD, multiRL::RSTD, multiRL::Utility),
settings = list(name = c("TD", "RSTD", "Utility")),

omit = c("funcs")

RSTD Risk Sensitive Model

Description

Learning Rate: o

Qnew = Qold +a_ - (R - Qold)a R < Qold
Qnew = Qold + Qy - (R - Qold)a R > Qold

Inverse Temperature: (3

Py(a) =
>iz1exp(B - Qulas))
Usage
RSTD(params)
Arguments
params Parameters used by the model’s internal functions, see params
Value

Depending on the mode and estimate defined in the runtime environment, the corresponding out-
puts for different estimation methods are produced, such as a single log-likelihood value or sum-
mary statistics.

Body
RSTD <- function(params){
params <- list(

free = list(alphaN = params[1], alphaP = params[2], beta = params[3])
)

multiRL.model <- multiRL::run_m(
data = data,

56

behrule = behrule,
colnames = colnames,

params = params,
funcs = funcs,
priors = priors,

settings = settings

run_m

)
assign(x = "multiRL.model”, value = multiRL.model, envir = multiRL.env)
return(.return_result(multiRL.model))
}
run_m Step 1: Building reinforcement learning model
Description

Step 1: Building reinforcement learning model

Usage

run_m(
data,
colnames = list(),
behrule = 1list(),
funcs = list(),
params = list(),
priors = list(),
settings = list(),
engine = "Cpp",

)
Arguments
data A data frame in which each row represents a single trial, see data
colnames Column names in the data frame, see colnames
behrule The agent’s implicitly formed internal rule, see behrule
funcs The functions forming the reinforcement learning model, see funcs
params Parameters used by the model’s internal functions, see params
priors Prior probability density function of the free parameters, see priors
settings Other model settings, see settings
engine Specifies whether the core Markov Decision Process (MDP) update loop is exe-

cuted in C++ or in R.

Additional arguments passed to internal functions.

run_m

Value

An S4 object of class multiRL.model.

57

input An S4 object of class multiRL.input, containing the raw data, column specifications, pa-

behrule An S4 object of class multiRL.behrule, defining the latent learning rules.

rameters and ...

result An S4 object of class multiRL.result, storing trial-level outputs of the Markov Decision

Process.

sumstat An S4 object of class multiRL.sumstat, providing summary statistics across different

estimation methods.

extra A List containing additional user-defined information.

Examples

multiRL.model <- multiRL::run_m(
data = multiRL::TAB[multiRL::TAB[, "Subject"] == 1, 1,
behrule = list(

)Y

cue = C(”A”, ”B”, ”C", "D”),
rsp = C(”A", "B“, ”C", an)

colnames = list(

)?

subid = "Subject”, block = "Block”, trial = "Trial”,

object = c("L_choice”, "R_choice"),
reward = c("L_reward”, "R_reward"),
action = "Sub_Choose",

exinfo = c("Frame”, "NetWorth"”, "RT")

params = list(

free = list(
alpha = 0.5,
beta = 0.5

),

fixed = list(
gamma = 1,
delta = 0.1,
epsilon = NA_real_,
zeta = 0

),

constant = list(
seed = 123,
Q0 = NA_real_,
reset = NA_real_,
lapse = 0.01,
threshold = 1,
bonus = 0,
weight = 1,
capacity = 0,
sticky = @

58 settings

priors = list(
alpha = function(x) {stats::dbeta(x, shapel = 2, shape2 = 2, log = TRUE)},
beta = function(x) {stats::dexp(x, rate = 1, log = TRUE)}
),
settings = list(
name = "TD",
mode = "fitting",
estimate = "MLE",
policy = "off",
system = c("RL", "WM")
),
engine = "R"

)

multiRL.summary <- multiRL::summary(multiRL.model)

settings Settings of Model

Description

The settings argument is responsible for defining the model’s name, the estimation method, and
other configurations.

Class

settings [List]

Slots

¢ name [Character]

The name of model.

e mode [Character]

There are two modes: "fitting" and "simulating”. In most cases, users do not need to
explicitly specify the value of this slot, as the program will set it automatically.

Typically, the "fitting"” mode is used when executing fit_p, while the "simulating” mode
is used when executing rcv_d.

e estimate [Character]

The package supports four estimation methods: Maximum Likelihood Estimation (MLE),
Maximum A Posteriori Estimation (MAP), Approximate Bayesian Computation (ABC), and
Recurrent Neural Network (RNN). Generally, users no longer need to specify the estimation
method in the settings object. This slot has been moved to an argument within the main
functions, rcv_d and fit_p. For details, please refer to the documentation for estimate.

summary,multiRL.model-method 59

e policy [Character]
The naming of this slot as policy is still under consideration.

