Package ‘spanner’

February 3, 2026

Type Package

Title Utilities to Support Lidar Applications at the Landscape,
Forest, and Tree Scale

Version 1.0.2
Date 2026-01-19

Description
Implements algorithms for terrestrial, mobile, and airborne lidar processing, tree detection,
segmentation, and attribute estimation (Donager et al., 2021)
<doi:10.3390/rs13122297>, and a hierarchical patch delineation algorithm
'PatchMorph' (Girvetz & Greco, 2007) <doi:10.1007/s10980-007-9104-8>. Tree
detection uses rasterized point cloud metrics (relative neighborhood density and
verticality) combined with RANSAC cylinder fitting to locate tree boles and estimate
diameter at breast height. Tree segmentation applies graph-theory approaches inspired
by Tao et al. (2015) <doi:10.1016/j.isprsjprs.2015.08.007> with cylinder fitting
methods from de Conto et al. (2017) <doi:10.1016/j.compag.2017.07.019>. PatchMorph
delineates habitat patches across spatial scales using organism-specific thresholds.
Built on 'lidR' (Roussel et al., 2020) <doi:10.1016/j.rse.2020.112061>.

URL https://github.com/bi@m3trics/spanner

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

RdMacros mathjaxr

LinkingTo 1idR, RcppArmadillo, Repp (>= 1.0.13), ReppEigen, BH,

Imports Rcpp (>= 1.0.13), conicfit, FNN, RANN, cppRouting, sf, terra,
sfheaders, Rfast, geometry, dplyr, mathjaxr, data.table

Depends R (>=4.0.0), lidR (>=4.2.0),
Suggests testthat (>= 3.0.0), magick, rgl, rstac
Config/testthat/edition 3

NeedsCompilation yes

https://doi.org/10.3390/rs13122297
https://doi.org/10.1007/s10980-007-9104-8
https://doi.org/10.1016/j.isprsjprs.2015.08.007
https://doi.org/10.1016/j.compag.2017.07.019
https://doi.org/10.1016/j.rse.2020.112061
https://github.com/bi0m3trics/spanner

Author Andrew Sanchez Meador [aut, cre, ctb] (ORCID:

<https://orcid.org/0000-0003-4238-8587>),

Jonathon Donager [aut, ctb] (ORCID:
<https://orcid.org/0000-0001-9448-1703>),

Blackburn Ryan [aut, ctb] (ORCID:
<https://orcid.org/0000-0002-2952-0865>),

Cannon Jeffery [ctb] (ORCID: <https://orcid.org/0000-0002-8436-8712>),

Tiago de Conto [ctb, cph] (Author of included TreeLS code),

Keith O'Hara [ctb, cph] (Author of included OptimLib code)

Maintainer Andrew Sanchez Meador <Andrew.SanchezMeador@nau. edu>
Repository CRAN
Date/Publication 2026-02-03 10:30:02 UTC

Contents

colorize_las

colorize_las e 2
create_rotation_gif 4
cylinderFit 6
download_naip_for_las 7
CIZEN_MELTICS v v v it e e e e e e e e e e e e e e e e 8
get_raster_eigen_treelocs L 10
[aS2XYZ . . o . e e e e e 12
merge_las_colors e 13
plot_raster_by_name e 14
process_rasters_patchmorph o oL oo 15
process_tree_data L Lo e e e e 16
SegmMeNt_graph e e e e e e e 18
spanner_pal L 21
sum_rasters_by_suitability oL 22

Index 24

colorize_las Colorize a LAS object using multiple methods
Description

Colors a LAS object using one of three methods: attribute-based coloring, raster-based RGB color-

ing, or PCV (Portion de Ciel Visible) ambient occlusion.

Usage

colorize_las(
las,
method = "attr”,
attribute_name = NULL,

https://orcid.org/0000-0003-4238-8587
https://orcid.org/0000-0001-9448-1703
https://orcid.org/0000-0002-2952-0865
https://orcid.org/0000-0002-8436-8712

colorize_las

palette = c("black”, "white"),

raster_path =

radius = 1,

NULL,

num_directions = 60,
kernel_size = 5,
pixel_size = 0.1,

num_samples =
ncpu = 4
)
Arguments
las
method

attribute_name

palette

raster_path

radius

num_directions

kernel_size

pixel_size

num_samples

ncpu

Details

16,

LAS object to colorize

Character string specifying the coloring method: "attr" for attribute-based, "rgb"
for raster-based, or "pcv" for ambient occlusion. Default is "attr".

Character string specifying the attribute name (required for method="attr"). The
attribute must exist in the LAS data.

Character vector of at least two colors for the color ramp (used with method="attr",
"pcv", or "ssao"). Colors can be hex codes (e.g., "#FF0000") or named colors
(e.g., "red"). Default is grayscale.

Character string or vector of paths to raster files (required for method="rgb").
Can be a single RGB raster or three separate rasters for R, G, and B channels.

