Package ‘DNAmf{’

January 29, 2026
Type Package
Title Diffusion Non-Additive Model with Tunable Precision
Version 0.1.1
Maintainer Junoh Heo <heojunoh@msu.edu>

Description Performs Diffusion Non-Additive (DNA) model pro-
posed by Heo, Boutelet, and Sung (2025+) <doi:10.48550/arXiv.2506.08328> for multi-
fidelity computer experiments with tuning parameters. The DNA model captures nonlinear de-
pendencies across fidelity levels using Gaussian process priors and is particularly effec-
tive when simulations at different fidelity levels are nonlinearly correlated. The DNA model tar-
gets not only interpolation across given fidelity levels but also extrapolation to smaller tuning pa-
rameters including the exact solution corresponding to a zero-valued tuning parameter, leverag-
ing a nonseparable covariance kernel structure that models interactions between the tuning pa-
rameter and input variables. Closed-form expressions for the predictive mean and variance en-
able efficient inference and uncertainty quantification. Hyperparameters in the model are esti-
mated via maximum likelihood estimation.

License GPL-3

Encoding UTF-8

Imports plgp, stats, methods, lhs, fields, mvtnorm
Suggests RNAmf

RoxygenNote 7.3.3

NeedsCompilation no

Author Junoh Heo [aut, cre],
Romain Boutelet [aut],
Chih-Li Sung [aut]

Repository CRAN
Date/Publication 2026-01-29 20:40:13 UTC

Contents
closed_form_DNA e 2
DNAmME . . . e 3
imputer DNA e 5
predict DNAmMf 6

https://doi.org/10.48550/arXiv.2506.08328

2 closed_form_DNA

Index 10

closed_form_DNA Closed-form prediction for DNAmf model

Description

The function computes the closed-form posterior mean and variance for the DNAmf model both
at the fidelity levels used in model fitting and at any user-specified target fidelity level, using the
chosen nonseparable kernel.

Usage
closed_form_DNA(
fit1,
fit2,
targett,
kernel,
nn,
tt,
nlevel,
X)
XX = NULL,
pseudo_yy = NULL
)
Arguments
fitl A fitted GP object for f;.
fit2 A fitted GP object for f.
targett A numeric value of target tuning parameter to predict.
kernel A character specifying the kernel type to be used. Choices are "sqgex"” (nonseparable
squared exponential kernel), "matern1.5" (nonseparable Matern kernel with v =
1.5), or "matern2.5"(nonseparable Matern kernel with v = 2.5). Default is
n sqex n A
nn A vector specifying the number of design points at each fidelity level.
tt A vector of tuning parameters for each fidelity level.
nlevel The number of fidelity levels L.
X A vector or matrix of new input locations to predict.
XX A list containing a pseudo-complete inputs X_sta r({)(l*}lel), an original in-
3L
puts X_list({Xl}lel), and a pseudo inputs X_tilde({Xl}) for non-nested
=1
design.
pseudo_yy A list containing a pseudo-complete outputs y_sta r({yf}le), an original out-

puts y_list({yl}lel), and a pseudo outputs y_tilde({y; }1L:1) imputed by imputer_DNA.

DNAmf 3

Value

A list of predictive posterior mean and variance for each level containing:
e mu_1, sig2_1, ..., mu_L, sig2_L: A vector of predictive posterior mean and variance at each
level.
* mu: A vector of predictive posterior mean at target tuning parameter.

* sig2: A vector of predictive posterior variance at target tuning parameter.

DNAmf Fitting a Diffusion Non-Additive model for multi-fidelity computer ex-
periments with tuning parameters

Description

The function fits DNA models for multi-fidelity computer experiments with tuning parameters.
Available kernel choices include nonseparable squared exponential kernel, and nonseparable Matern
kernel with smoothness parameter 1.5 and 2.5. The function returns a fitted model object of class
DNAmf, produced by DNAmf_internal.