Colloquially, policy = "on” means the agent selects an option based on its estimated proba-
bility and then updates the value of the chosen option.

Conversely, policy = "of f” means the agent directly mimics human behavior, solely using
its estimated probability and the human’s choice to calculate the likelihood.

For details, please refer to the documentation for policy.

e system [Character]

In decision-making paradigms, multiple systems may operate jointly to influence human de-
cisions. These systems can include a reinforcement learning system, as well as working mem-
ory, and even habitual choice tendencies.

If system="RL", the learning process follows the Rescorla-Wagner (RW) model using a
learning rate less than 1, representing a slow, incremental value update system.

If system = "WM", the process still follows the Rescorla-Wagner (RW) model but with a fixed
learning rate of 1, functioning as a pure memory system that immediately updates an option’s
value.

If system=c("RL", "WM"), the agent maintains two distinct Q-tables, one for reinforcement
learning (RL) and one for working memory (WM), during the decision-making process, inte-
grating their values based on the provided weight to determine the final choice.

For details, please refer to the documentation for system.

Example

model settings
settings = list(
name = "TD",
mode = "fitting",
estimate = "MLE",
policy = "off",
system = "RL"

summary,multiRL.model-method
summary

Description

summary

Usage

S4 method for signature 'multiRL.model'
summary (object, ...)

60 system

Arguments

object multiRL.model.

Value

multiRL.summary

system Cognitive Processing System

Description

In a Markov Decision Process, an agent may not update only a single Q-value table. In other words,
the process may not be governed by a single cognitive processing system, but rather by a weighted
combination of multiple cognitive systems. Specifically, each cognitive processing system updates
its own Q-value table and, based on that table, derives the probabilities of executing each action on
a given trial. The agent then combines the action-selection probabilities provided by each cognitive
system using weights to obtain the final probability of executing each action.

Class

system [Character]

Detail

» Reinforcement Learning: An incremental cognitive processing system that integrates reward
history over long timescales to build stable action-value representations through prediction
errors. It is robust but slow to adapt to sudden changes.

* Working Memory: A rapid-acquisition cognitive processing system that allows for near-
instantaneous updating of stimulus-response associations. However, its contribution is strictly
constrained by limited storage capacity and is highly susceptible to decay over time or inter-
ference from intervening trials.

Example

* system="RL": A single-system model based on incremental Reinforcement Learning (RL).
The agent updates option values using a learning rate (alpha) typically less than 1, representing
a slow, integrative process linked to corticostriatal circuitry.

* system="WM": A single-system model representing Working Memory (WM). Unlike RL, this
system has the capacity to instantly update values with a fixed learning rate of 1, effectively
"remembering" the most recent outcome for each stimulus.

TAB 61

e system=c("RL", "WM"): A hybrid model where Reinforcement Learning (RL) and Working
Memory (WM) systems operate in parallel, maintaining two distinct Q-value tables. The final
decision is a weighted integration of both systems’ choice probabilities. The contribution
of Working Memory (WM) is constrained by its capacity; if the stimulus set size exceeds
capacity, the agent’s reliance shifts toward the Reinforcement Learning (RL) system as the
Working Memory (WM) reliability diminishes. See capacity in params for details.

If one assumes that multiple cognitive processing systems are involved in the Markov Decision
Process, their relative influence can be controlled by assigning weights to each system. See
weight in params for details.

References

Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory,
not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European
Journal of Neuroscience, 35(7), 1024-1035. doi:10.1111/§.14609568.2011.07980.x

TAB Group 2 from Mason et al. (2024)

Description

This dataset originates from Experiment 2 of Mason et al. (2024), titled "Rare and extreme out-
comes in risky choice" (doi:10.3758/s1342302302415x). The raw data is publicly available on the
Open Science Framework (OSF) at https://osf.io/hy3q4/. For the purposes of this package,
we’ve performed basic cleaning and preprocessing of the original dataset.

Format

A data frame with 45000 rows and 11 columns:

Subject Subject ID, an integer (total of 143).
Block Block number, an integer (1 to 6).
Trial Trial number, an integer (1 to 60).
L_choice Left choice, a character indicating the option presented. The possible options are:
* A: 100% gain 36.
* B: 90% gain 40 and 10% gain 0.
* C: 100% lose 36.
* D: 90% lose 40 and 10% lose 0.
R_choice Right choice, a character indicating the option presented. The possible options are:
* A: 100% gain 36.
* B: 90% gain 40 and 10% gain 0.
* C: 100% lose 36.
* D: 90% lose 40 and 10% lose 0.

