
Package ‘DNAmf’
January 29, 2026

Type Package

Title Diffusion Non-Additive Model with Tunable Precision

Version 0.1.1

Maintainer Junoh Heo <heojunoh@msu.edu>

Description Performs Diffusion Non-Additive (DNA) model pro-
posed by Heo, Boutelet, and Sung (2025+) <doi:10.48550/arXiv.2506.08328> for multi-
fidelity computer experiments with tuning parameters. The DNA model captures nonlinear de-
pendencies across fidelity levels using Gaussian process priors and is particularly effec-
tive when simulations at different fidelity levels are nonlinearly correlated. The DNA model tar-
gets not only interpolation across given fidelity levels but also extrapolation to smaller tuning pa-
rameters including the exact solution corresponding to a zero-valued tuning parameter, leverag-
ing a nonseparable covariance kernel structure that models interactions between the tuning pa-
rameter and input variables. Closed-form expressions for the predictive mean and variance en-
able efficient inference and uncertainty quantification. Hyperparameters in the model are esti-
mated via maximum likelihood estimation.

License GPL-3

Encoding UTF-8

Imports plgp, stats, methods, lhs, fields, mvtnorm

Suggests RNAmf

RoxygenNote 7.3.3

NeedsCompilation no

Author Junoh Heo [aut, cre],
Romain Boutelet [aut],
Chih-Li Sung [aut]

Repository CRAN

Date/Publication 2026-01-29 20:40:13 UTC

Contents
closed_form_DNA . 2
DNAmf . 3
imputer_DNA . 5
predict.DNAmf . 6

1

https://doi.org/10.48550/arXiv.2506.08328

2 closed_form_DNA

Index 10

closed_form_DNA Closed-form prediction for DNAmf model

Description

The function computes the closed-form posterior mean and variance for the DNAmf model both
at the fidelity levels used in model fitting and at any user-specified target fidelity level, using the
chosen nonseparable kernel.

Usage

closed_form_DNA(
fit1,
fit2,
targett,
kernel,
nn,
tt,
nlevel,
x,
XX = NULL,
pseudo_yy = NULL

)

Arguments

fit1 A fitted GP object for f1.

fit2 A fitted GP object for f .

targett A numeric value of target tuning parameter to predict.

kernel A character specifying the kernel type to be used. Choices are "sqex"(nonseparable
squared exponential kernel), "matern1.5"(nonseparable Matern kernel with ν =
1.5), or "matern2.5"(nonseparable Matern kernel with ν = 2.5). Default is
"sqex".

nn A vector specifying the number of design points at each fidelity level.

tt A vector of tuning parameters for each fidelity level.

nlevel The number of fidelity levels L.

x A vector or matrix of new input locations to predict.

XX A list containing a pseudo-complete inputs X_star({X ∗
l }

L
l=1), an original in-

puts X_list({Xl}Ll=1), and a pseudo inputs X_tilde(
{
X̃l

}L

l=1
) for non-nested

design.

pseudo_yy A list containing a pseudo-complete outputs y_star({y∗
l }

L
l=1), an original out-

puts y_list({yl}Ll=1), and a pseudo outputs y_tilde({ỹl}Ll=1) imputed by imputer_DNA.

DNAmf 3

Value

A list of predictive posterior mean and variance for each level containing:

• mu_1, sig2_1, ..., mu_L, sig2_L: A vector of predictive posterior mean and variance at each
level.

• mu: A vector of predictive posterior mean at target tuning parameter.

• sig2: A vector of predictive posterior variance at target tuning parameter.

DNAmf Fitting a Diffusion Non-Additive model for multi-fidelity computer ex-
periments with tuning parameters

Description

The function fits DNA models for multi-fidelity computer experiments with tuning parameters.
Available kernel choices include nonseparable squared exponential kernel, and nonseparable Matern
kernel with smoothness parameter 1.5 and 2.5. The function returns a fitted model object of class
DNAmf, produced by DNAmf_internal.

Usage

DNAmf(X, y, kernel = "sqex", t, constant = TRUE, init=NULL,
n.iter=50, multi.start=10, g = sqrt(.Machine$double.eps), burn.ratio = 0.75, ...)