Numeric radius for neighborhood search in PCV calculation (method="pcv").
Default is 1.0.

Integer number of directional rays for PCV calculation (method="pcv"). Default
is 60.

Integer kernel size in pixels for SSAO sampling (method="ssao"). Default is 5.

Numeric resolution of the depth map in spatial units (method="ssao"). Default
is 0.1.

Integer number of samples per point for SSAO (method="ssao"). Default is 16.

Integer number of CPUs to use for parallel processing (method="pcv" or "ssao").
Default is 4.

The function supports four coloring methods:

attr Attribute-based coloring: normalizes attribute values and maps them to colors using the palette.

rgb Raster-based coloring: extracts RGB values from georeferenced raster(s) that align with the
point cloud. Requires matching CRS between LAS and raster. Can use a single 3-band RGB
raster or three separate rasters.

pev PCV (Portion de Ciel Visible): computes 3D ambient occlusion by calculating sky visibility
for each point. Based on the algorithm from Duguet & Girardeau-Montaut (2004). More
accurate but slower than SSAO.

ssao SSAO (Screen Space Ambient Occlusion): fast ambient occlusion using 2D depth map tech-
niques. Projects points to a depth buffer and calculates occlusion based on depth differences.
Much faster than PCV.

4 create_rotation_git

Value

A LAS object with updated R, G, and B fields based on the selected method.

Examples

LASfile <- system.file("extdata”, "ALS_Clip.laz"”, package="spanner")
las <- readLAS(LASfile, select = "xyz")

Attribute-based coloring
las_colored <- colorize_las(las, method="attr"”, attribute_name="Z",
palette=c("blue”, "green”, "yellow”, "red"))

Raster-based coloring with RGB file
rgb_file <- system.file("extdata”, "UAS_Clip_RGB.tif", package="spanner")
las_colored <- colorize_las(las, method="rgb", raster_path=rgb_file)

PCV ambient occlusion (slow, high quality)
las_colored <- colorize_las(las, method="pcv"”, radius=1.0,
num_directions=30, palette=c("black”, "white"))

SSAO ambient occlusion (faster alternative to PCV)
las_colored <- colorize_las(las, method="ssao”, pixel_size=0.1,
kernel_size=5, num_samples=16, palette=c("black”, "white"), ncpu=8)

create_rotation_gif Create animated GIF of rotating 3D point cloud

Description

Generates a 360-degree rotating animation of a LAS point cloud using rgl and saves it as an ani-
mated GIF.

Usage

create_rotation_gif/(
las,
output_path = "pointcloud_rotation.gif",
duration = 12,

rpm = 5,
background = "white",
axis = "z",

show_axis = TRUE,
show_legend = TRUE,
screen_size = c(800, 600),
overwrite = FALSE

create_rotation_gif 5

Arguments
las LAS object to visualize. Should have R, G, B fields for color.
output_path Character string specifying output GIF file path. Default is "pointcloud_rotation.gif".
duration Numeric duration of the animation in seconds. Default is 12.
rpm Numeric rotations per minute for the spin. Default is 5.
background Character string specifying background color. Default is "white".
axis Character specifying rotation axis: "z" for vertical rotation (default), "x" for

horizontal rotation, "y" for front-to-back rotation.
show_axis Logical whether to show axes. Default is TRUE.

show_legend Logical whether to show legend. Default is TRUE.

screen_size Numeric vector of length 2 specifying window dimensions as c(width, height).
Default is ¢(800, 600).
overwrite Logical whether to overwrite existing output file. Default is FALSE.
Details

This function creates a smooth 360-degree rotation animation by:

* Plotting the point cloud using lidR’s plot function with RGB colors
 Using rgl’s movie3d and spin3d to create smooth rotation

 Saving the result as an animated GIF

The rotation speed is controlled by the rpm (rotations per minute) parameter. The total duration
determines how long the animation will be.

Requires the rgl package and lidR for plotting.

Value

Character string of the output file path (invisible)

Examples

Load example LAS file
LASfile <- system.file("extdata”, "ALS_Clip.laz", package="spanner")
las <- readLAS(LASfile)

Create basic rotation GIF with attribute coloring
las_colored <- colorize_las(las, method="attr"”, attribute_name="Z")
create_rotation_gif(las_colored, output_path=tempfile(fileext = ".gif"))

High quality with specific settings
create_rotation_gif(las_colored,
output_path=tempfile(fileext = ".gif"),
duration=15,
rpm=10,
background="black",
show_axis=FALSE,

6 cylinderFit

show_legend=FALSE)

Rotate around X axis for side-to-side view
create_rotation_gif(las_colored, output_path=tempfile(fileext = ".gif"), axis="x")

cylinderFit Point cloud cylinder fitting as per de Conto et al. 2017 as implemented
here: https://github.com/tiagodc/TreeLS

Description

Fits a cylinder on a set of 3D points.

