Package ‘BBmisc’

January 21, 2026

Title Miscellaneous Helper Functions for B. Bischl
Version 1.13.1

Description Miscellaneous helper functions for and from B. Bischl and
some other guys, mainly for package development.

License BSD_2 clause + file LICENSE
URL https://github.com/berndbischl/BBmisc

BugReports https://github.com/berndbischl/BBmisc/issues
Imports checkmate (>= 1.8.0), data.table, methods, stats, utils
Suggests codetools, microbenchmark, testthat

ByteCompile yes

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Bernd Bischl [aut, cre],
Michel Lang [aut],
Jakob Bossek [aut],
Daniel Horn [aut],
Jakob Richter [aut],
Dirk Surmann [aut]

Maintainer Bernd Bischl <bernd_bischl@gmx.net>
Repository CRAN
Date/Publication 2026-01-21 11:20:02 UTC

Contents

addClasses e e e
argsAsNamedList L L
asMatrixCols e
asQuoted L L e e
binPack

https://github.com/berndbischl/BBmisc
https://github.com/berndbischl/BBmisc/issues

Contents

capitalizeStrings L L. e e 7
catf . . . e 7
cFactor 8
checkArg L 9
checkListElementClass 10
chunk e e 11
clipString L 12
COAlBSCE e e 12
collapseo 13
collapsef 14
computeMode 14
convertDataFrameCols L 15
convertInteger L. e e 16
convertlntegers e 16
convertListOfRowsToDataFrame 17
convertMatrixType 18
convertRowsToList e 18
convertToShortString 19
dapply e e 20
deprecated L e 21
docall2 L e 22
dropNamed e e 22
ensUreVECIOT it e e e e e e 23
explode 24
extractSubList 24
filterNull e 25
getAttributeNames L. L 26
getClassl L e 26
getFirst e e 27
getMaxIndex L 27
getMaxIndexOfRows 28
getOperatingSystem e e e e e 29
getRelativePath 30
getUnixTime 30
getUsedFactorLevels L 31
hasAttributeso 31
INSEIT . . o v v o e e e e e e e e e 32
ISLOITOT . o o v vttt e e e e e e 32
ISDITeCtory e e e e e 33
isEmptyDirectory 34
isExpensiveExampleOk 34
iISFALSE e 35
isProperlyNamed e 35
isScalarNA L L 36
isScalarValue 36
isSubset L e 37
ISSUpPErset e 38

isValidName e 38

Contents

Index

3

TEOSEE . . . o o e e e e 39
Lib . . e 39
load2 . . . L e 40
ISort e 41
makeDataFrame L L 41
makeFileCache 42
makeProgressBar L. L 43
makeS30bj 45
makeSimpleFileLogger o 45
mapValues e e e e e 46
messagef L 47
namedList L. L e 48
NAMES2 . . o o vt e e e e e e e e e e e e 48
normalize 49
optimizeSublInts 50
PAUSE . o o o e e e e e e e e e e e e 51
printHead L 51
printStrToChar 52
printToChar e e e e 53
rangeVal 53
requirePackages 54
rowLapply e e e 55
SAVEZ . . . 56
SEULTOW .« v v v e 57
setAttribute L e e 57
SEtClasses 58
setRowNames e 59
setValue L 59
sortByCol e 60
splitPath 60
splitTime e e e 61
StOPE . . 61
Strrepeat L e 62
suppressAll L L e e e 63
symdiff 63
SYStem3 e e 64
toRangeStr L e e 65
viapply ..o 65
warningfo 66
which first e 67
GobtWNTo o e 67
JoninTDo e e e e e e e e 68
69

4 argsAsNamedList

addClasses A wrapper to add to the class attribute

Description

Adds classes to the class attribute of an object.

Usage

addClasses(x, classes)

Arguments

X [any]
Your object.

classes [character]
Classes to add. Will be added in front (specialization).

Value

Changed object x.

Examples

x = list()

print(class(x))

x = addClasses(x, c("fool"”, "foo2"))
print(class(x))

argsAsNamedList Parses . .. arguments to a named list

Description

The deparsed name will be used for arguments with missing names. Missing names will be set to
NA.

Usage

argsAsNamedList(...)

Arguments

Arbitrary number of objects.

asMatrixCols

Value

[list]: Named list with objects.

Examples
z =3
argsAsNamedList(x =1, y = 2, z)
asMatrixCols Extracts a named element from a list of lists
Description

Converts a list of vectors into a matrix with vectors as columns or rows.

Usage

asMatrixCols(xs, row.names, col.names)

asMatrixRows(xs, row.names, col.names)

Arguments
XS [list]
A list of vectors of the same length.
row.names [character | integer | NULL]
Row names of result. Default is to take the names of the elements of xs.
col.names [character | integer | NULL]
Column names of result. Default is to take the names of the elements of xs.
Value
[matrix].
asQuoted Converts a string into a quoted expression
Description

Works the same as if you would have entered the expression and called quote on it.

Usage

asQuoted(s, env = parent.frame())

6 binPack

Arguments
s [character(1)]
Expression as string.
env [numeric(1)]
Environment for expression. Default is parent. frame()
Value

Quoted expression.

Examples

asQuoted("x == 3")

binPack Simple bin packing

Description

Maps numeric items in x into groups with sum less or equal than capacity. A very simple greedy
algorithm is used, which is not really optimized for speed. This is a convenience function for
smaller vectors, not a competetive solver for the real binbacking problem. If an element of x exceeds
capacity, an error is thrown.

Usage
binPack(x, capacity)

Arguments
X [numeric]
Numeric vector of elements to group.
capacity [numeric(1)]
Maximum capacity of each bin, i.e., elements will be grouped so their sum does
not exceed this limit.
Value

[integer]. Integer with values “1” to “n.bins” indicating bin membership.

Examples

x =1:10

bp = binPack(x, 11)
xs = split(x, bp)
print(xs)
print(sapply(xs, sum))

capitalizeStrings

capitalizeStrings Capitalize strings in a vector

Description

Capitalise first word or all words of a character vector. Lower back of vector element or word,
respectively.

Usage
capitalizeStrings(x, all.words = FALSE, lower.back = FALSE)

Arguments
X [character(n)]
Vector of character elements to capitalize.
all.words [logical(1)]
If TRUE all words of each vector element are capitalized. FALSE capitalizes the
first word of each vector element.
lower.back [logical(1)]
TRUE lowers the back of each word or vector element (depends on all.words).
Value

Capitalized vector: [character(n)].

Examples

capitalizeStrings(c("the talIl”, "wags The dOg"”, "That looks fuNny!"))
capitalizeStrings(c("the taIl”, "wags The dOg”, "That looks fuNny!")
all.words = TRUE, lower.back = TRUE)

’

catf Wrapper for cat and sprintf

Description

A simple wrapper for cat(sprintf(...)).

Usage
catf(..., file = "", append = FALSE, newline = TRUE)

8 cFactor
Arguments
[any]
See sprintf.
file [character(1)]
See cat. Default is “”".
append [logical(1)]
See cat. Default is FALSE.
newline [logical(1)]
Append newline at the end? Default is TRUE.
Value
Nothing.
Examples
msg = "a message."
catf("This is %s", msg)
cFactor Combine multiple factors and return a factor
Description
Note that function does not inherit from c to not change R semantics behind your back when this
package is loaded.
Usage
cFactor(...)
Arguments
[factor]
The factors.
Value
[factor].
Examples

f1 = factor(c("a"
f2 = factor(c("b"
print(c(f1, f2))
print(cFactor(f1,

, b))
)

f2))

checkArg 9

checkArg Check for a function argument

Description

Throws exception if checks are not passed. Note that argument is evaluated when checked.

This function is superseded by the package checkmate and might get deprecated in the future.
Please

Usage

checkArg(
X,
cl,
s4 = FALSE,
len,
min.len,
max.len,
choices,
subset,
lower = NA,
upper = NA,
na.ok = TRUE,
formals

Arguments

X [any]
Argument.

cl [character]
Class that argument must “inherit” from. If multiple classes are given, x must
“inherit” from at least one of these. See also argument s4.

s4 [logical(1)]
If TRUE, use is for checking class cl, otherwise use inherits, which implies
that only S3 classes are correctly checked. This is done for speed reasons as
calling is is pretty slow. Default is FALSE.

len [integer(1)]
Length that argument must have. Not checked if not passed, which is the default.
min.len [integer(1)]
Minimal length that argument must have. Not checked if not passed, which is
the default.
max.len [integer(1)]

Maximal length that argument must have. Not checked if not passed, which is
the default.