Arguments

X A list of input locations for all fidelity levels 1, . . . , L combined.

y A list of response values for all fidelity levels 1, . . . , L combined.

kernel A character specifying the kernel type to be used. Choices are "sqex"(squared
exponential), "matern1.5", or "matern2.5". Default is "sqex".

t A vector of tuning parameters for each fidelity level.

constant A logical indicating for constant mean of GP (constant=TRUE) or zero mean
(constant=FALSE). Default is TRUE.

init Optional vector of initial parameter values for optimization. Default is NULL.

n.iter Number of iterations for the stochastic EM algorithm for non-nested designs.
Default is 50.

multi.start Number of random starting points for optimization. Default is 10.

g Nugget term for numerical stability. Default is sqrt(.Machine$double.eps).

burn.ratio Fraction of iterations to discard as burn-in. Default is 0.75.

... Additional arguments for compatibility with DNAmf_internal.

4 DNAmf

Details

The DNAmf function internally calls DNAmf_internal to fit the DNA model with nonseparable ker-
nel.

The model structure is:

{
f1(x) = W1(x),

fl(x) = W (tl,x, fl−1(x)),
where W (t,x, y) ∼ GP (α, τ2K((t,x, y), (t′,x′, y′)))

is a GP model. Hyperparameters (α, τ2,θ) are estimated by maximizing the log-likelihood via an
optimization algorithm "L-BFGS-B". For constant=FALSE, α = 0.

The nonseparable covariance kernel is defined as:

K((t,x, y), (t′,x′, y′)) =

(
(t− t′)2

θt
+ 1

)−(β(d+1)
2 +δ) d∏

j=1

ϕ(xj , x
′
j ; θj)ϕ(y, y

′; θy),

where ϕ(·, ·) depens on the chosen kernel:

• For nonseparable squared exponential kernel(kernel = "sqex"):

ϕ(x, x′; θ) = exp

(
−
(
(t− t′)2

θt
+ 1

)−β
(x− x′)2

θ

)

• For nonseparable Matern kernel with smoothness parameter of ν = 1.5 (kernel = "matern1.5"):

ϕ(x, x′; θ) =

1 +
1(

(t−t′)2

θt
+ 1
) β

2

√
3|x− x′|

θ

 exp

− 1(
(t−t′)2

θt
+ 1
) β

2

√
3|x− x′|

θ


• For nonseparable Matern kernel with smoothness parameter of ν = 2.5 (kernel = "matern2.5"):

ϕ(x, x′; θ) =

1 +
1(

(t−t′)2

θt
+ 1
) β

2

√
5|x− x′|

θ
+

1

3

 1(
(t−t′)2

θt
+ 1
) β

2

√
5|x− x′|

θ


2

× exp

− 1(
(t−t′)2

θt
+ 1
) β

2

√
5|x− x′|

θ


When the input locations are not nested, the internal makenested function constructs nested designs
as X ∗

L = XL and X ∗
l = Xl ∪ X ∗

l+1 for l = 1, . . . , L − 1. The function imputer_DNA then imputes
pseudo outputs ỹl := fl(X̃l) at pseudo inputs X̃l := X ∗

l \ Xl, using a stochastic EM algorithm.

For further details, see Heo, Boutelet, and Sung (2025+, <arXiv:2506.08328>).

Value

A fitted model object of class DNAmf.

imputer_DNA 5

See Also

predict.DNAmf for prediction.

Examples

Non-Additive example
library(RNAmf)

Non-Additive Function
fl <- function(x, t){

term1 <- sin(10 * pi * x / (5+t))
term2 <- 0.2 * sin(8 * pi * x)
term1 + term2

}

training data
n1 <- 13; n2 <- 10; n3 <- 7; n4 <- 4; n5 <- 1;
m1 <- 2.5; m2 <- 2.0; m3 <- 1.5; m4 <- 1.0; m5 <- 0.5;
d <- 1

fix seed to reproduce the result
set.seed(1)

generate initial nested design
NestDesign <- NestedX(c(n1,n2,n3,n4,n5),d)