Usage
cylinderFit(
las,
method = "ransac”,
n =25,
inliers = 0.9,
conf = 0.95,
max_angle = 30,
n_best = 20
)
Arguments
las LAS normalized and segmented las object.
method method for estimating the cylinder parameters. Currently available: "nm”, "irls”,
"ransac” and "bf".
n number of points selected on every RANSAC iteration.
inliers expected proportion of inliers among stem segments’ point cloud chunks.
conf confidence level.
max_angle used when method == "bf". The maximum tolerated deviation, in degrees, from
an absolute vertical line (Z = ¢(0,0,1)).
n_best estimate optimal RANSAC parameters as the median of the n_best estimations
with lowest error.
Value

vector of parameters

download_naip_for_las

Examples

Define the cylinder attributes

npts = 500
cyl_length = 0.5
radius = 0.2718

Generate the X,Y,Z values

Z=runif(n = npts,
angs = runif(npts
X = sin(angs)*rad
Y = cos(angs)*rad

min = @, max = cyl_length)
, 0, 2%pi)

ius

ius

Creation of a LAS object out of external data

cloud <- LAS(data

.frame(X,Y,Z))

Fit a cylinder and retrun the information

cyl_par = spanner

::cylinderFit(cloud, method = 'ransac', n=5, inliers=.9,
conf=.95, max_angle=30, n_best=20)

download_naip_for_las Download NAIP Imagery for LIDAR Extent

Description

Downloads NAIP (National Agriculture Imagery Program) imagery from Microsoft Planetary Com-
puter STAC API for the extent of a LAS/LAZ point cloud.

Usage

download_naip_for_las(

las,
output_path =

NULL,

year_range = c("2018-01-01", "2023-12-31"),

buffer = 0,

overwrite = FALSE

Arguments

las
output_path

year_range

buffer

overwrite

A LAS object or path to a LAS/LAZ file

Character string specifying output file path for the downloaded imagery. If
NULL, creates a file named based on the input LAS file.

Character vector of length 2 specifying date range for NAIP imagery in format
c("YYYY-MM-DD", "YYYY-MM-DD"). Default is c("2018-01-01", "2023-
12-31").

Numeric value to buffer the extent in meters. Default is 0.

Logical, whether to overwrite existing output file. Default is FALSE.

8 eigen_metrics

Details

This function queries the Microsoft Planetary Computer STAC API to find and download NAIP
imagery that overlaps with the extent of the input LAS file. The imagery is automatically cropped
to match the LiDAR extent and saved as a GeoTIFF.

NAIP imagery is typically 4-band (RGB + NIR) with 0.6m or 1m resolution, collected annually or
biannually across the continental United States.

Requires the rstac package for STAC API access.

Value

Character string of the output file path, or NULL if download failed.

Examples

Load example LAS file
LASfile <- system.file("extdata”, "ALS_Clip.laz", package="spanner")
las <- readlLAS(LASfile)

Download NAIP for a LAS file
naip_path <- download_naip_for_las(las, output_path = tempfile(fileext = ".tif"))

Download with buffer and specific year range

naip_path2 <- download_naip_for_las(las, buffer = 10,
output_path = tempfile(fileext = ".tif"),
year_range = c("2020-01-01", "2023-12-31"))

Then use with colorize_las

las_colored <- colorize_las(las, method = "rgb"”, raster_path = naip_path)
eigen_metrics Calculates eigen decomposition metrics for fixed neighborhood point
cloud data
Description

This function calculates twelve (plus the first and second PCA) for several point geometry-related
metrics (listed below) in parallel using C++ for a user-specified radius.

Usage

eigen_metrics(las = las, radius = @.1, ncpu = 8)

Arguments
las LAS Normalized las object.
radius numeric the radius of the neighborhood

ncpu integer the number of cpu’s to be used in parallelfor the calculation

eigen_metrics 9

Value

A labeled data.table of point metrics for each point in the LAS object

List of available point metrics

eLargest: first eigenvalue, \;

eMedium: second eigenvalue, A,
eSmallest: third eigenvalue, A3

eSum: sum of eigenvalues, Y7 = \;
Curvature: surface variation, As/ Z?:f Ai

Omnivariance: high values correspond to spherical features and low values to planes or linear
features, (A1 * Ao * \3)'/3

Anisotropy: relationships between the directions of the point distribution, (A; — A3)/A;
Eigentropy: entropy in the eigenvalues, — Z?:lg i x In(\;)

Linearity: linear saliency, (A1 — A2)/A\;

Verticality: vertical saliency, 1 — abs({(0,0, 1), e3))

Planarity: planar saliency, (A2 — A3)/ A1

Sphericity: spherical saliency, Az /A;

Nx,Ny,Nz: 3 components of the normal vector (smallest eigenvector)

SurfaceVariation: surface variation (change of curvature), same as Curvature
ChangeCurvature: alternative name for surface variation

SurfaceDensity: 2D point density using circle area, k /(7 R?)