10 checkListElementClass

choices [any]
Discrete number of choices, expressed by a vector of R objects. If passed, argu-
ment must be identical to one of these and nothing else is checked.

subset [any]
Discrete number of choices, expressed by a vector of R objects. If passed, argu-
ment must be identical to a subset of these and nothing else is checked.

lower [numeric(1)]
Lower bound for numeric vector arguments. Default is NA, which means not
required.

upper [numeric(1)]
Upper bound for numeric vector arguments. Default is NA, which means not
required.
na.ok [logical(1)]
Is it ok if a vector argument contains NAs? Default is TRUE.
formals [character]
If this is passed, x must be a function. It is then checked that formals are the

names of the (first) formal arguments in the signature of x. Meaning checkArg(function(a,
b), formals = "a") is ok. Default is missing.

Value

Nothing.

checkListElementClass Check that a list contains only elements of a required type

Description
Check that argument is a list and contains only elements of a required type. Throws exception if
check is not passed. Note that argument is evaluated when checked.

Usage

checkListElementClass(xs, cl)

Arguments
XS [list]
Argument.
cl [character(1)]
Class that elements must have. Checked with is.
Value

Nothing.

chunk 11

Examples

xs = as.list(1:3)
checkListElementClass(xs, "numeric")

chunk Chunk elements of vectors into blocks of nearly equal size

Description

In case of shuffling and vectors that cannot be chunked evenly, it is chosen randomly which levels
/ chunks will receive 1 element less. If you do not shuffle, always the last chunks will receive 1
element less.

Usage

chunk(x, chunk.size, n.chunks, props, shuffle = FALSE)

Arguments

X [ANY]
Vector, list or other type supported by split.

chunk.size [integer(1)]
Requested number of elements in each chunk. Cannot be used in combination
with n. chunks or props. If x cannot be evenly chunked, some chunks will have
less elements.

n.chunks [integer(1)]
Requested number of chunks. If more chunks than elements in x are requested,
empty chunks are dropped. Can not be used in combination with chunks.size
or props.

props [numeric]

Vector of proportions for chunk sizes. Empty chunks may occur, depending on
the length of x and the given proportions. Cannot be used in combination with
chunks.size or n.chunks.

shuffle [logical(1)]
Shuffle x? Default is FALSE.

Value

[unnamed 1ist] of chunks.

Examples

xs = 1:10

chunk(xs, chunk.size = 3)

chunk(xs, n.chunks = 2)

chunk(xs, n.chunks = 2, shuffle = TRUE)
chunk(xs, props = c(7, 3))

12 coalesce

clipString Shortens strings to a given length

Description

Clips strings to a maximum length, appending a tail if shortened.

Usage
clipString(x, len, tail = "...")
Arguments
X [character]
Vector of strings.
len [integer(1)]
Absolute length the string should be clipped to, including tail. Note that you
cannot clip to a shorter length than tail.
tail [character(1)]
If the string has to be shortened at least 1 character, the final characters will be
tail. Defaultis “...”.
Value

[character(1)].

Examples

print(clipString("abcdef”, 10))
print(clipString("abcdef”, 5))

coalesce Returns first non-missing, non-null argument

Description

Returns first non-missing, non-null argument, otherwise NULL.

We have to perform some pretty weird tryCatch stuff internally, so you should better not pass
complex function calls into the arguments that can throw exceptions, as these will be completely
muffled, and return NULL in the end.

Usage

coalesce(...)

collapse
Arguments
[any]
Arguments.
Value
[any].
Examples

f = function(x,y) {
print(coalesce(NULL, x, y))

}

fly = 3)

13

collapse Collapse vector to string

Description

A simple wrapper for paste(x, collapse).

Usage
collapse(x, sep = ",")
Arguments
X [vector]
Vector to collapse.
sep [character(1)]
Passed to collapse in paste. Default is “,”.
Value
[character(1)].
Examples

collapse(c("foo", "bar"))
collapse(c("foo”, "bar"), sep = ";")

14 computeMode
collapsef Collapse vector to string
Description
A simple wrapper for collapse(sprintf, ...).
Useful for vectorized call to sprintf.
Usage
collapsef(..., sep = ",")
Arguments
[any]
See sprintf.
sep [character(1)]
See collapse.
Value
[character(1)].
computeMode Compute statistical mode of a vector (value that occurs most fre-
quently)
Description
Works for integer, numeric, factor and character vectors. The implementation is currently not ex-
tremely efficient.
Usage
computeMode(x, ties.method = "random”, na.rm = TRUE)
Arguments
X [vector]

Factor, character, integer, numeric or logical vector.

ties.method [character(1)]

“first”, “random”, “last”: Decide which value to take in case of ties. Default is

“random”.

na.rm [logical(1)]

If TRUE, missing values in the data removed. if FALSE, they are used as a separate
level and this level could therefore be returned as the most frequent one. Default

is TRUE.

convertDataFrameCols 15

Value

Modal value of length 1, data type depends on data type of x.

Examples

computeMode(c(1,2,3,3))

convertDataFrameCols Converts columns in a data frame to characters, factors or numerics

Description

Converts columns of a data frame based on specified conversion flags.

Usage

convertDataFrameCols(
df,
chars.as.factor = FALSE,
factors.as.char = FALSE,
ints.as.num = FALSE,
logicals.as.factor = FALSE

)
Arguments
df [data.frame]
Data frame.
chars.as.factor
[logical(1)]

Should characters be converted to factors? Default is FALSE.
factors.as.char

[logical(1)]

Should characters be converted to factors? Default is FALSE.
ints.as.num [logical(1)]

Should integers be converted to numerics? Default is FALSE.
logicals.as.factor

[logical(1)]

Should logicals be converted to factors? Default is FALSE.

Value

[data.frame].

16 convertIntegers

convertInteger Conversion for single integer

Description

Convert single numeric to integer only if the numeric represents a single integer, e.g. 1 to 1L.
Otherwise the argument is returned unchanged.

Usage
convertInteger(x)
Arguments
X [any]
Argument.
Value

Either a single integer if conversion was done or x unchanged.

Examples

str(convertInteger(1.0))
str(convertInteger(1.3))
str(convertInteger(c(1.0, 2.0)))
str(convertInteger("foo"))

convertIntegers Conversion for integer vector

Description

Convert numeric vector to integer vector if the numeric vector fully represents an integer vector,
e.g. c(1, 5) toc(1L, 5L). Otherwise the argument is returned unchanged.

Usage
convertIntegers(x)
Arguments
X [any]

Argument.

convertListOfRowsToDataFrame 17

Value

Either an integer vector if conversion was done or x unchanged.

Examples

str(convertIntegers(1.0))
str(convertIntegers(1.3))
str(convertIntegers(c(1.0, 2.0)))
str(convertIntegers(”foo"))

convertListOfRowsToDataFrame
Convert a list of row-vector of equal structure to a data.frame

Description

Elements are arranged in columns according to their name in each element of rows. Variables that
are not present in some row-lists, or encoded as NULL, are filled using NAs.

Usage

convertListOfRowsToDataFrame(
rows,
strings.as.factors = NULL,
row.names,
col.names

Arguments

rows [list]
List of rows. Each row is a list or vector of the same structure, where all cor-
responding elements must have the same class. It is allowed that in some rows
some elements are not present, see above.

strings.as.factors
[logical(1)]
Convert character columns to factors? Default is default.stringsAsFactors()
for R <"4.1.0" and FALSE otherwise.

row.names [character | integer | NULL]
Row names for result. By default the names of the list rows are taken.

col.names [character | integer]
Column names for result. By default the names of an element of rows are taken.

Value

[data.frame].

18 convertRowsToList

Examples

convertListOfRowsToDataFrame(list(list(x = 1, y = "a"), list(x = 2, y = "b")))

convertMatrixType Converts storage type of a matrix

Description

Works by setting mode.

