
Package ‘OmicFlow’
January 26, 2026

Title Fast and Efficient (Automated) Analysis of Sparse Omics Data

Version 1.5.0

Date 2026-01-26

Description A generalised data structure for fast and efficient loading and data munch-
ing of sparse omics data. The 'OmicFlow' requires an up-front validated metadata tem-
plate from the user,
which serves as a guide to connect all the pieces together by aligning them into a single ob-
ject that is defined as an 'omics' class.
Once this unified structure is established, users can perform manual subsetting, visualisa-
tion, and statistical analysis, or leverage the automated 'autoFlow' method to generate a compre-
hensive report.

License MIT + file LICENSE

URL https://github.com/agusinac/OmicFlow

BugReports https://github.com/agusinac/OmicFlow/issues

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 4.3.0), R6, data.table, Matrix

Imports ape, ggpubr, ggrepel, ggplot2, jsonlite, jsonvalidate,
magrittr, methods, patchwork, RColorBrewer, rhdf5, rstatix,
Rcpp (>= 0.12.6), RcppParallel (>= 4.3.20), stats, tools,
utils, vegan, yyjsonr, cli

Suggests DT, downloadthis, rmarkdown, testthat (>= 3.0.0)

LinkingTo Rcpp, RcppParallel, RcppArmadillo

NeedsCompilation yes

Author Alem Gusinac [aut, cre] (ORCID:
<https://orcid.org/0009-0006-1896-4176>),

Thomas Ederveen [aut] (ORCID: <https://orcid.org/0000-0003-0068-1275>),
Annemarie Boleij [aut, fnd] (ORCID:

<https://orcid.org/0000-0003-4495-5880>)

1

https://github.com/agusinac/OmicFlow
https://github.com/agusinac/OmicFlow/issues
https://orcid.org/0009-0006-1896-4176
https://orcid.org/0000-0003-0068-1275
https://orcid.org/0000-0003-4495-5880

2 bray

Maintainer Alem Gusinac <alem.gusinac@gmail.com>

Repository CRAN

Date/Publication 2026-01-26 17:20:12 UTC

Contents

bray . 2
canberra . 4
colormap . 5
column_exists . 6
composition_plot . 6
cosine . 8
diversity . 9
diversity_plot . 10
foldchange . 12
hill_taxa . 14
jaccard . 16
jsd . 17
manhattan . 18
matrix_to_dtable . 19
metagenomics . 20
omics . 22
ordination_plot . 41
pairwise_adonis . 42
pairwise_anosim . 44
plot_pairwise_stats . 45
proteomics . 46
unifrac . 48
volcano_plot . 49

Index 52

bray Compute Bray-Curtis Dissimilarity from a Dense or Sparse Matrix.

Description

Calculates the Bray-Curtis dissimilarity of a Matrix pairwise for each column.

Usage

bray(x, weighted = TRUE, threads = 1)

bray 3

Arguments

x A matrix, sparseMatrix or Matrix.

weighted A boolean value, to use abundances (weighted = TRUE) or absence/presence
(weighted=FALSE) (default: TRUE).

threads A wholenumber, the number of threads to use in setThreadOptions (default: 1).

Details

The Bray-Curtis dissimilarity between two samples A and B, each of length n, is defined as:

d(A,B) =
∑n

i |Ai−Bi|∑n
i (Ai+Bi)

where Ai and Bi are the abundances of the i-th feature in sample A and B, respectively. When
weighted is set to FALSE, counts are replaced by presence/absence data.

Value

A column x column dist object.

References

Bray, J.R. & Curtis, J.T. (1957) An Ordination of the Upland Forest Communities of Southern
Wisconsin. Ecological Monographs, 27(4), 325–349.

Examples

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")
tree_file <- system.file("extdata", "tree.newick", package = "OmicFlow")

taxa <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,
treeData = tree_file

)

taxa$feature_subset(Kingdom == "Bacteria")
taxa$normalize()

bray(taxa$countData)

4 canberra

canberra Compute Canberra Dissimilarity from a from a Dense or Sparse Ma-
trix.

Description

Calculates the Canberra dissimilarity of a Matrix pairwise for each column.

Usage

canberra(x, weighted = TRUE, threads = 1)

Arguments

x A matrix, sparseMatrix or Matrix.

weighted A boolean value, to use abundances (weighted = TRUE) or absence/presence
(weighted=FALSE) (default: TRUE).

threads A wholenumber, the number of threads to use in setThreadOptions (default: 1).