VolumeDensity: 3D point density using sphere volume, k/(%ﬂ'RB)

MomentOrder1: Ist order moment from CloudCompare, projection onto 2nd eigenvector,
m?2 /ma

NormalChangeRate: normal change rate, same as Curvature, A3/ Z?:f Y

Roughness: distance from query point to fitted plane, \cf -1

(U4 F2) fow—2Fa Fy Foy+ A+ 12) fyy

MeanCurvature: mean curvature from quadric surface fitting, H = 2121207

_r2
GaussianCurvature: Gaussian curvature from quadric surface fitting, K = w

x y
PCA1: eigenvector projection variance normalized by eigensum, 0%, / Z;ff’ A

PCA2: eigenvector projection variance normalized by eigensum, 0%,/ 221::13 A

NumNeighbors: number of points in the spherical neighborhood, k

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las <- readLAS(LASfile)
eigen = eigen_metrics(las, radius=2, ncpu=4)

10

get_ras ter_ei gen_ treelocs

get_raster_eigen_treelocs

Obtain tree information by rasterizing point cloud values of relative
neighborhood density and verticality within a slice of a normalized

point cloud

Description

get_raster_eigen_treelocs returns a data.frame containing TreelID, X, Y, Z, Radius and Error

in the same units as the .las

Usage
get_raster_eigen_treelocs(
las = las,
res = 0.05,

pt_spacing = 0.0254,
dens_threshold = 0.2,
neigh_sizes = c(0.333, 0.166,
eigen_threshold = 0.6666),
grid_slice_min = 0.6666,
grid_slice_max = 2,
minimum_polygon_area = 0.025,
cylinder_fit_type = "ransac”,
max_dia = 0.5,

SDvert = 0.25,

n_best = 25,
n_pts = 20,
inliers = 0.9,
conf = 0.99,
max_angle = 20
)
Arguments
las LAS Normalized las object.
res numeric Pixel width of rasterized point cloud metrics.
pt_spacing numeric Subsample spacing for graph connections.
dens_threshold numeric Minimum point density in raster cell to be considered as potential tree
bole.
neigh_sizes numeric Vector for verticality and relative density (small and large neighbor-

hoods) calculations
eigen_threshold

numeric Minimum average verticality in raster cell to be considered as potential

tree bole.

get_raster_eigen_treelocs 11

grid_slice_min numeric Lower bound of point cloud slice in normalized point cloud.

grid_slice_max numeric Upper bound of point cloud slice in normalized point cloud.
minimum_polygon_area

numeric Smallest allowable polygon area of potential tree boles.
cylinder_fit_type

character Choose "ransac" or "irls" cylinder fitting.

max_dia numeric The max diameter (in m) of a resulting tree (use to eliminate commis-
sion errors).

SDvert numeric The standard deviation threshold below which polygons will be consid-
ered as tree boles.

n_best integer number of "best" ransac fits to keep when evaluating the best fit.

n_pts integer number of point to be selected per ransac iteraiton for fitting.

inliers integer expected proportion of inliers among cylinder points

conf numeric confidence level

max_angle numeric maximum tolerated deviation, in degrees, from vertical.

Details

For terrestrial and mobile lidar datasets, tree locations and estimates of DBH are provided by ras-
terizing individual point cloud values of relative neighborhood density (at 0.3 and 1 m radius) and
verticality within a slice of the normalized point cloud around breast height (1.34 m). The algorithim
then uses defined threshold values to classify the resulting rasters and create unique polygons from
the resulting classified raster. These point-density and verticality polygons were selected by their
intersection with one another, resulting in a final set of polygons which were used to clip out re-
gions of the point cloud that were most likely to represent tree boles. A RANSAC cylinder fitting
algorithm was then used to estimate the fit of a cylinder to individual bole points. Cylinder centers
and radius were used as inputs to an individual tree segmentation

Value

sf A sf object containing the following tree seed information: TreeID, Radius, and Error in the
same units as the .las, as well as the point geometry

Examples

Set the number of threads to use in lidR
set_lidr_threads(8)

LASfile = system.file("extdata”, "TLS_Clip.laz”, package="spanner")
las = readTLSLAS(LASfile, select = "xyzcr", "-filter_with_voxel 0.01")
Don't forget to make sure the las object has a projection
sf::st_crs(las) <- 26912

Pre-process the example lidar dataset by classifying the ground and noise points
using lidR::csf(), normalizing it, and removing outlier points
using lidR::ivf()

12

od o H

#
#

#

las

las
las
las

classify_ground(las, csf(sloop_smooth = FALSE,

class_threshold = 0.5,

las2xyz

cloth_resolution = 0.5, rigidness = 1L,
iterations = 500L, time_step = 0.65))

normalize_height(las, tin())
classify_noise(las, ivf(0.25, 3))
filter_poi(las, Classification != LASNOISE)