Usage

convertMatrixType(x, type)

Arguments
X [matrix]
. Matrix to convert.
type [character(1)]
New storage type.
Value
[matrix].
Note

as.mytype drops dimension when used on a matrix.

convertRowsTolList Convert rows (columns) of data.frame or matrix to lists

Description

For each row, one list/vector is constructed, each entry of the row becomes a list/vector element.

convertToShortString 19

Usage

convertRowsTolList(
X,
name.list = TRUE,
name.vector = FALSE,
factors.as.char = TRUE,
as.vector = TRUE

convertColsTolList(
X,
name.list = FALSE,
name.vector = FALSE,
factors.as.char = TRUE,
as.vector = TRUE

)
Arguments
X [matrix | data.frame]
Object to convert.
name.list [logical(1)]
Name resulting list with names of rows (cols) of x? Default is FALSE.
name.vector [logical(1)]
Name vector elements in resulting list with names of cols (rows) of x? Default
is FALSE.
factors.as.char
[logical(1)]
If x is a data.frame, convert factor columns to string elements in the resulting
lists? Default is TRUE.
as.vector [logical(1)]
If x is a matrix, store rows as vectors in the resulting list - or otherwise as lists?
Default is TRUE.
Value

[1ist of lists or vectors].

convertToShortString Converts any R object to a descriptive string so it can be used in mes-
sages

20 dapply

Description

Atomics: If of length O or 1, they are basically printed as they are. Numerics are formated with
num. format. If of length greater than 1, they are collapsed witd “,” and clipped. so they do not
become excessively long. Expressions will be converted to plain text.

All others: Currently, only their class is simply printed like “<data.frame>".

Lists: The mechanism above is applied (non-recursively) to their elements. The result looks like
this: “a=1, <unamed>=2, b=<data.frame>, c=<list>"".

Usage

convertToShortString(x, num.format = "%.4g", clip.len = 15L)

Arguments
X [any]
The object.
num. format [character(1)]
Used to format numerical scalars via sprintf. Default is “%.4g”.
clip.len [integer(1)]
Used clip atomic vectors via clipString. Default is 15.
Value
[character(1)].
Examples

convertToShortString(list(a = 1, b = NULL, "foo", c = 1:10))

dapply Call 1apply on an object and return a data.frame

Description

Applies a function fun on each element of input x and combines the results as data. frame columns.
The results will get replicated to have equal length if necessary and possible.

Usage

dapply(x, fun, ..., col.names)

deprecated 21

Arguments
X [data. frame]
Data frame.
fun [function]
The function to apply.
[any]
Further arguments passed down to fun.
col.names [character(1)]
Column names for result. Default are the names of x.
Value

[data.frame].

deprecated Deprecated function. Do not use!

Description

These functions are deprecated and will be removed in future versions.

Usage

convertDfCols(
df,
chars.as.factor = FALSE,
factors.as.char = FALSE,
ints.as.num = FALSE,
logicals.as.factor = FALSE

)

listToShortString(x, num.format = "%.4g", clip.len = 15L)

Arguments

df No text
chars.as.factor

No text
factors.as.char

No text
ints.as.num No text
logicals.as.factor

No text
X No text
num. format No text

clip.len No text

22 dropNamed

do.call2 Execute a function call similar to do.call

Description

This function is supposed to be a replacement for do. call in situations where you need to pass big

R objects. Unlike do. call, this function allows to pass objects via . . . to avoid a copy.
Usage

do.call2(fun, ..., .args = list())
Arguments

fun [character(1)]

Name of the function to call.

[any]
Arguments to fun. Best practice is to specify them in a key = value syntax.

.args [list]
Arguments to fun as a (named) list. Will be passed after arguments in
Default is 1ist().

Value

Return value of fun.

Examples

Not run:
library(microbenchmark)
x = 1:1e7
microbenchmark(do.call(head, list(x, n = 1)), do.call2("head”, x, n = 1))

End(Not run)

dropNamed Drop named elements of an object

Description

Removes named elements from a vector, list, matrix or data frame.

Usage
dropNamed(x, drop = character(@L))

ensure Vector 23

Arguments
X [any]
Object to drop named elements from. For a matrix or a data frames this function
drops named columns via the second argument of the binary index operator [,].
Otherwise, the unary index operator [] is used for dropping.
drop [character]
Names of elements to drop.
Value

Subset of object of same type as x. The object is not simplified, i.e, no dimensions are dropped as
[,,drop =FALSE] is used.

ensureVector Blow up single scalars / objects to vectors / list by replication

Description

Useful for standard argument conversion where a user can input a single element, but this has to be
replicated now n times for a resulting vector or list.

Usage

ensureVector(x, n = 1L, ¢l = NULL, names = NULL, ensure.list = FALSE)

Arguments
X [any]
Input element.
n [integer(1)]
Desired length. Default is 1 (the most common case).
cl [character®]
Only do the operation if x inherits from this one of these classes, otherwise
simply let x pass. Default is NULL which means to always do the operation.
names [character*]
Names for result. Default is NULL, which means no names.
ensure.list [logical(1)]
Should x be wrapped in a list in any case? Default is FALSE, i.e., if x is a scalar
value, a vector is returned.
Value

Ether a vector or list of length n with replicated x or x unchanged..

24 extractSubList

explode Split up a string into substrings

Description

Split up a string into substrings according to a seperator.

Usage
explode(x, sep = " ")
Arguments
X [character]
Source string.
sep [character]
Seperator whcih is used to split x into substrings. Default is “ .
Value

[vector] Vector of substrings.

Examples

explode("foo bar")

explode("comma, seperated,values”, sep = ",")
extractSublList Extracts a named element from a list of lists
Description

Extracts elements from a list of named lists by element name.

Usage

extractSubList(xs, element, element.value, simplify = TRUE, use.names = TRUE)

filterNull

Arguments

XS

element

element.value

simplify

use.names

Value

25

[1ist]

A list of named lists.

[character]

Name of element(s) to extract from the list elements of xs. What happens is
this: x$elisel2.

[any]

If given, vapply is used and this argument is passed to FUN.VALUE. Note that
even for repeated indexing (if length(element) > 1) you only pass one value here
which refers to the data type of the final result.

[logical (1) | character(1)]

If FALSE lapply is used, otherwise sapply. If “cols”, we expect the elements
to be vectors of the same length and they are arranged as the columns of the
resulting matrix. If “rows”, likewise, but rows of the resulting matrix. Default
is TRUE.

[logical(1)]

If TRUE and xs is named, the result is named as xs, otherwise the result is un-
named. Default is TRUE.

[list | simplified vector I matrix]. See above.

Examples

xs = list(list(a =1, b = 2), list(a =5, b =7))
extractSubList(xs, "a")
extractSubList(xs, "a", simplify = FALSE)

filterNull

Filter a list for NULL values

Description

Removes all NULL elements from a list.

Usage

filterNull(li)

Arguments

1i

Value

[list].

[1ist]
List.

26

getClass1

getAttributeNames Helper function for determining the vector of attribute names of a

given object

Description

Returns the names of all attributes of an object.

Usage

getAttributeNames(obj)

Arguments
obj [any]
Source object.
Value

[character] Vector of attribute names for the source object.

getClassi Wrapper for class(x)[1]

Description

Returns the first class of an object.

Usage

getClass1(x)

Arguments
X [any]
Input object.
Value
[character(1)].
Note

getClass is a function in methods. Do not confuse.

getFirst 27

getFirst Get the first/last element of a list/vector

Description

Returns the first or last element of a list or vector.
Usage
getFirst(x)

getLast(x)

Arguments

X [list | vector]
The list or vector.

Value

Selected element. The element name is dropped.

getMaxIndex Return index of maximal/minimal/best element in numerical vector

Description

If x is empty or only contains NAs which are to be removed, -1 is returned.

Usage

getMaxIndex(x, weights = NULL, ties.method = "random”, na.rm = FALSE)

getMinIndex(x, weights = NULL, ties.method = "random”, na.rm = FALSE)

getBestIndex(x, weights = NULL, minimize = TRUE, ...)
Arguments
X [numeric]

Input vector.

weights [numeric]
Weights (same length as x). If these are specified, the index is selected from x *
w. Default is NULL which means no weights.

