Package ‘optree’

February 16, 2026
Title Hierarchical Runtime Configuration Management
Version 0.1.0

Description Provides tools for managing nested, multi-level configuration systems with
runtime mutability, type validation, and default value management. Supports creating
hierarchical options managers with customizable validators for scalar and vector types
(numeric, character, logical), enumerated values, bounded ranges, and complex structures
like XY pairs. Options can be dynamically modified at runtime while maintaining type
safety through validator functions, and easily reset to their default values when needed.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>=4.1.0)

Suggests testthat (>= 3.0.0), knitr, rmarkdown
VignetteBuilder knitr
Config/testthat/edition 3

URL https://optree.bangyou.me/, https://github.com/byzheng/optree

BugReports https://github.com/byzheng/optree/issues
NeedsCompilation no

Author Bangou Zheng [aut, cre]

Maintainer Bangou Zheng <zheng.bangyou@gmail.com>
Repository CRAN

Date/Publication 2026-02-16 17:20:07 UTC

Contents

create_OptionS_MANAZET v v v e e e e e e e e e e e e e
v_character_scalar
VoMU . . o v ot e e e e e e e e e e e e e
v_logical_scalar L.
V_NUMELIC_TANZE . .« v o o o v v e v e e e e e e e e e e e e e e e

https://optree.bangyou.me/
https://github.com/byzheng/optree
https://github.com/byzheng/optree/issues

2 create_options_manager

v_numeric_scalar e e 7
V_NUMETIC_VECIOT v v v v e e e e e e e e e e e e e e e 7
VoXYPAIT « o v v e e e e e e e e e e e e e 8
Index 10

create_options_manager
Create a hierarchical, mutable options manager

Description

create_options_manager() creates a runtime configuration manager that supports nested op-
tions, group validation, and resetting to defaults. It is ideal for managing complex, interdepen-
dent settings in R packages or projects.

Usage

create_options_manager(defaults, validators = list())

Arguments
defaults A named list specifying the default values of the options. Nested lists can be
used to represent hierarchical groups of related options.
validators An optional named list of functions used to validate options. Each function
should take a single argument (the value being set) and throw an error if the
value is invalid. Names correspond to option paths, e.g., "thermaltime"” for a
top-level group.
Details

This manager allows you to safely store and update related groups of options. For example, a
thermaltime group might have x and y vectors that must always have the same length. Using
validators ensures that these relationships are maintained whenever options are updated.

The manager supports merge-aware updates, meaning that if a nested list is provided, only the
specified elements are updated while others are preserved.

Dot-separated path notation: The set () function now accepts path strings like "phenology.thermaltime.y”
=c(0, 25, 0), which are automatically converted to nested lists internally. This provides a more
concise syntax for updating deeply nested options without reconstructing the entire hierarchy.

Transactional updates: If validation fails during a set() call, all changes are rolled back and
the options remain in their previous state. This ensures that the options manager is always in a
consistent state.

create_options_manager 3

Value
A list with three functions:

get(name =NULL) Retrieve the current value of an option. Use a dot-separated string for nested
options, e.g., "thermaltime.x". If name is NULL, returns all current options.

set(...) Update one or more options by name. Accepts named arguments in two formats: (1)
dot-separated paths like "phenology. thermaltime.y"” = ... or (2) nested lists like thermaltime
=1list(x=..., y=...). Bothstyles can be mixed in a single call. Validators are automati-
cally applied if provided.

reset() Reset all options to their default values.

Examples

Define a validator for a group
thermaltime_validator <- function(value) {
if (lis.list(value) || !all(c("x", "y") %in% names(value))) {
stop(”"thermaltime must be a list with both x and y")
}
if (length(value$x) != length(value$y)) stop("thermaltime x and y must have same length")
3

Create a manager
canola <- create_options_manager(
defaults = list(
thermaltime = list(x = c(2, 30, 35), y = c(0, 28, 0)),
frost_threshold = @

)7
validators = list(

"thermaltime” = thermaltime_validator
)

)

Access and update (both methods work)
canola$get("thermaltime.x")

Method 1: Use dot-separated path strings (concise!)
canola$set("thermaltime.y"” = c(0, 25, 0))
canola$set("thermaltime.x" = c(5, 25, 40))

Method 2: Use nested list (traditional way)
canola$set(thermaltime = list(x = c(5, 25, 40), y = c(0Q, 20, 0)))

Method 3: Mix both styles in one call
canola$set(
"thermaltime.x" = c(10, 30, 45),
frost_threshold = -2
)

Reset to defaults
canolas$reset()

4 V_enum

v_character_scalar Validator for Character Scalar Values

Description

v_character_scalar() returns a validator function that checks if a value is a single character

value. This is useful as a validator function for options managers created with create_options_manager().
Usage

v_character_scalar()

Value
A validator function that takes a value x and raises an error if:

* x is not a single character value

* X is an empty string

Examples

Create a validator for non-empty character scalars
validator <- v_character_scalar()

Valid input
validator(”hello")

Invalid inputs (would raise errors)
try(validator(c("hello”, "world"))) # vector, not scalar
try(validator(123)) # numeric, not character

v_enum Validator for Enumerated Character Values

Description

v_enum() returns a validator function that checks if a value is a single character value matching one
of a predefined set of choices. This is useful for options that must be one of several allowed values.