Plot the non-ground points, colored by height
plot(filter_poi(las, Classification != 2), color = "Z")

find tree locations and attribute data
myTreeLocs = get_raster_eigen_treelocs(las = las, res

dens_threshold

0.025, pt_spacing = 0.0254,
0.25,

neigh_sizes = c¢(0.25, 0.15, 0.66),
eigen_threshold = 0.75,
grid_slice_min = 1,

grid_slice_max = 2,
minimum_polygon_area = 0.005,

cylinder_fit_type

max_dia = 1,

SDvert = 0.33,
n_pts = 20,
n_best = 25,
inliers = 0.9,
conf = 0.99,

max_angle = 20)

Plot results if trees were found

if (!is.null(myTreelLocs) && nrow(myTreelLocs) > 0) {
plot(lidR::rasterize_canopy(las, res = 0.2, p2r()))
symbols(sf::st_coordinates(myTreeLocs)[,1], sf::st_coordinates(myTreelLocs)[,2],
circles = myTreeLocs$Radius”*2*3.14, inches = FALSE, add = TRUE, bg = 'black')

= "ransac”,

} else {
message(”"No tree locations were found. Try adjusting the parameters.”)
3
las2xyz Convert LAS object to XYZ matrix
Description

Extracts the X, Y, and Z coordinates from a LAS object and returns them as a matrix.

Usage

las2xyz(las)

merge_las_colors 13

Arguments

las LAS object to convert

Value

A numeric matrix with three columns (X, Y, Z) containing the point coordinates

Examples

LASfile <- system.file("extdata”, "MixedConifer.laz", package="1idR")
las <- readLAS(LASfile)

xyz_matrix <- las2xyz(las)

head(xyz_matrix)

merge_las_colors Merge RGB colors from two colorized LAS objects

Description
Blends the RGB values from two LAS objects to create a new composite coloring. Useful for
combining different coloring methods (e.g., ambient occlusion with raster RGB).

Usage

merge_las_colors(las1, las2, alpha = 0.5, method = "alpha")

Arguments
las1 First LAS object with R, G, B fields
las? Second LAS object with R, G, B fields (must have same number of points as
las1)
alpha Numeric value between 0 and 1 controlling the blend ratio. 0 = all las1 colors,
1 = all las2 colors, 0.5 = equal blend. Default is 0.5.
method Character string specifying blend method: "alpha" for alpha blending, "mul-
tiply" for multiplicative blending, "screen" for screen blending, "overlay" for
overlay blending. Default is "alpha".
Details
Blending methods:

alpha Simple linear interpolation: (1-alpha)las! + alphalas2
multiply Multiplicative blend (darkens): (lasl * las2) / 255
screen Screen blend (lightens): 255 - ((255-1as1) * (255-1as2)) / 255

overlay Overlay blend: combines multiply and screen based on base color

14 plot_raster_by_name

Common use cases:

* Combine ambient occlusion (PCV/SSAO) with aerial RGB for realistic shading
* Blend attribute coloring with terrain colors

* Overlay multiple visualization layers

Value

A LAS object (copy of lasl) with merged R, G, and B fields

Examples

Load example LAS file
LASfile <- system.file("extdata”, "ALS_Clip.laz"”, package="spanner")
las <- readLAS(LASfile)

Combine SSAO ambient occlusion with aerial RGB

las_ao <- colorize_las(las, method="ssao"”, palette=c("black”, "white"))
rgb_file <- system.file("extdata”, "UAS_Clip_RGB.tif", package="spanner")
las_rgb <- colorize_las(las, method="rgb", raster_path=rgb_file)

las_merged <- merge_las_colors(las_ao, las_rgb, alpha=0.3, method="multiply")

Blend attribute coloring with RGB at 50/50

las_height <- colorize_las(las, method="attr"”, attribute_name="Z",
palette=c("blue”, "red"))

las_merged <- merge_las_colors(las_height, las_rgb, alpha=0.5)

plot_raster_by_name Plot a raster by its name

Description

plot_raster_by_name plots a raster from a list of rasters based on the provided raster name.

Usage

plot_raster_by_name(rasters, raster_name)

Arguments

rasters list A list of rasters.

raster_name character The name of the raster to be plotted.
Value

NULL This function does not return a value. It plots the raster if found.

process_rasters_patchmorph 15

Examples

Define input parameters

las <- lidR::readLAS(system.file("extdata”, "MixedConifer.laz", package="1idR"))
input_raster <- lidR::rasterize_canopy(las, res =1, lidR::pitfree(c(9,2,5,10,15), c(0, 2)))
suitList <- c(0, 2, 32)

gapList <- seq(1, 8, by = 1)

spurList <- seq(1, 8, by = 1)

Process the rasters
processed_rasters <- process_rasters_patchmorph(input_raster, suitlList, gaplList, spurlList)

Plot a raster by its name
plot_raster_by_name(processed_rasters, "suit_2_gap_2_spur_6")

process_rasters_patchmorph
Process rasters based on suitability, gap, and spur parameters

Description

process_rasters_patchmorph processes an input raster by reclassifying it based on suitability
levels, and then applying gap and spur distance transformations to generate a list of processed
rasters.