28 getMaxIndexOfRows

ties.method [character(1)]
How should ties be handled? Possible are: “random”, “first”, “last”. Default is
“random”.

na.rm [logical(1)]
If FALSE, NA is returned if an NA is encountered in x. If TRUE, NAs are disre-
garded. Default is FALSE

minimize [logical(1)]
Minimal element is considered best? Default is TRUE.

[any]
Further arguments passed down to the delegate.
Value

[integer(1)].

Note

Function getBestIndex is a simple wrapper for getMinIndex or getMaxIndex respectively de-
pending on the argument minimize.

getMaxIndexOfRows Find row- or columnwise the index of the maximal / minimal element
in a matrix

Description

getMaxIndexOfRows returns the index of the maximal element of each row. getMinIndexOfRows
returns the index of the minimal element of each row. getMaxIndexOfCols returns the index of
the maximal element of each col. getMinIndex0fCols returns the index of the minimal element of
each col. If a corresponding vector (row or col) is empty, possibly after NA removal, -1 is returned

as index.

Usage
getMaxIndexOfRows(x, weights = NULL, ties.method = "random”, na.rm = FALSE)
getMinIndexOfRows(x, weights = NULL, ties.method = "random”, na.rm = FALSE)
getMaxIndexOfCols(x, weights = NULL, ties.method = "random”, na.rm = FALSE)
getMinIndexOfCols(x, weights = NULL, ties.method = "random”, na.rm = FALSE)

getOperatingSystem

Arguments

X

weights

ties.method

na.rm

Value

[integer(n)].

Examples

29

[matrix(n,m)]

Numerical input matrix.

[numeric]

Weights (same length as number of rows/cols). If these are specified, the index is
selected from the weighted elements (see getMaxIndex). Default is NULL which
means no weights.

[character(1)]

How should ties be handled? Possible are: “random”, “first”, “last”. Default is
“random”.

[logical(1)]

If FALSE, NA is returned if an NA is encountered in x. If TRUE, NAs are disre-
garded. Default is FALSE

x = matrix(runif(5 * 3), ncol = 3)

print(x)

print(getMaxIndexOfRows(x))
print(getMinIndexOfRows(x))

getOperatingSystem Functions to determine the operating system

Description

getOperatingSystem Simple wrapper for .Platform$0S. type, returns character(1).

isUnix Predicate for OS string, returns logical(1). Currently this would include Unix, Linux and
Mac flavours.

isLinux Predicate for sysname string, returns logical(1).

isDarwin Predicate for sysname string, returns logical(1).

isWindows Predicate for OS string, returns logical(1).

Usage

getOperatingSystem()

isWindows ()

isUnix()

30 getUnixTime
isLinux()
isDarwin()

Value

See above.

getRelativePath Construct a path relative to another

Description
Constructs a relative path from path from to path to. If this is not possible (i.e. different drive
letters on windows systems), NA is returned.

Usage

getRelativePath(to, from = getwd(), ignore.case = isWindows())

Arguments
to [character(1)]
Where the relative path should point to.
from [character(1)]
From which part to start. Default is getwd.
ignore.case [logical(1)]
Should path comparisons be made case insensitve? Default is TRUE on Windows
systems and FALSE on other systems.
Value

[character(1)]: A relative path.

getUnixTime Current time in seconds

Description

Simple wrapper for as.integer(Sys.time()).

Usage
getUnixTime()

Value

[integer(1)].

getUsedFactorLevels 31

getUsedFactorLevels Determines used factor levels

Description

Determines the factor levels of a factor type vector that are actually occuring in it.

Usage

getUsedFactorLevels(x)

Arguments
X [factor]
The factor.
Value
[character]
hasAttributes Check if given object has certain attributes
Description

Checks whether an object has all specified attributes.

Usage

hasAttributes(obj, attribute.names)

Arguments

obj [mixed]

Arbitrary R object.
attribute.names

[character]

Vector of strings, i.e., attribute names.

Value

[Logical(1)] TRUE if object x contains all attributes from attributeNames and FALSE otherwise.

32 is.error

insert Insert elements from one list/vector into another list/vector

Description

Inserts elements from xs2 into xs1 by name, overwriting elements of equal names.

Usage

insert(xs1, xs2, elements)

Arguments
xs1 [list]
First list/vector.
Xs2 [list]
Second vector/list. Must be fully and uniquely named.
elements [character]
Elements from xs2 to insert into xs1. Default is all.
Value

x1 with replaced elements from x2.

Examples

xs1l = list(a =1, b = 2)

xs2 = list(b =1, ¢ = 4)
insert(xsl, xs2)
insert(xs1, xs2, elements = "c")
is.error Is return value of try an exception?

Description

Checks if an object is of class “try-error” or “error”.

Usage

is.error(x)

Arguments

X [any]
Any object, usually the return value of try, tryCatch, or a function which may
return a simpleError.

isDirectory

Value

[logical(1)].

Examples

x = try(stop(”"foo"))
print(is.error(x))

x =1
print(is.error(x))

isDirectory Is one / are several files a directory?

Description

If a file does not exist, FALSE is returned.

Usage

isDirectory(...)

Arguments
[character(1)]
File names, all strings.
Value
[logicall.
Examples

print(isDirectory(tempdir()))
print(isDirectory(tempfile()))

34

isExpensiveExampleOk

isEmptyDirectory Is one / are several directories empty?

Description

If file does not exist or is not a directory, FALSE is returned.

Usage

isEmptyDirectory(...)

Arguments
[character(1)]
Directory names, all strings.
Value
[logicall.
Examples

print(isEmptyDirectory(tempdir()))
print(isEmptyDirectory(tempfile()))

isExpensiveExampleOk Conditional checking for expensive examples

Description

Queries environment variable “R_EXPENSIVE_EXAMPLE_OK”. Returns TRUE iff set exactly to
“TRUE”. This allows conditional checking of expensive examples in packages via R CMD CHECK,
so they are not run on CRAN, but at least on your local computer. A better option than “dont_run”

in many cases, where such examples are not checked at all.

Usage

isExpensiveExampleOk()

Value

[logical(1)].

isFALSE

Examples

extremely costly random number generation, that we dont want checked on CRAN
if (isExpensiveExampleOk()) {

runif (1)
}

isFALSE A wrapper for identical(x, FALSE)

Description

Tests if an object is identical to FALSE.

Usage
isFALSE(x)

Arguments
X [any]
Your object.
Value

[logical(1)].

Examples

iSFALSE (@)
iSFALSE (FALSE)

isProperlyNamed Are all elements of a list / vector uniquely named?

Description

NA or “” are not allowed as names.

Usage

isProperlyNamed(x)
Arguments

X [vector]

The vector or list.

36 isScalarValue

Value

[logical(1)].

Examples

isProperlyNamed(list(1))
isProperlyNamed(list(a = 1))
isProperlyNamed(list(a = 1, 2))

isScalarNA Checks whether an object is a scalar NA value

Description

Checks whether object is from (NA, NA_integer, NA_real_, NA_character_, NA_complex_).

Usage

isScalarNA(x)

Arguments

X [any]
Object to check.

Value

[logical(1)].

isScalarValue Is given argument an atomic vector or factor of length 1?

Description

More specific functions for scalars of a given type exist, too.

Usage

isScalarValue(x, na.ok = TRUE, null.ok = FALSE, type = "atomic")

isScalarlogical(x, na.ok = TRUE, null.ok = FALSE)

isScalarNumeric(x, na.ok = TRUE, null.ok

FALSE)

TRUE, null.ok = FALSE)

isScalarInteger(x, na.ok

isSubset 37

isScalarComplex(x, na.ok = TRUE, null.ok = FALSE)
isScalarCharacter(x, na.ok = TRUE, null.ok = FALSE)

isScalarFactor(x, na.ok = TRUE, null.ok = FALSE)

Arguments
X [any]
Argument.
na.ok [logical(1)]
Is NA considered a scalar? Default is TRUE.
null.ok [logical(1)]
Is NULL considered a scalar? Default is FALSE.
type [character(1)]
Allows to restrict to specific type, e.g., “numeric”? But instead of this argument
you might want to consider using isScalar<Type>. Default is “atomic”, so no
special restriction.
Value
[logical(1)].
isSubset Check subset relation on two vectors
Description

Checks if all elements of x are contained in y.