L_reward Reward associated with the left choice.

https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.3758/s13423-023-02415-x
https://osf.io/hy3q4/

62 TD

R_reward Reward associated with the right choice.

Sub_Choose The chosen option, either L_choice or R_choice.

Frame Type of frame, a character string (e.g., "Gain", "Loss", "Catch").
NetWorth The participant’s net worth at the end of each trial.

RT The participant’s reaction time (in milliseconds) for each trial.

D Temporal Differences Model

Description

Learning Rate: o

Qnew = Qold +a- (R - Qold)

Inverse Temperature: (3

Py(a) =
> iz €xp(B - Qilai))
Usage
TD(params)
Arguments
params Parameters used by the model’s internal functions, see params
Value

Depending on the mode and estimate defined in the runtime environment, the corresponding out-
puts for different estimation methods are produced, such as a single log-likelihood value or sum-
mary statistics.

Body

TD <- function(params){

params <- list(
free = list(alpha = params[1], beta = params[2])
)

multiRL.model <- multiRL::run_m(
data = data,
behrule = behrule,
colnames = colnames,

Utility 63

params = params,
funcs = funcs,
priors = priors,
settings = settings

)
assign(x = "multiRL.model”, value = multiRL.model, envir = multiRL.env)
return(.return_result(multiRL.model))
}
Utility Utility Model
Description

Learning Rate: o

Qnew = Qold + - (U(R) - Qold)

Inverse Temperature: (3

Stevens’ Power-law Exponent:

UR)=R"
Usage
Utility(params)
Arguments
params Parameters used by the model’s internal functions, see params
Value

Depending on the mode and estimate defined in the runtime environment, the corresponding out-
puts for different estimation methods are produced, such as a single log-likelihood value or sum-
mary statistics.

64 Utility

Body

Utility <- function(params){

params <- list(
free = list(alpha = params[1], beta = params[2], gamma = params[3])

)

multiRL.model <- multiRL::run_m(
data = data,
behrule = behrule,
colnames = colnames,
params = params,
funcs = funcs,
priors = priors,
settings = settings

)

assign(x = "multiRL.model”, value = multiRL.model, envir = multiRL.env)
return(.return_result(multiRL.model))

Index

algorithm, 3, 13, 16-18, 22, 23, 52

behrule, 4, 11, 12, 15, 17-20, 22, 23,48, 51,
54, 56

colnames, 5, 11, 12, 15, 17-20, 22, 23,47, 51,
54, 56
control, 6, 11, 12, 16-23, 52

data, 9,11, 12, 15, 17-20, 22, 23,47, 51, 53,
56

engine_ABC, 10
engine_RNN, 11
estimate, 12, 22, 23,51, 58
estimate_0_ENV, 15
estimate_1_LBI, 16
estimate_1_MAP, 16
estimate_1_MLE, 18
estimate_2_ABC, 19
estimate_2_RNN, 20
estimate_2_SBI, 21
estimation_methods, 21

fit_p, 23

func_alpha, 28

func_beta, 30

func_delta, 32

func_epsilon, 33

func_gamma, 35

func_zeta, 37

funcs, 11, 12,15, 17-20, 22, 23, 24,47, 52,
54, 56

MAB, 38

params, 28, 30, 32, 34, 36, 37,39, 47, 55, 56,
61-63

plot.multiRL.replay, 43

policy, 44, 59

priors, 11, 12,15, 17-23, 45,47, 52, 54, 56

65

process_1_input, 46
process_2_behrule, 48
process_3_record, 48
process_4_output_cpp, 49
process_4_output_r, 50
process_5_metric, 50

rcv_d, 51
rpl_e, 53
RSTD, 55

run_m, 56

settings, 11, 12, 15, 17-20, 22, 23,47, 52,
54, 56, 58

summary,multiRL.model-method, 59

system, 28, 30, 37, 59, 60

TAB, 61
D, 62

Utility, 63

	algorithm
	behrule
	colnames
	control
	data
	engine_ABC
	engine_RNN
	estimate
	estimate_0_ENV
	estimate_1_LBI
	estimate_1_MAP
	estimate_1_MLE
	estimate_2_ABC
	estimate_2_RNN
	estimate_2_SBI
	estimation_methods
	fit_p
	funcs
	func_alpha
	func_beta
	func_delta
	func_epsilon
	func_gamma
	func_zeta
	MAB
	params
	plot.multiRL.replay
	policy
	priors
	process_1_input
	process_2_behrule
	process_3_record
	process_4_output_cpp
	process_4_output_r
	process_5_metric
	rcv_d
	rpl_e
	RSTD
	run_m
	settings
	summary,multiRL.model-method
	system
	TAB
	TD
	Utility
	Index