Usage

process_rasters_patchmorph(input_raster, suitList, gaplList, spurList)

Arguments

input_raster RasterLayer The input raster to be processed.

suitlList numeric A vector of suitability levels for reclassification.

gaplList numeric A vector of gap distances for processing.

spurList numeric A vector of spur distances for processing.
Value

list A list of processed rasters with names indicating the suitability, gap, and spur parameters used.

Examples

Define input parameters

las <- lidR::readLAS(system.file("extdata”, "MixedConifer.laz", package="1idR"))
input_raster <- lidR::rasterize_canopy(las, res =1, lidR::pitfree(c(9,2,5,10,15), c(0, 2)))
suitList <- c(0, 2, 32)

gapList <- seq(1, 8, by = 1)

16 process_tree_data

spurList <- seq(1, 8, by = 1)

Process the rasters
processed_rasters <- process_rasters_patchmorph(input_raster, suitlList, gaplList, spurlList)

Plot the first processed raster
plot(processed_rasters[[1]1])

process_tree_data Obtain tree information by processing point cloud data

Description

process_tree_data processes the output of get_raster_eigen_treelocs and segment_graph
to add information about the height, crown area, and diameter for each unique TreelD. It also has
an optional parameter to return an sf object representing the convex hulls for each tree.

Usage

process_tree_data(treeData, segmentedLAS, return_sf = FALSE)

Arguments

treeData An sf object containing the following tree information: TreelID, X, Y, Z, Radius,
and Error, output from the get_raster_eigen_treelocs function.

segmentedLAS A LAS object that is the output from segment_graph.

return_sf logical: If TRUE, returns an sf object representing the convex hulls for each
tree.

Details

For terrestrial and mobile lidar datasets, tree locations and estimates of DBH are provided by ras-
terizing individual point cloud values of relative neighborhood density (at 0.3 and 1 m radius) and
verticality within a slice of the normalized point cloud around breast height (1.34 m). The algo-
rithm then uses defined threshold values to classify the resulting rasters and create unique polygons
from the resulting classified raster. These point-density and verticality polygons were selected by
their intersection with one another, resulting in a final set of polygons which were used to clip out
regions of the point cloud that were most likely to represent tree boles. A RANSAC cylinder fitting
algorithm was then used to estimate the fit of a cylinder to individual bole points. Cylinder centers
and radius were used as inputs to an individual tree segmentation.

process_tree_data 17

Value
sf object An updated sf object with the original columns plus:

height numeric: Height of the highest point for each TreelD.

crown_area numeric: Area of the convex hull for each TreelD.
crown_base_height numeric: Height to the base of the live crown for each TreelD.
crown_volume numeric: Volume of the convex hull for the crown of each TreelD.

diameter numeric: Diameter of the tree, calculated as twice the Radius.

If return_sf is TRUE, returns an sf object where the geometry is the convex hulls for each tree.
If return_sf is FALSE, returns an sf object with point geometries using treeData.

Examples

Set the number of threads to use in lidR
set_lidr_threads(8)

LASfile = system.file("extdata”, "TLS_Clip.laz"”, package="spanner")
las = readTLSLAS(LASfile, select = "xyzcr", "-filter_with_voxel 0.01")
Don't forget to make sure the las object has a projection
sf::st_crs(las) <- 26912

Pre-process the example lidar dataset by classifying the ground and noise points
using lidR::csf(), normalizing it, and removing outlier points
using lidR::ivf()
las = classify_ground(las, csf(sloop_smooth = FALSE,

class_threshold = 0.5,

cloth_resolution = 0.5, rigidness = 1L,

iterations = 500L, time_step = 0.65))

las = normalize_height(las, tin())
las = classify_noise(las, ivf(@.25, 3))
las = filter_poi(las, Classification != LASNOISE)

e E E E E

H+

Plot the non-ground points, colored by height
plot(filter_poi(las, Classification != 2), color = "Z")

Find individual tree locations and attribute data

find tree locations and attribute data

myTreeLocs = get_raster_eigen_treelocs(las = las, res = 0.025, pt_spacing = 0.0254,
dens_threshold = 0.25,
neigh_sizes = ¢(0.25, 0.15, 0.66),
eigen_threshold = 0.75,
grid_slice_min = 1,
grid_slice_max = 2,
minimum_polygon_area = 0.005,

cylinder_fit_type = "ransac”,
max_dia = 1,

SDvert = 0.33,

n_pts = 20,

n_best = 25,

18 segment_graph

inliers = 0.9,
conf = 0.99,
max_angle = 20)

Plot results if trees were found
if (!is.null(myTreeLocs) && nrow(myTreeLocs) > 0) {
plot(lidR::rasterize_canopy(las, res = 0.2, p2r()))
symbols(sf::st_coordinates(myTreeLocs)[,1], sf::st_coordinates(myTreelLocs)[,2],
circles = myTreeLocs$Radius”*2*3.14, inches = FALSE, add = TRUE, bg = 'black')
} else {
message(”"No tree locations were found. Try adjusting the parameters.”)