Usage
isSubset(x, y, strict = FALSE)

Arguments
X [vector]
Source vector.
y [vector]
Vector of the same mode as x.
strict [logical(1)]
Checks for strict/proper subset relation.
Value

[logical(1)] TRUE if each element of x is also contained in vy, i. e., if x is a subset of y and FALSE
otherwise.

38 isValidName

isSuperset Check superset relation on two vectors

Description

Checks if all elements of y are contained in x.

Usage

isSuperset(x, y, strict = FALSE)

Arguments
X [vector]
Source vector.
y [vector]
Vector of the same mode as x.
strict [logical(1)]
Checks for strict/proper superset relation.
Value

[logical(1)] TRUE if each element of y is also contained in X, i. e., if y is a subset of x and FALSE

otherwise.
isValidName Can some strings be used for column or list element names without
problems?
Description

Checks if strings are valid R names that won’t cause problems as column names.

Usage

isValidName(x, unique = TRUE)

Arguments
X [character]
Character vector to check.
unique [logical(1)]

Should the names be unique? Default is TRUE.

itostr 39

Value

[Logical]. One Boolean entry for each string in x. If the entries are not unique and unique is
enabled, the first duplicate will be FALSE.

itostr Convert Integers to Strings

Description
This is the counterpart of strtoi. For a base greater than ‘10’, letters ‘a’ to ‘z’ are used to represent
‘10’ to ‘35°.

Usage

itostr(x, base = 10L)

Arguments
X [integer]
Vector of integers to convert.
base [integer(1)]
Base for conversion. Values between 2 and 36 (inclusive) are allowed.
Value
character(length(x)).
Examples

binary representation of the first 10 natural numbers
itostr(1:10, 2)

base36 encoding of a large number
itostr(1e7, 36)

lib A wrapper for library

Description

Tries to load packages. If the packages are not found, they will be installed from the default repos-
itory. This function is intended for use in interactive sessions and should not be used by other
packages.

40 load?2

Usage
lib(...)
Arguments
[any]
Package names.
Value

[Logical]: Named logical vector determining the success of package load.

Examples

Not run:
lib("BBmisc", "MASS", "rpart")

End(Not run)

load?2 Load RData file and return objects in it

Description

Loads an RData file and returns the objects directly instead of loading them into an environment.

Usage

load2(file, parts, simplify = TRUE, envir, impute)

Arguments
file [character(1)]
File to load.
parts [character]
Elements in file to load. Default is all.
simplify [logical(1)]
If TRUE, a list is only returned if parts and the file contain both more than 1
element, otherwise the element is directly returned. Default is TRUE.
envir [environment (1)]
Assign objects to this environment. Default is not to assign.
impute [ANY]

If file does not exists, return impute instead. Default is missing which will
result in an exception if file is not found.

Isort 41

Value

Either a single object or a list.

Examples

fn = tempfile()

save2(file = fn, a =1, b =2, ¢ = 3)
load2(fn, parts = "a")
load2(fn, parts = c("a", "c"))
lsort A wrapper for sort to sort using the “C” collating rules

Description

Sorts using the C locale for consistent sorting across platforms.

Usage

lsort(...)

Arguments

Options passed to sort.

Value

See sort.

makeDataFrame Initialize data.frame in a convenient way

Description

Creates a data frame with specified dimensions, column types and optional initial values.

Usage

makeDataFrame (
nrow,
ncol,
col. types,
init,
row.names
col.names

NULL,
sprintf("V%i", seq_len(ncol))

42 makeFileCache

Arguments
nrow [integer(1)]
Nubmer of rows.
ncol [integer(1)]
Number of columns.
col.types [character(ncol) | character(1)]
Data types of columns. If you only pass one type, it will be replicated. Supported
are all atomic modes also supported by vector, i.e. all common data frame types
except factors.
init [any]
Scalar object to initialize all elements of the data.frame. You do not need to
specify col. types if you pass this.
row.names [character | integer | NULL]
Row names. Default is NULL.
col.names [character | integer]
Column names. Default is “V1”, “V2”, and so on.
Examples

print(makeDataFrame(3, 2, init = 7))
print(makeDataFrame(3, 2, "logical”))

print(makeDataFrame(3, 2, c("logical”, "numeric")))
makeFileCache A caching wrapper around load?2
Description

This closure returns a wrapper around load2 which per default caches loaded objects and returns
the cached version in subsequent calls.

Usage

makeFileCache(use.cache = TRUE)

Arguments
use.cache [logical(1)]
Enable the cache? Default is TRUE.
Value

[function()] with argument slot (name of the slot to cache the object in, default is “default”). All
other arguments are passed down to load?2.

makeProgressBar 43

makeProgressBar Create a progress bar with estimated time

Description

Create a progress bar function that displays the estimated time till completion and optional mes-
sages. Call the returned functions set or inc during a loop to change the display. Note that you are
not allowed to decrease the value of the bar. If you call these function without setting any of the
arguments the bar is simply redrawn with the current value. For errorhandling use error and have
a look at the example below.

You can globally change the behavior of all bars by setting the option options(BBmisc.ProgressBar.style)
either to “text” (the default) or “off”, which display no bars at all.

You can globally change the width of all bars by setting the option options(BBmisc.ProgressBar.width).
By default this is getOption("width").

You can globally set the stream where the output of the bar is directed by setting the option
options(BBmisc.ProgressBar.stream) either to “stderr” (the default) or “stdout”. Note that
using the latter will result in the bar being shown in reports generated by Sweave or knitr, what you
probably do not want.

Usage

makeProgressBar (
min = 0,
max = 100,
label = "",
char = "+",
style = getOption("BBmisc.ProgressBar.style”, "text"),
width = getOption("BBmisc.ProgressBar.width”, getOption("width")),

stream = getOption(”"BBmisc.ProgressBar.stream”, "stderr")
)
Arguments

min [numeric(1)]
Minimum value, default is O.

max [numeric(1)]
Maximum value, default is 100.

label [character(1)]
Label shown in front of the progress bar. Note that if you later set msg in the
progress bar function, the message will be left-padded to the length of this label,
therefore it should be at least as long as the longest message you want to display.
Default is “”.

char [character(1)]

A single character used to display progress in the bar. Default is ‘+’.

44 makeProgressBar

style [character(1)]
Style of the progress bar. Default is set via options (see details).

width [integer(1)]
Width of the progress bar. Default is set via options (see details).

stream [character(1)]
Stream to use. Default is set via options (see details).

Value

[ProgressBar]. A list with following functions:

set [function(value, msg = label)]
Set the bar to a value and possibly display a message instead of the label.

inc [function(value, msg = label)]
Increase the bar and possibly display a message instead of the label.

kill [function(clear = FALSE)]
Kill the bar so it cannot be used anymore. Cursor is moved to new line. You can
also erase its display.

error [function(e)]
Useful in tryCatch to properly display error messages below the bar. See the
example.

Examples

5, label = "test-bar")

bar = makeProgressBar (max
for (i in 0:5) {
bar$set (i)
Sys.sleep(0.2)
3
bar = makeProgressBar(max = 5, label = "test-bar")
for (i in 1:5) {
bar$inc(1)
Sys.sleep(0.2)
3
display errors properly (in next line)
Not run:
f = function(i) if (i>2) stop("foo")
bar = makeProgressBar(max = 5, label = "test-bar")
for (i in 1:5) {
tryCatch ({

f(i)
bar$set (i)
}, error = bar$error)

}

End(Not run)

makeS30bj 45

makeS30bj Simple constructor for S3 objects based on lists

Description

Simple wrapper for as.list and setClasses.

Usage
makeS30bj(classes, ...)
Arguments
classes [character]
Class(es) for constructed object.
[any]
Key-value pairs for class members.
Value
Object.
Examples

makeS30bj("car"”, speed = 100, color = "red")

makeSimpleFileLogger Simple logger which outputs to a file

Description

Creates a simple file logger closure to log to a file, including time stamps. An optional buffer holds
the last few log messages.