X1 <- NestDesign[[1]]
X2 <- NestDesign[[2]]
X3 <- NestDesign[[3]]
X4 <- NestDesign[[4]]
X5 <- NestDesign[[5]]

y1 <- fl(X1, t=m1)
y2 <- fl(X2, t=m2)
y3 <- fl(X3, t=m3)
y4 <- fl(X4, t=m4)
y5 <- fl(X5, t=m5)

fit a DNAmf
fit.DNAmf <- DNAmf(X=list(X1, X2, X3, X4, X5), y=list(y1, y2, y3, y4, y5), kernel="sqex",

t=c(m1,m2,m3,m4,m5), multi.start=10, constant=TRUE)

imputer_DNA Imputation step in stochastic EM for the non-nested DNA Model

Description

The function performs the imputation step of the stochastic EM algorithm for the DNA model when
the design is not nested. The function generates pseudo outputs ỹl at pseudo inputs X̃l.

6 predict.DNAmf

Usage

imputer_DNA(XX, yy, kernel=kernel, t, pred1, fit2)

Arguments

XX A list of design sets for all fidelity levels, containing X_star, X_list, and
X_tilde.

yy A list of current observed and pseudo-responses, containing y_star, y_list,
and y_tilde.

kernel A character specifying the kernel type to be used. Choices are "sqex"(squared
exponential), "matern1.5", or "matern2.5".

t A vector of tuning parameters for each fidelity level.

pred1 Predictive results for the lowest fidelity level f1. It should include cov obtained
by setting cov.out=TRUE.

fit2 A fitted model object for higher fidelity levels f from (t−1, X−1, y−1).

Details

For non-nested designs, pseudo-input locations X̃l are constructed using the internal makenested
function. The imputer_DNA function then imputes the corresponding pseudo outputs ỹl = fl(X̃l)
by drawing samples from the conditional normal distribution, given fixed parameter estimates and
previous-level outputs Y ∗(m−1)

−L , at the m-th iteration of the EM algorithm.

For further details, see Heo, Boutelet, and Sung (2025+, <arXiv:2506.08328>).

Value

An updated yy list containing:

• y_star: An updated pseudo-complete outputs y∗
l .

• y_list: An original outputs yl.

• y_tilde: A newly imputed pseudo outputs ỹl.

predict.DNAmf Predictive posterior mean and variance for DNAmf object with non-
separable kernel.

Description

The function computes the predictive posterior mean and variance for the DNAmf model using
closed-form expressions based on the chosen nonseparable kernel at given new input locations.

Usage

S3 method for class 'DNAmf'
predict(object, x = NULL, targett = 0, nimpute = 50, ...)

predict.DNAmf 7

Arguments

object A fitted DNAmf object.

x A vector or matrix of new input locations to predict.

targett A numeric value of target tuning parameter to predict.

nimpute Number of imputations for non-nested designs. Default is 50.

... Additional arguments for compatibility with generic method predict.

Details

The predict.DNAmf function internally calls closed_form_DNA, which further calls h1_sqex, h2_sqex,
h2_sqex_single for kernel="sqex", or h1_matern, h2_matern, h2_matern_single for kernel="matern1.5"
orkernel="matern2.5", to recursively compute the closed-form posterior mean and variance at
each level.

From the fitted model from DNAmf, the posterior mean and variance are calculated based on the
closed-form expression derived by a recursive fashion. The formulas depend on its kernel choices.

If the fitted model was constructed with non-nested designs (nested=FALSE), the function generates
nimpute sets of imputations for pseudo outputs via imputer_DNA.

For further details, see Heo, Boutelet, and Sung (2025+, <arXiv:2506.08328>).

Value

A list of predictive posterior mean and variance for each level and computation time containing:

• mu_1, sig2_1, ..., mu_L, sig2_L: A vector of predictive posterior mean and variance at each
level.

• mu: A vector of predictive posterior mean at target tuning parameter.

• sig2: A vector of predictive posterior variance at target tuning parameter targett.

• time: Total computation time in seconds.

See Also

DNAmf for the user-level function.