}

Segment the point cloud

For areas with interlocking crowns and trees of different sizes,

enable metabolic scaling to prevent height overestimation

myTreeGraph = segment_graph(las = las, tree.locations = myTreelLocs, k = 50,
distance.threshold = 0.5,
use.metabolic.scale = FALSE,
ptcloud_slice_min = 1,
ptcloud_slice_max = 2,
subsample.graph = 0.1
return.dense = TRUE)

’

Plot it in 3D colored by treelD
plot(myTreeGraph, color = "treeID"”, pal=spanner_pal())

Process the data
processed_data <- process_tree_data(myTreeLocs, myTreeGraph, return_sf = TRUE)

Print the processed data

print(processed_data$data)

Print the sf object if return_sf is TRUE

if (!is.null(processed_data$sf)) {
print(processed_data$sf)

3

segment_graph Segment a terrestrial point cloud using graph theory.

Description

segment_graph returns a .las object with a new column "treeID".

Usage

segment_graph(
las,

segment_graph 19

tree.locations,

k = 50,

distance.threshold = 0.33,
use.metabolic.scale = FALSE,
ptcloud_slice_min = 0.5,
ptcloud_slice_max = 2,
metabolic.scale.function = NULL,
subsample.graph = 0.1,
return.dense = FALSE

Arguments

las LAS normalized las object.

tree.locations sf object sf object containing the following tree information: TreelD, X, Y, Z,
Radius, and Error, output from the get_raster_eigen_treelocs function.

k integer Number of nearest neighbors to be used in processing (k >= 50 sug-
gested)

distance. threshold
numeric Maximum distance (in the same units as the .las) under which two
points are connected in the graph object (greater than point spacing). Two points
with a greater distance than this threshold are not connected in the graph for
processing.

use.metabolic.scale
bool Use of weights in the assignment of points to a given treeID. Useful when
interlocking crowns are present and trees are of different sizes.

ptcloud_slice_min
numeric Lower bound of point cloud slice in normalized point cloud used for
treeID matching.

ptcloud_slice_max
numeric Upper bound of point cloud slice in normalized point cloud used for
treeID matching.

metabolic.scale.function
string Supply your own function for defining segmentation weights based on
a function of estimated tree diameter (e.g. metabolic.scale.function = ’x/2’).
use.metabolic.scale must be set to TRUE. If not supplied, defaults to metabolic
scale function from Tao et al., 2015.

subsample.graph
numeric The subsampled point spacing to use during processing. Note: process-
ing time increases quickly with smaller point spacing with negligible returns in
accuracy.

return.dense bool Decision to return the subsampled point cloud or assign treeIDs back to
points in the input dense point cloud.
Details

Preforms Individual tree segmentation following ecological principles for “growing” trees based
on these input locations in a graph-theory approach inspired by work of Tao and others (2015).

20 segment_graph

Point coordinates are linked together based on proximity and turned into a connected graph object,
using the estimated tree bole locations as origin points, connecting individual points back to those
tree bole origins based on shortest paths within the graph network, and finally assigning those
points a unique tree identification based on the bole coordinate for which they are connected. Input
point cloud is subsampled to a lower resolution before processing to increase processing efficiency.
However, graph objects can still get large quite rapidly. Take this into consideration when choosing
the extent of the input las object.

Value

a sparse/dense normalized .las with the column treelD added.

References

Tao, S., Wu, F, Guo, Q., Wang, Y., Li, W., Xue, B., ... & Fang, J. (2015). Segmenting tree
crowns from terrestrial and mobile LiDAR data by exploring ecological theories. ISPRS Journal of
Photogrammetry and Remote Sensing, 110, 66-76.