Usage
makeSimpleFilelLogger(logfile, touch = FALSE, keep = 10L)

Arguments
logfile [character(1)]
File to log to.
touch [logical(1)]
Should the file be created before the first log message? Default is FALSE.
keep [integer(1)]

Number of log messages to keep in memory for quick access. Default is 10.

46

Value

map Values

[SimpleFileLogger]. A list with following functions:

log [function(msg)]

Send log message.

getMessages [function(n)]

Get last n log messages.

clear [function()]

Resets logger and deletes log file.

getSize [function()]

Returns the number of logs written.

getlLogfile [function()]

Returns the full file name logs are written to.

mapValues

Replace values in atomic vectors

Description

Replace values in atomic vectors

Usage

mapValues(

X,

from,

to,

regex = FALSE
ignore.case =
perl = FALSE,
fixed = FALSE

Arguments

X

from

to

regex

ignore.case

’

FALSE,

[atomic]
Atomic vector. If x is a factor, all replacements work on the levels.

[atomic]
Atomic vector with values to replace, same length as to.

[atomic]

Atomic vector with replacements, same length as from.
[logical]

Use regular expression matching? Default is FALSE.
[logical]

Argument passed to gsub.

messagef 47

perl [logical]

Argument passed to gsub.
fixed [logical]

Argument passed to gsub.

Details
Replaces values specified in from with values in to. Regular expression matching can be enabled
which calls gsub iteratively on x to replace all patterns in from with replacements in to.

Value

[atomic].

Examples
replace integers
x = 1:5
mapValues(x, c(2, 3), c(99, 100))

replace factor levels using regex matching
x = factor(c("aab"”, "aba", "baa"))

mapValues(x, "a.a", "zzz", regex = TRUE)
messagef Wrapper for message and sprintf
Description

A simple wrapper for message(sprintf(...)).

Usage
messagef (..., .newline = TRUE)
Arguments
[any]
See sprintf.
.newline [logical(1)]
Add a newline to the message. Default is TRUE.
Value
Nothing.
Examples
msg = "a message”

warningf("this is %s", msg)

48 names2

namedList Create named list, possibly initialized with a certain element

Description

Even an empty list will always be named.

Usage

namedList(names, init)

Arguments
names [character]
Names of elements.
init [valid R expression]
If given all list elements are initialized to this, otherwise NULL is used.
Value
[1ist].
Examples

namedList(c("a", "b"))
namedList(c("a", "b"), init = 1)

names2 Replacement for names which always returns a vector

Description

A simple wrapper for names. Returns a vector even if no names attribute is set. Values NA and ""
are treated as missing and replaced with the value provided in missing.val.

Usage

names2(x, missing.val = NA_character_)

Arguments
X [ANY]
Object, probably named.

missing.val [ANY]
Value to set for missing names. Default is NA_character_.

normalize 49

Value

[character]: vector of the same length as x.

Examples

x =1:3

names(x)

names2(x)

names(x[1:2]) = letters[1:2]
names(x)

names2(x)

normalize Normalizes numeric data to a given scale

Description

Currently implemented for numeric vectors, numeric matrices and data.frame. For matrixes one can
operate on rows or columns For data.frames, only the numeric columns are touched, all others are
left unchanged. For constant vectors / rows / columns most methods fail, special behaviour for this
case is implemented.

The method also handles NAs in in x and leaves them untouched.

Usage

normalize(
X,
method = "standardize",
range = c(0, 1),
margin = 1L,

on.constant = "quiet”
)
Arguments
X [numeric Imatrix | data.frame]
Input vector.
method [character(1)]

Normalizing method. Available are:
“center”: Subtract mean.

“scale”: Divide by standard deviation.
“standardize”: Center and scale.
“range”: Scale to a given range.

50 optimizeSublnts
range [numeric(2)]
Range for method “range”. The first value represents the replacement for the
min value, the second is the substitute for the max value. So it is possible to
reverse the order by giving range = c(1,0). Default is c(0,1).
margin [integer(1)]
1 =rows, 2 = cols. Same is in apply Default is 1.
on.constant [character(1)]
How should constant vectors be treated? Only used, of “method != center”,
since this methods does not fail for constant vectors. Possible actions are:
“quiet”: Depending on the method, treat them quietly:
“scale”: No division by standard deviation is done, input values. will be returned
untouched.
“standardize”: Only the mean is subtracted, no division is done.
“range”: All values are mapped to the mean of the given range.
“warn”: Same behaviour as “quiet”, but print a warning message.
“stop”: Stop with an error.
Value
[numeric | matrix | data.frame].
See Also
scale
optimizeSubInts Naive multi-start version of optimize for global optimization
Description
The univariate optimize can stop at arbitrarily bad points when f is not unimodal. This functions
mitigates this effect in a very naive way: interval is subdivided into nsub equally sized subinter-
vals, optimize is run on all of them (and on the original big interval) and the best obtained point is
returned.
Usage
optimizeSubInts(
f,
interval,

L

lower = min(interval),

upper = max(interval),

maximum = FALSE,

tol = .Machine$double.eps”*0.25,

nsub = 50L

pause 51

Arguments
f See optimize.
interval See optimize.
See optimize.
lower See optimize.
upper See optimize.
maximum See optimize.
tol See optimize.
nsub [integer(1)]
Number of subintervals. A value of 1 implies normal optimize behavior. De-
fault is SOL.
Value
See optimize.
pause Pause in interactive mode and continue on <Enter>.

Description

Pause in interactive mode and continue on <Enter>.

Usage

pause()

printHead More meaningful head (df) output

Description

The behaviour is similar to print(head(x, n)). The difference is, that if the number of rows
in a data.frame/matrix or the number of elements in a list or vector is larger than n, additional
information is printed about the total number of rows or elements respectively.

Usage

printHead(x, n = 6L)

52 printStrToChar

Arguments
X [data.frame | matrix|list | vector]
Object.
n [integer(1)]
Single positive integer: number of rows for a matrix/data.frame or number of
elements for vectors/lists respectively.
Value
Nothing.
printStrToChar Print str(x) of an object to a string / character vector
Description

Captures the output of str() as a character string.

Usage

printStrToChar(x, collapse = "\n")

Arguments
X [any]
Object to print
collapse [character(1)]
Used to collapse multiple lines. NULL means no collapsing, vector is returned.
Default is “\n”.
Value
[character].
Examples

printStrToChar(iris)

printToChar 53

printToChar Prints object to a string / character vector

Description

Captures the output of print() as a character string.

Usage

printToChar(x, collapse = "\n")

Arguments
X [any]
Object to print
collapse [character(1)]
Used to collapse multiple lines. NULL means no collapsing, vector is returned.
Default is “\n”.
Value
[character].
Examples

X = data.frame(a = 1:2, b = 3:4)
str(printToChar(x))

rangeVal Calculate range statistic

Description

A simple wrapper for diff (range(x)), so max(x) - min(x).

Usage

rangeVal(x, na.rm = FALSE)

Arguments
X [numeric]
The vector.
na.rm [logical(1)]

If FALSE, NA is returned if an NA is encountered in x. If TRUE, NAs are disre-
garded. Default is FALSE

54

Value

[numeric(1)].

requirePackages

requirePackages

Require some packages

Description

Packages are loaded either via requireNamespace or require.

If some packages could not be loaded and stop is TRUE the following exception is thrown: “For
<why> please install the following packages: <missing packages>". If why is NULL the message is:
“Please install the following packages: <missing packages>".

Usage

requirePackages(

packs,

min.versions = NULL,

nn

why = "",

stop = TRUE,

suppress.warnings = FALSE,
default.method = "attach”

Arguments

packs

min.versions

why

stop

[character]
Names of packages. If a package name is prefixed with “!”, it will be at-
tached using require. If a package name is prefixed with “_”, its names-

pace will be loaded using requireNamespace. If there is no prefix, argument
default.method determines how to deal with package loading.

[character]
A char vector specifying required minimal version numbers for a subset of pack-
ages in packs. Must be named and all names must be in packs. The only
exception is when packs is only a single string, then you are allowed to pass
an unnamed version string here. Default is NULL, meaning no special version
requirements

[character(1)]

Short string explaining why packages are required. Default is an empty string.
[logical(1)]

Should an exception be thrown for missing packages? Default is TRUE.

suppress.warnings

[logical(1)]
Should warnings be supressed while requiring? Default is FALSE.

rowLapply

55

default.method [character(1)]

Value

w9

If the packages are not explicitly prefixed with “!” or “_”, this arguments deter-
mines the default. Possible values are “attach” and “load”. Note that the default
is “attach”, but this might/will change in a future version, so please make sure
to always explicitly set this.