Usage

DNAmf (X, y, kernel = "sgex"”, t, constant = TRUE, init=NULL,
n.iter=50, multi.start=10, g = sqrt(.Machine$double.eps), burn.ratio = 0.75, ...)

Arguments

X A list of input locations for all fidelity levels 1, ..., L combined.

y A list of response values for all fidelity levels 1,. .., L combined.

kernel A character specifying the kernel type to be used. Choices are "sqgex” (squared
exponential), "matern1.5", or "matern2.5". Default is "sqex".

t A vector of tuning parameters for each fidelity level.

constant A logical indicating for constant mean of GP (constant=TRUE) or zero mean
(constant=FALSE). Default is TRUE.

init Optional vector of initial parameter values for optimization. Default is NULL.

n.iter Number of iterations for the stochastic EM algorithm for non-nested designs.
Default is 50.

multi.start Number of random starting points for optimization. Default is 10.

g Nugget term for numerical stability. Default is sqrt(.Machine$double.eps).

burn.ratio Fraction of iterations to discard as burn-in. Default is 0.75.

Additional arguments for compatibility with DNAmf_internal.

4 DNAmf

Details

The DNAmf function internally calls DNAmf_internal to fit the DNA model with nonseparable ker-
nel.

filz) = Wi(=),
filz) =W(t, 2, fi-1(z)),

is a GP model. Hyperparameters (v, 72, @) are estimated by maximizing the log-likelihood via an
optimization algorithm "L-BFGS-B". For constant=FALSE, oo = 0.

The model structure is: {

The nonseparable covariance kernel is defined as:
oy (e R ,
K((taa). (2 = (L5 +1) [T 6 25:0,)0(0.4/:0,),

j=1
where ¢(-, -) depens on the chosen kernel:

* For nonseparable squared exponential kernel(kernel = "sqgex"):

_)2 -8 o — /)2
d(x,2';0) = exp (— <(t9tt)_~_1> (9))

* For nonseparable Matern kernel with smoothness parameter of v = 1.5 (kernel = "matern1.5"):

1 Ve 1 V3|z — 2’|

exp 0

! 0 ’
()’ ()

oz, 2';0)= |1+

N[

* For nonseparable Matern kernel with smoothness parameter of v = 2.5 (kernel = "matern2.5"):

2

1 5l — ' 1 1 Sl — 2’
¢(CU,ZL'/§9) = 14+ B \/>‘$9 * | + g B f|x0 z ‘
(t—t")2 2 (t—t")2 2
(5 +1) (5 +1)
Xexp | — 1 \/g‘x — :C/|

(5z)t

When the input locations are not nested, the internal makenested function constructs nested designs
as Xf = Xpand A = A U Xl for! =1,...,L — 1. The function imputer_DNA then imputes

pseudo outputs y; := fj (Xl) at pseudo inputs Xl X\ A, using a stochastic EM algorithm.
For further details, see Heo, Boutelet, and Sung (2025+, <arXiv:2506.08328>).

Value

A fitted model object of class DNAmf.

where W (t, z,y) ~ GP(a, T?K((t,z,y), (',

Ly)))

imputer_DNA 5

See Also

predict.DNAmf for prediction.

Examples

Non-Additive example #i##
library(RNAmf)

Non-Additive Function #i##

fl <= function(x, t){
terml <- sin(10 * pi * x / (5+t))
term2 <- 0.2 * sin(8 * pi * x)
terml + term2

}

training data

nt <- 13; n2 <- 10; n3 <- 7; n4 <- 4; n5 <- 1;

ml <= 2.5; m2 <- 2.0; m3 <- 1.5; m4 <- 1.0; m5 <- 0.5;
d<-1

#i## fix seed to reproduce the result #i#
set.seed(1)

#i## generate initial nested design #i##
NestDesign <- NestedX(c(n1,n2,n3,n4,n5),d)