Usage

v_enum(choices)

Arguments

choices A character vector of allowed values.

v_logical_scalar 5

Value
A validator function that takes a value x and raises an error if:

* X is not a single character value

* x is not in the predefined choices

Examples

Create a validator for one of several color choices
validator <- v_enum(choices = c("red”, "green", "blue"))

Valid inputs
validator("red")
validator("blue")

Invalid inputs (would raise errors)
try(validator("yellow")) # not in choices
try(validator(c("red”, "blue"))) # vector, not scalar
try(validator(1)) # numeric, not character

v_logical_scalar Validator for Logical Scalar Values

Description
v_logical_scalar() returns a validator function that checks if a value is a single logical value.
This is useful as a validator function for options managers created with create_options_manager ().
Usage

v_logical_scalar()

Value

A validator function that takes a value x and raises an error if x is not a single logical value.

Examples

Create a validator for logical scalars
validator <- v_logical_scalar()

Valid input
validator(TRUE)

Invalid inputs (would raise errors)
try(validator(c(TRUE, FALSE))) # vector, not scalar
try(validator(1)) # numeric, not logical

6 v_numeric_range

v_numeric_range Validator for Numeric Values Within a Range

Description

v_numeric_range() returns a validator function that checks if a value is a single numeric value
within a specified range. This is useful as a validator function for bounded numeric options in
options managers created with create_options_manager ().

Usage
v_numeric_range(min = -Inf, max = Inf)
Arguments
min Minimum allowed value (inclusive). Defaults to -Inf (no lower bound).
max Maximum allowed value (inclusive). Defaults to Inf (no upper bound).
Value

A validator function that takes a value x and raises an error if:

* X is not a single numeric value

* x is less than min or greater than max

Examples

Create a validator for values between @ and 1
validator <- v_numeric_range(min = @, max = 1)

Valid inputs
validator(0.5)
validator (@)
validator(1)

Invalid inputs (would raise errors)
try(validator(-0.1)) # below minimum
try(validator(1.5)) # above maximum
try(validator(c(@0.5, 0.7))) # vector, not scalar

v_numeric_scalar 7

v_numeric_scalar Validator for Numeric Scalar Values

Description
v_numeric_scalar() returns a validator function that checks if a value is a single numeric value.
This is useful as a validator function for options managers created with create_options_manager ().
Usage

v_numeric_scalar()

Value

A validator function that takes a value x and raises an error if x is not a single numeric value.

Examples

Create a validator for numeric scalars
validator <- v_numeric_scalar()

Valid input
validator(42)

Invalid inputs (would raise errors)
try(validator(c(1, 2, 3))) # vector, not scalar
try(validator("text")) # not numeric

v_numeric_vector Validator for Numeric Vectors

Description

v_numeric_vector () returns a validator function that checks if a value is a numeric vector meeting
specified length and finiteness requirements. This is useful for options requiring numeric sequences
or datasets.

Usage

v_numeric_vector(min_len = 1, finite = TRUE)

Arguments
min_len Minimum length required for the vector. Defaults to 1.
finite If TRUE (default), rejects non-finite values (Inf, -Inf, NaN). If FALSE, non-

finite values are allowed.

8 V_Xypair

Value
A validator function that takes a value x and raises an error if:

* X 1S not numeric
¢ x has fewer than min_len elements
¢ x contains NA values

e finite is TRUE and x contains non-finite values

Examples

Create a validator for numeric vectors of at least length 3
validator <- v_numeric_vector(min_len = 3)

Valid input
validator(c(1, 2, 3))
validator(c(@.5, 1.5, 2.5, 3.5))

Invalid inputs (would raise errors)

try(validator(c(1, 2))) # too short

try(validator(c(1, NA, 3))) # contains NA
try(validator(c(1, Inf, 3))) # contains non-finite value
try(validator(”not numeric”)) # not numeric

v_xypair Validator for XY Pair Lists

Description

v_xypair() returns a validator function that checks if a value is a list with paired x and y com-
ponents of equal length. This is useful for validating paired data structures in options managers
created with create_options_manager().

Usage

v_xypair(min_len = 1)

Arguments

min_len Minimum length required for the x and y vectors. Defaults to 1.

Value

A validator function that takes a value (typically a list with x and y components) and raises an error
if:
* The value is not a list

¢ The list does not contain both x and y named elements

V_Xypair

Examples

Either x or y is NULL

Either x or y is not an atomic vector
Either x or y contains NA values

The x and y vectors have different lengths

The vectors are shorter than min_len

Create a validator for XY pairs with minimum length 2
validator <- v_xypair(min_len = 2)

Valid input

validator(list(x = c(1, 2, 3), y = c(10, 20, 30)))

Invalid inputs (would raise errors)

try(validator(list(x
try(validator(list(x
try(validator(list(x
try(validator(list(x

c(1), y = c(190))))

c(1, 2), y =c(10, 20, 30)))) # different lengths
c(1, NA), y = c(10, 20)))) # contains NA

c(1, 2)))) # missing y

Index

create_options_manager, 2
create_options_manager(), 4-8

v_character_scalar, 4
v_enum, 4
v_logical_scalar, 5
v_numeric_range, 6
v_numeric_scalar, 7
v_numeric_vector, 7
v_xypair, 8

10

	create_options_manager
	v_character_scalar
	v_enum
	v_logical_scalar
	v_numeric_range
	v_numeric_scalar
	v_numeric_vector
	v_xypair
	Index