[Logical]. Named logical vector describing which packages could be loaded (with required ver-
sion). Same length as packs.

Examples
requirePackages(c(”"BBmisc”, "base”), why = "BBmisc example”)
rowLapply Apply function to rows of a data frame
Description

Just like an lapply on data frames, but on the rows.

Usage
rowLapply(df, fun, ..., unlist = FALSE)
rowSapply(df, fun, ..., unlist = FALSE, simplify = TRUE, use.names = TRUE)
Arguments

df [data.frame]
Data frame.

fun [function]
Function to apply. Rows are passed as list or vector, depending on argument
unlist, as first argument.
[ANY]
Additional arguments for fun.

unlist [logical(1)]
Unlist the row? Note that automatic conversion may be triggered for lists of
mixed data types Default is FALSE.

simplify [logical (1) | character(1)]
Should the result be simplified? See sapply. If “cols”, we expect the call results
to be vectors of the same length and they are arranged as the columns of the
resulting matrix. If “rows”, likewise, but rows of the resulting matrix. Default
is TRUE.

use.names [logical(1)]

Should result be named by the row names of df? Default is TRUE.

56 save2

Value

[1ist or simplified object]. Length is nrow(df).

Examples

rowLapply(iris, function(x) x$Sepal.Length + x$Sepal.Width)

save? Save multiple objects to a file

Description

A simple wrapper for save. Understands key = value syntax to save objects using arbitrary variable
names. All options of save, except list and envir, are available and passed to save.

Usage

save2(
file,
ascii = FALSE,
version = NULL,
compress = lascii,
compression_level,
eval.promises = TRUE,
precheck = TRUE

)
Arguments
file File to save.
[any]
Will be converted to an environment and then passed to save.
ascii See help of save.
version See help of save.
compress See help of save.

compression_level
See help of save.

eval.promises See help of save.

precheck See help of save.

Value

See help of save.

seq_row

Examples

x =1
save2(y = x, file = tempfile())

57

seq_row Generate sequences along rows or cols

Description

A simple convenience wrapper around seq_len.

Usage

seq_row(x)

seq_col(x)

Arguments

X [data.frame | matrix]
Data frame, matrix or any object which supports nrow or ncol, respectively.

Value

Vector of type [integer].

Examples

data(iris)
seq_row(iris)
seq_col(iris)

setAttribute A wrapper for attr(x, which) =y

Description

Sets an attribute on an object and returns the modified object.

Usage

setAttribute(x, which, value)

58 setClasses

Arguments
X [any]
Your object.
which [character(1)]
Name of the attribute to set
value [ANY]
Value for the attribute.
Value
Changed object x.
Examples

setAttribute(list(), "foo", 1)

setClasses A wrapper for class(x) = classes

Description

Sets the class attribute of an object and returns the modified object.

Usage

setClasses(x, classes)

Arguments
X [any]
Your object.
classes [character]
New classes.
Value
Changed object x.
Examples

setClasses(list(), c("fool”, "foo2"))

setRowNames

setRowNames Wrapper for rownames(x) =y, colnames(x) =y

Description

Sets row or column names on a matrix or data frame and returns the modified object.

Usage

setRowNames(x, names)

setColNames(x, names)

Arguments
X [matrix | data. frame]
Matrix or data.frame.
names [character]
New names for rows / columns.
Value

Changed object x.

Examples

setColNames(matrix(1:4, 2, 2), c("a", "b"))

setValue Set a list element to a new value

Description

This wrapper supports setting elements to NULL.

Usage

setValue(obj, index, newval)

Arguments
obj [list]
index [character | integer]
Index or indices where to insert the new values.
newval [any]

Inserted elements(s). Has to be a list if index is a vector.

60 splitPath

Value

[list]

sortByCol Sort the rows of a data.frame according to one or more columns

Description

Sorts a data frame by one or more columns in ascending or descending order.

Usage
sortByCol(x, col, asc = TRUE)

Arguments
X [data.frame]
Data.frame to sort.
col [character]
One or more column names to sort x by. In order of preference.
asc [logical]
Sort ascending (or descending)? One value per entry of col. If a scalar logical
is passed, it is replicated. Default is TRUE.
Value

[data.frame].

splitPath Split a path into components

Description

The first normalized path is split on forward and backward slashes and its components returned
as character vector. The drive or network home are extracted separately on windows systems and
empty on all other systems.

Usage
splitPath(path)

Arguments

path [character(1)]
Path to split as string

splitTime 61

Value

named list: List with components “drive” (character (1) and “path” (character(n).

splitTime Split seconds into handy chunks of time

Description

Note that a year is simply defined as exactly 365 days.

Usage
splitTime(seconds, unit = "years")
Arguments
seconds [numeric(1)]
Number of seconds. If not an integer, it is rounded down.
unit [character(1)]
Largest unit to split seconds into. Must be one of: c("years”, "days"”, "hours”,
"minutes”, "seconds”). Default is “years”.
Value

2 G

[numeric(5)]. A named vector containing the “years”, “days”, “hours”, “minutes” and “seconds”.
Units larger than the given unit are NA.

Examples

splitTime(1000)

stopf Wrapper for stop and sprintf

Description

A wrapper for stop with sprintf applied to the arguments. Notable difference is that error mes-
sages are not truncated to 1000 characters by default.

Usage
stopf (..., warning.length = 8170L)

62 strrepeat

Arguments

[any]
See sprintf.

warning.length [integer(1)]
Number of chars after which the error message gets truncated, see ?options.
Default is 8170.

Value

Nothing.

Examples

err = "an error.”
try(stopf("This is %s", err))

strrepeat Repeat and join a string

Description

Repeats a string n times and joins the results.

Usage
strrepeat(x, n, sep = "")
Arguments
X [character]
Vector of characters.
n [integer(1)]
Times the vector x is repeated.
sep [character(1)]
Separator to use to collapse the vector of characters.
Value

character(1).

Examples

strrepeat("x", 3)

suppressAll 63

suppressAll Suppresses all output except for errors

Description

Evaluates an expression and suppresses all output except for errors, meaning: prints, messages,
warnings and package startup messages.

Usage
suppressAll (expr)
Arguments
expr [valid R expression]
Expression.
Value

Return value of expression invisibly.

Examples

suppressAll ({
print("”foo")
message("foo")
warning("”foo")

b

symdiff Calculates symmetric set difference between two sets

Description

Returns elements that are in either set but not in both.

Usage
symdiff(x, y)

Arguments
X [vector]
Set 1.
y [vector]

Set 2.

64

Value

[vector].

system3

system3

Wrapper for system2 with better return type and errorhandling

Description

Wrapper for system2 with better return type and errorhandling.

Usage

system3(

command,

args = character(QL),

stdout = "",
stderr =
wait = TRUE,

L

stop.on.exit.

Arguments

command
args
stdout
stderr

wait

code = wait

See system2.
See system?2.
See system2.
See system2.
See system2.

Further arguments passed to system2.

stop.on.exit.code

Value

[list].

[logical(1)]

Should an exception be thrown if an exit code greater O is generated? Can only

be used if wait is TRUE. Default is wait.

exit.code [integer(1)]
Exit code of command. Given if wait is TRUE, otherwise NA. OL means success.

127L means command was not found

output [character]
Output of command on streams. Only given is stdout or stderr was set to

TRUE, otherwise NA.

toRangeStr 65

toRangeStr Convert a numerical vector into a range string

Description

Converts a vector of integers into a compact range string representation.

Usage
toRangeStr(x, range.sep = " - ", block.sep = ", ")
Arguments
X [integer]
Vector to convert into a range string.
range.sep [character(1)]
Separator between the first and last element of a range of consecutive elements
in x. Default is “ - .
block.sep [character(1)]
Separator between non consecutive elements of x or ranges. Default is *, .
Value
[character(1)]
Examples

x = sample(1:10, 7)
toRangeStr(x)

vlapply Apply a function with a predefined return value

Description

These are just wrappers around vapply with argument FUN. VALUE set. The function is expected to
return a single logical, integer, numeric or character value, depending on the second letter of
the function name.