X1 <- NestDesign[[1]1]
X2 <- NestDesign[[2]]
X3 <- NestDesign[[3]]
X4 <- NestDesign[[4]1]
X5 <- NestDesign[[5]]

y1 <= f1(X1, t=m1)
y2 <= f1(X2, t=m2)
y3 <= f1(X3, t=m3)
y4 <- f1(X4, t=m4)
y5 <= f1(X5, t=m5)

fit a DNAmf ##H#
fit.DNAmf <- DNAmf(X=list(X1, X2, X3, X4, X5), y=list(y1l, y2, y3, y4, y5), kernel="sqgex",
t=c(m1,m2,m3,m4,m5), multi.start=10, constant=TRUE)

imputer_DNA Imputation step in stochastic EM for the non-nested DNA Model

Description

The function performs the imputation step of the stochastic EM algorithm for the DNA model when
the design is not nested. The function generates pseudo outputs y; at pseudo inputs Aj.

6 predict. DNAmf

Usage
imputer_DNA(XX, yy, kernel=kernel, t, predl, fit2)

Arguments
XX A list of design sets for all fidelity levels, containing X_star, X_list, and
X_tilde.
vy A list of current observed and pseudo-responses, containing y_star, y_list,
and y_tilde.
kernel A character specifying the kernel type to be used. Choices are "sqgex” (squared
exponential), "matern1.5", or "matern2.5".
t A vector of tuning parameters for each fidelity level.
predi Predictive results for the lowest fidelity level f;. It should include cov obtained
by setting cov.out=TRUE.
fit2 A fitted model object for higher fidelity levels f from (t—1, X_1,y-1).
Details

For non-nested designs, pseudo-input locations X, are constructed using the internal makenested
function. The imputer_DNA function then imputes the corresponding pseudo outputs y; = f;(X})

by drawing samples from the conditional normal distribution, given fixed parameter estimates and
previous-level outputs Yj(Lm_l), at the m-th iteration of the EM algorithm.

For further details, see Heo, Boutelet, and Sung (2025+, <arXiv:2506.08328>).

Value
An updated yy list containing:

* y_star: An updated pseudo-complete outputs y;.
* y_list: An original outputs y;.
e y_tilde: A newly imputed pseudo outputs y;.

predict.DNAmf Predictive posterior mean and variance for DNAmf object with non-
separable kernel.

Description

The function computes the predictive posterior mean and variance for the DNAmf model using
closed-form expressions based on the chosen nonseparable kernel at given new input locations.

Usage

S3 method for class 'DNAmf'
predict(object, x = NULL, targett = @, nimpute = 50, ...)

predict. DNAmf 7

Arguments
object A fitted DNAmf object.
X A vector or matrix of new input locations to predict.
targett A numeric value of target tuning parameter to predict.
nimpute Number of imputations for non-nested designs. Default is 50.
Additional arguments for compatibility with generic method predict.
Details

The predict.DNAmf function internally calls closed_form_DNA, which further calls h1_sqex, h2_sqex,
h2_sqgex_single for kernel="sqgex", orh1_matern, h2_matern, h2_matern_single for kernel="matern1.5"
orkernel="matern2.5", to recursively compute the closed-form posterior mean and variance at

each level.

From the fitted model from DNAmf, the posterior mean and variance are calculated based on the
closed-form expression derived by a recursive fashion. The formulas depend on its kernel choices.

If the fitted model was constructed with non-nested designs (nested=FALSE), the function generates
nimpute sets of imputations for pseudo outputs via imputer_DNA.

For further details, see Heo, Boutelet, and Sung (2025+, <arXiv:2506.08328>).

Value

A list of predictive posterior mean and variance for each level and computation time containing:
e mu_1, sig2_1, ..., mu_L, sig2_L: A vector of predictive posterior mean and variance at each
level.
* mu: A vector of predictive posterior mean at target tuning parameter.
* sig2: A vector of predictive posterior variance at target tuning parameter targett.

* time: Total computation time in seconds.

See Also

DNAmf for the user-level function.