Examples

Non-Additive example
library(RNAmf)

Non-Additive Function
fl <- function(x, t){

term1 <- sin(10 * pi * x / (5+t))
term2 <- 0.2 * sin(8 * pi * x)
term1 + term2

}

training data
n1 <- 13; n2 <- 10; n3 <- 7; n4 <- 4; n5 <- 1;

8 predict.DNAmf

m1 <- 2.5; m2 <- 2.0; m3 <- 1.5; m4 <- 1.0; m5 <- 0.5;
d <- 1
eps <- sqrt(.Machine$double.eps)
x <- seq(0,1,0.01)

fix seed to reproduce the result
set.seed(1)

generate initial nested design
NestDesign <- NestedX(c(n1,n2,n3,n4,n5),d)

X1 <- NestDesign[[1]]
X2 <- NestDesign[[2]]
X3 <- NestDesign[[3]]
X4 <- NestDesign[[4]]
X5 <- NestDesign[[5]]

y1 <- fl(X1, t=m1)
y2 <- fl(X2, t=m2)
y3 <- fl(X3, t=m3)
y4 <- fl(X4, t=m4)
y5 <- fl(X5, t=m5)

fit a DNAmf
fit.DNAmf <- DNAmf(X=list(X1, X2, X3, X4, X5), y=list(y1, y2, y3, y4, y5), kernel="sqex",

t=c(m1,m2,m3,m4,m5), multi.start=10, constant=TRUE)

predict
pred.DNAmf <- predict(fit.DNAmf, x, targett=0)
predydiffu <- pred.DNAmf$mu
predsig2diffu <- pred.DNAmf$sig2

RMSE
print(sqrt(mean((predydiffu-fl(x, t=0))^2))) # 0.1162579

visualize the emulation performance
oldpar <- par(mfrow = c(2,3))
create_plot_base <- function(i, mesh_size, x, pred_mu, pred_sig2,

X_points = NULL, y_points = NULL, add_points = TRUE, yylim) {
lower <- pred_mu - qnorm(0.995) * sqrt(pred_sig2)
upper <- pred_mu + qnorm(0.995) * sqrt(pred_sig2)

plot(x, pred_mu, type = "n", ylim = c(-yylim, yylim), xlab = "", ylab = "",
main = paste0("Mesh size = ", mesh_size), axes = FALSE)

box()

polygon(c(x, rev(x)), c(upper, rev(lower)),
col = adjustcolor("blue", alpha.f = 0.2), border = NA)

lines(x, pred_mu, col = "blue", lwd = 2)
lines(x, fl(x, mesh_size), lty = 2, col = "black", lwd = 2)

if (add_points && !is.null(X_points) && !is.null(y_points)) {
points(X_points, y_points, col = "red", pch = 16, cex = 1.3)

predict.DNAmf 9

}
}

mesh_sizes <- c(m1, m2, m3, m4, m5, 0)
mu_list <- list(pred.DNAmf$mu_1, pred.DNAmf$mu_2, pred.DNAmf$mu_3,

pred.DNAmf$mu_4, pred.DNAmf$mu_5, pred.DNAmf$mu)
sig2_list <- list(pred.DNAmf$sig2_1, pred.DNAmf$sig2_2, pred.DNAmf$sig2_3,

pred.DNAmf$sig2_4, pred.DNAmf$sig2_5, pred.DNAmf$sig2)
X_list <- list(X1, X2, X3, X4, X5, NULL)
y_list <- list(y1, y2, y3, y4, y5, NULL)

plots <- mapply(function(i, m, mu, sig2, X, y) {
create_plot_base(i, m, x, mu, sig2, X, y, add_points = !is.null(X), yylim=1.5)

}, i = 1:6, m = mesh_sizes, mu = mu_list, sig2 = sig2_list,
X = X_list, y = y_list, SIMPLIFY = FALSE)
par(oldpar)

Index

closed_form_DNA, 2, 7

DNAmf, 3, 7

imputer_DNA, 2, 4, 5

predict.DNAmf, 5, 6

10

	closed_form_DNA
	DNAmf
	imputer_DNA
	predict.DNAmf
	Index