Usage
vlapply(x, fun, ..., use.names = TRUE)
viapply(x, fun, ..., use.names = TRUE)
vnapply(x, fun, ..., use.names = TRUE)
vcapply(x, fun, ..., use.names = TRUE)

66 warningt
Arguments
X [vector or list]
Object to apply function on.
fun [function]
Function to apply on each element of x.
[ANY]
Additional arguments for fun.
use.names [logical(1)]
Should result be named? Default is TRUE.
warningf Wrapper for warning and sprintf
Description

A wrapper for warning with sprintf applied to the arguments.

Usage
warningf(..., immediate = TRUE, warning.length = 8170L)
Arguments
[any]
See sprintf.
immediate [logical(1)]

warning.length

Value

Nothing.

Examples

msg = "a warning’

See warning. Default is TRUE.
[integer(1)]

Number of chars after which the warning message gets truncated, see ?options.

Default is 8170.

I

warningf ("this is %s", msg)

which.first 67

which.first Find the index of first/last TRUE value in a logical vector

Description

Returns the index of the first or last TRUE value in a logical vector.

Usage

which.first(x, use.names = TRUE)

which.last(x, use.names = TRUE)

Arguments
X [logical]
Logical vector.
use.names [logical(1)]
If TRUE and x is named, the result is also named.
Value

[integer (1) | integer(@)]. Returns the index of the first/last TRUE value in x or an empty integer
vector if none is found.

Examples

which.first(c(FALSE, TRUE))
which.last(c(FALSE, FALSE))

%btwn% Check if some values are covered by the range of the values in a second
vector

Description

Tests whether values in x are between the minimum and maximum of y.

Usage

X %btwn% y

68
Arguments
X [numeric(n)]
Value(s) that should be within the range of y.
y [numeric]
Numeric vector which defines the range.
Value

[Logical(n)]. For each value in x: Is it in the range of y?

Examples
X =3
y = c(-1,2,5)

X %btwn% y

%nin%

%nink Simply a negated in operator

Description

Tests if elements of x are not in y.

Usage

X %nin% y

Arguments
X [vector]
Values that should not be in y.
y [vector]

Values to match against.

Index

%btwn%, 67
%nin%k, 68

addClasses, 4

apply, 50

argsAsNamedList, 4
asMatrixCols, 5

asMatrixRows (asMatrixCols), 5
asQuoted, 5

binPack, 6

c, 8

capitalizeStrings, 7

cat, 8

catf,7

cFactor, 8

checkArg, 9

checkListElementClass, 10

chunk, 11

clipString, 12, 20

coalesce, 12

collapse, 13, 14

collapsef, 14

computeMode, 14

convertColsTolList (convertRowsTolList),
18

convertDataFrameCols, 15

convertDfCols (deprecated), 21

convertInteger, 16

convertIntegers, 16

convertListOfRowsToDataFrame, 17

convertMatrixType, 18

convertRowsTolList, 18

convertToShortString, 19

dapply, 20
deprecated, 21
do.call, 22
do.call2, 22

69

dropNamed, 22

ensureVector, 23
explode, 24
extractSubList, 24

filterNull, 25

getAttributeNames, 26

getBestIndex (getMaxIndex), 27

getClassl, 26

getFirst, 27

getlLast (getFirst), 27

getMaxIndex, 27, 29

getMaxIndex0fCols (getMaxIndexOfRows),
28

getMaxIndexOfRows, 28

getMinIndex (getMaxIndex), 27

getMinIndex0fCols (getMaxIndexOfRows),
28

getMinIndexOfRows (getMaxIndexOfRows),
28

getOperatingSystem, 29

getRelativePath, 30

getUnixTime, 30

getUsedFactorLevels, 31

getwd, 30

gsub, 46, 47

hasAttributes, 31

inherits, 9

insert, 32

is, 9

is.error, 32

isDarwin (getOperatingSystem), 29
isDirectory, 33
isEmptyDirectory, 34
isExpensiveExampleOk, 34
isFALSE, 35

isLinux (getOperatingSystem), 29

70

isProperlyNamed, 35
isScalarCharacter (isScalarValue), 36
isScalarComplex (isScalarValue), 36
isScalarFactor (isScalarValue), 36
isScalarInteger (isScalarValue), 36
isScalarlogical (isScalarValue), 36
isScalarNA, 36

isScalarNumeric (isScalarValue), 36
isScalarValue, 36

isSubset, 37

isSuperset, 38

isUnix (getOperatingSystem), 29
isValidName, 38

isWindows (getOperatingSystem), 29
itostr, 39

lapply, 25, 55

lib, 39

listToShortString (deprecated), 21
load2, 40, 42

lsort, 41

makeDataFrame, 41
makeFileCache, 42
makeProgressBar, 43
makeS30bj, 45
makeSimpleFilelLogger, 45
mapValues, 46
messagef, 47

mode, /8

namedList, 48
names, 48
names2, 48
ncol, 57
normalize, 49
nrow, 57

optimize, 50, 51
optimizeSublInts, 50

paste, 13

pause, 51

printHead, 51

printStrToChar, 52
printToChar, 53

ProgressBar, 44

ProgressBar (makeProgressBar), 43

quote, 5

INDEX

rangeVal, 53

require, 54
requireNamespace, 54
requirePackages, 54
rowLapply, 55

rowSapply (rowLapply), 55

sapply, 25, 55

save, 56

save2, 56

scale, 50

seqg_col (seq_row), 57

seq_len, 57

seq_row, 57

setAttribute, 57

setClasses, 45, 58

setColNames (setRowNames), 59

setRowNames, 59

setValue, 59

simpleError, 32

SimpleFilelogger, 46

SimpleFilelLogger
(makeSimpleFilelLogger), 45

sort, 41

sortByCol, 60

split, 11

splitPath, 60

splitTime, 61

sprintf, 8, 14, 20,47, 61, 62, 66

stop, 61

stopf, 61

strrepeat, 62

strtoi, 39

suppressAll, 63

symdiff, 63

system2, 64

system3, 64

toRangeStr, 65
try, 32
tryCatch, 12, 32

vapply, 25, 65
vcapply (vlapply), 65
vector, 42

viapply (vlapply), 65
vlapply, 65

vhapply (vlapply), 65

warning, 66

INDEX

warningf, 66
which.first, 67
which.last (which.first), 67

71

	addClasses
	argsAsNamedList
	asMatrixCols
	asQuoted
	binPack
	capitalizeStrings
	catf
	cFactor
	checkArg
	checkListElementClass
	chunk
	clipString
	coalesce
	collapse
	collapsef
	computeMode
	convertDataFrameCols
	convertInteger
	convertIntegers
	convertListOfRowsToDataFrame
	convertMatrixType
	convertRowsToList
	convertToShortString
	dapply
	deprecated
	do.call2
	dropNamed
	ensureVector
	explode
	extractSubList
	filterNull
	getAttributeNames
	getClass1
	getFirst
	getMaxIndex
	getMaxIndexOfRows
	getOperatingSystem
	getRelativePath
	getUnixTime
	getUsedFactorLevels
	hasAttributes
	insert
	is.error
	isDirectory
	isEmptyDirectory
	isExpensiveExampleOk
	isFALSE
	isProperlyNamed
	isScalarNA
	isScalarValue
	isSubset
	isSuperset
	isValidName
	itostr
	lib
	load2
	lsort
	makeDataFrame
	makeFileCache
	makeProgressBar
	makeS3Obj
	makeSimpleFileLogger
	mapValues
	messagef
	namedList
	names2
	normalize
	optimizeSubInts
	pause
	printHead
	printStrToChar
	printToChar
	rangeVal
	requirePackages
	rowLapply
	save2
	seq_row
	setAttribute
	setClasses
	setRowNames
	setValue
	sortByCol
	splitPath
	splitTime
	stopf
	strrepeat
	suppressAll
	symdiff
	system3
	toRangeStr
	vlapply
	warningf
	which.first
	btwn
	nin
	Index