Examples

Non-Additive example #i##
library(RNAmf)

Non-Additive Function #it#

fl <- function(x, t){
terml <- sin(10 * pi * x / (5+t))
term2 <- 0.2 * sin(8 * pi * x)
terml + term2

}

training data
nlt <- 13; n2 <- 10; n3 <- 7; n4 <- 4; n5 <- 1;

ml <= 2.5; m2 <- 2.0; m3 <- 1.5; m4 <- 1.0; m5 <- 0.5;
d<-1

eps <- sqrt(.Machine$double.eps)

x <- seq(0,1,0.01)

fix seed to reproduce the result #i##
set.seed(1)

generate initial nested design #i##
NestDesign <- NestedX(c(n1,n2,n3,n4,n5),d)

X1 <- NestDesign[[1]]
X2 <- NestDesign[[2]1]
X3 <- NestDesign[[3]]
X4 <- NestDesign[[4]]
X5 <- NestDesign[[5]]

y1 <= f1(X1, t=m1)
y2 <= f1(X2, t=m2)
y3 <= f1(X3, t=m3)
y4 <- f1(X4, t=m4)
y5 <= f1(X5, t=m5)

fit a DNAmf #iH#

predict. DNAmf

fit.DNAmf <- DNAmf(X=1list(X1, X2, X3, X4, X5), y=list(y1l, y2, y3, y4, y5), kernel="sqgex",
t=c(m1,m2,m3,m4,m5), multi.start=10, constant=TRUE)

#i## predict #i##

pred.DNAmf <- predict(fit.DNAmf, x, targett=0)
predydiffu <- pred.DNAmf$mu

predsig2diffu <- pred.DNAmf$sig2

RMSE

print(sgrt(mean((predydiffu-f1l(x, t=0))*2))) # 0.1162579

visualize the emulation performance
oldpar <- par(mfrow = c(2,3))
create_plot_base <- function(i, mesh_size, x, pred_mu,

pred_sig2,

X_points = NULL, y_points = NULL, add_points

lower <- pred_mu - gnorm(@.995) * sqrt(pred_sig2)
upper <- pred_mu + gnorm(@.995) * sqrt(pred_sig2)
plot(x, pred_mu, type = "n", ylim = c(-yylim, yylim)

main = paste@(”"Mesh size = ", mesh_size), axes
box ()

polygon(c(x, rev(x)), c(upper, rev(lower)),

, xlab = "",

= FALSE)

col = adjustcolor(”blue”, alpha.f = 0.2), border = NA)

lines(x, pred_mu, col = "blue”, lwd = 2)

lines(x, fl(x, mesh_size), 1ty = 2, col = "black”, 1lwd = 2)

if (add_points && !is.null(X_points) && !is.null(y_points)) {

points(X_points, y_points, col = "red”, pch = 16,

cex = 1.3)

ylab =

= TRUE, yylim) {

nn

predict. DNAmf

3
}

mesh_sizes <- c(ml, m2, m3, m4, m5, @)
mu_list <- list(pred.DNAmf$mu_1, pred.DNAmf$mu_2, pred.DNAmf$mu_3,
pred.DNAmf$mu_4, pred.DNAmf$mu_5, pred.DNAmf$mu)
sig2_list <- list(pred.DNAmf$sig2_1, pred.DNAmf$sig2_2, pred.DNAmf$sig2_3,
pred.DNAmf$sig2_4, pred.DNAmf$sig2_5, pred.DNAmf$sig?)
X_list <- list(X1, X2, X3, X4, X5, NULL)
y_list <- list(yl, y2, y3, y4, y5, NULL)

plots <- mapply(function(i, m, mu, sig2, X, y) {
create_plot_base(i, m, x, mu, sig2, X, y, add_points = !is.null(X), yylim=1.5)
}, 1 =1:6, m = mesh_sizes, mu = mu_list, sig2 = sig2_list,
X = X_list, y = y_list, SIMPLIFY = FALSE)
par(oldpar)

Index

closed_form_DNA, 2, 7
DNAmf, 3,7
imputer_DNA, 2,4, 5

predict.DNAmf, 5, 6

10

	closed_form_DNA
	DNAmf
	imputer_DNA
	predict.DNAmf
	Index