Examples

Set the number of threads to use in lidR
set_lidr_threads(8)

LASfile = system.file("extdata”, "TLS_Clip.laz", package="spanner")
las = readTLSLAS(LASfile, select = "xyzcr", "-filter_with_voxel 0.01")
Don't forget to make sure the las object has a projection
sf::st_crs(las) <- 26912

Pre-process the example lidar dataset by classifying the ground and noise points
using lidR::csf(), normalizing it, and removing outlier points

using lidR::ivf()

las = classify_ground(las, csf(sloop_smooth = FALSE,

class_threshold = 0.5,

cloth_resolution = @.5, rigidness = 1L,
iterations = 500L, time_step = 0.65))
las = normalize_height(las, tin())

las = classify_noise(las, ivf(0.25, 3))

las = filter_poi(las, Classification != LASNOISE)

Plot the non-ground points, colored by height

plot(filter_poi(las, Classification != 2), color = "Z")

Perform a deep inspection of the las object. If you see any
red text, you may have issues!
las_check(1las)

Find individual tree locations and attribute data

find tree locations and attribute data

myTreeLocs = get_raster_eigen_treelocs(las = las, res = 0.025, pt_spacing = 0.0254,
dens_threshold = 0.25,
neigh_sizes = ¢(0.25, 0.15, 0.66),

spanner._pal 21

eigen_threshold = 0.75,
grid_slice_min = 1,
grid_slice_max = 2,
minimum_polygon_area = 0.005,

cylinder_fit_type = "ransac”,
max_dia = 1,

SDvert = 0.33,

n_pts = 20,

n_best = 25,

inliers = 0.9,

conf = 0.99,

max_angle = 20)

Plot results if trees were found
if (!is.null(myTreeLocs) && nrow(myTreeLocs) > 0) {
plot(lidR::rasterize_canopy(las, res = 0.2, p2r()))
symbols(sf::st_coordinates(myTreeLocs)[,1], sf::st_coordinates(myTreelLocs)[,2],
circles = myTreeLocs$Radius”*2*3.14, inches = FALSE, add = TRUE, bg = 'black')
} else {
message("No tree locations were found. Try adjusting the parameters.”)

3

Segment the point cloud

For areas with interlocking crowns and trees of different sizes,

enable metabolic scaling to prevent height overestimation

myTreeGraph = segment_graph(las = las, tree.locations = myTreelLocs, k = 50,
distance.threshold = 0.5,
use.metabolic.scale = FALSE,
ptcloud_slice_min = 1,
ptcloud_slice_max = 2,
subsample.graph = 0.1
return.dense = TRUE)

’

Plot it in 3D colored by treelD
plot(myTreeGraph, color = "treeID"”, pal=spanner_pal())

Optional: Use a custom metabolic scaling function

myTreeGraph = segment_graph(las = las, tree.locations = myTreelLocs, k = 50,
distance.threshold = 0.5,

use.metabolic.scale = TRUE,
metabolic.scale.function = "1/((2*x)*(1/8))",
ptcloud_slice_min = 1,

ptcloud_slice_max = 2,

subsample.graph = 0.1,

return.dense = TRUE)

% o H W

spanner_pal Spanner color palette

22 sum_rasters_by_suitability

Description
Returns a named vector of colors for use in spanner visualizations. The palette includes 10 distinct
colors suitable for categorical data visualization.

Usage

spanner_pal()

Value

A named character vector of hex color codes

Examples

Get the palette
colors <- spanner_pal()

Use in a plot
barplot(1:10, col = spanner_pal(), names.arg = names(spanner_pal()), las = 2)

sum_rasters_by_suitability
Sum rasters by suitability level

Description

sum_rasters_by_suitability sums rasters from a list based on their suitability levels.

Usage

sum_rasters_by_suitability(rasters, suitlList)

Arguments

rasters list A list of rasters.

suitlList numeric A vector of suitability levels.
Value

list A list of summed rasters for each suitability level.

sum_rasters_by_suitability 23

Examples

Define input parameters

las <- lidR::readLAS(system.file("extdata”, "MixedConifer.laz", package="1idR"))
input_raster <- lidR::rasterize_canopy(las, res =1, lidR::pitfree(c(9,2,5,10,15), c(0, 2)))
suitList <- c(0, 2, 32)

gapList <- seq(1, 8, by = 1)

spurList <- seq(1, 8, by = 1)

Process the rasters
processed_rasters <- process_rasters_patchmorph(input_raster, suitlList, gaplList, spurlList)

Sum rasters by suitability level
summed_rasters <- sum_rasters_by_suitability(processed_rasters, suitlList)

Call the plot_raster_by_name function to plot the raster named "suit_2_sum”
plot_raster_by_name(summed_rasters, "suit_2_sum")

Index

colorize_las, 2
create_rotation_gif, 4
cylinderFit, 6

download_naip_for_las, 7
eigen_metrics, 8
get_raster_eigen_treelocs, 10
las2xyz, 12
merge_las_colors, 13

plot_raster_by_name, 14
process_rasters_patchmorph, 15
process_tree_data, 16

segment_graph, 18
spanner_pal, 21
sum_rasters_by_suitability, 22

24

	colorize_las
	create_rotation_gif
	cylinderFit
	download_naip_for_las
	eigen_metrics
	get_raster_eigen_treelocs
	las2xyz
	merge_las_colors
	plot_raster_by_name
	process_rasters_patchmorph
	process_tree_data
	segment_graph
	spanner_pal
	sum_rasters_by_suitability
	Index