Details

The Canberra dissimilarity between two samples A and B, each of length n, is defined as:

d(A,B) = 1/NZ∑ n

i

|Ai−Bi|
|Ai|+|Bi|

where Ai and Bi are the abundances of the i-th feature in sample A and B, respectively. NZ are
the number of non-zero entries. When weighted is set to FALSE, counts are replaced by pres-
ence/absence data.

Value

A column x column dist object.

References

Lance, G.N. & Williams, W.T. (1967) Mixed-data classificatory programs. I. Agglomerative sys-
tems. Australian Computer Journal, 1(1), 15-20.

Examples

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")
tree_file <- system.file("extdata", "tree.newick", package = "OmicFlow")

taxa <- metagenomics$new(
metaData = metadata_file,

colormap 5

countData = counts_file,
featureData = features_file,
treeData = tree_file

)

taxa$feature_subset(Kingdom == "Bacteria")
taxa$normalize()

canberra(taxa$countData)

colormap Color map of a variable

Description

Creates an object of hexcode colors with names given a vector of characters. This function is built
into the ordination method from the abstract class omics and inherited by other omics classes,
such as; metagenomics and proteomics.

Usage

colormap(data, col_name, Brewer.palID = "Set2")

Arguments

data A data.frame or data.table.

col_name A column name of a categorical variable.

Brewer.palID A character name that exists in brewer.pal (Default: "Set2").

Value

A setNames.

Examples

library("data.table")
dt <- data.table(

"SAMPLE_ID" = c("sample_1", "sample_2", "sample_3"),
"treatment" = c("healthy", "tumor", NA)

)

colors <- colormap(data = dt,
col_name = "treatment")

6 composition_plot

column_exists Checks if column exists in table

Description

Mainly used within omics and other functions to check if given column name does exist in the table
and is not completely empty (containing NAs).

Usage

column_exists(column, table)

Arguments

column A character of length 1.
table A data.table or data.frame.

Value

A boolean value.

composition_plot Compositional plot

Description

Creates a stacked barchart of features. It is possible to both show barcharts for each sample or
group them by a categorical variable. The function is compatible with the class omics method
composition().

Usage

composition_plot(
data,
palette,
feature_rank,
title_name = NULL,
group_by = NULL

)

Arguments

data A data.frame or data.table.
palette An object with names and hexcode or color names, see colormap.
feature_rank A character variable of the feature column.
title_name A character to set the ggtitle of the ggplot, (Default: NULL).
group_by A character variable to aggregate the stacked bars by group (Default: NULL).

composition_plot 7

Value

A ggplot2 object to be further modified

Examples

library("ggplot2")

Create mock_data as data.frame (data.table is also supported)
mock_data <- data.frame(

SAMPLE_ID = rep(paste0("Sample", 1:10), each = 5),
Genus = rep(c("GenusA","GenusB","GenusC","GenusD","GenusE"), times = 10),
value = c(
0.1119, 0.1303, 0.0680, 0.5833, 0.1065, # Sample1
0.2080, 0.1179, 0.0211, 0.4578, 0.1951, # Sample2
0.4219, 0.1189, 0.2320, 0.1037, 0.1235, # Sample3
0.4026, 0.0898, 0.1703, 0.1063, 0.2309, # Sample4
0.1211, 0.0478, 0.5721, 0.1973, 0.0618, # Sample5
0.2355, 0.0293, 0.2304, 0.1520, 0.3528, # Sample6
0.2904, 0.0347, 0.3651, 0.0555, 0.2544, # Sample7
0.4138, 0.0299, 0.0223, 0.4996, 0.0345, # Sample8
0.4088, 0.0573, 0.0155, 0.2888, 0.2296, # Sample9
0.4941, 0.0722, 0.2331, 0.1023, 0.0983 # Sample10

),
Group = rep(c("Group1","Group2","Group1",

"Group1","Group2","Group2",
"Group1","Group1","Group1","Group2"),

each = 5)
)

Create a colormap
mock_palette <- c(

GenusA = "#1f77b4", # blue
GenusB = "#ff7f0e", # orange
GenusC = "#2ca02c", # green
GenusD = "#d62728", # red
GenusE = "#9467bd" # purple

)

Optionally: Use OmicFlow::colormap()
mock_palette <- colormap(

data = mock_data,
col_name = "Genus",
Brewer.palID = "RdYlBu"

)

composition_plot(
data = mock_data,
palette = mock_palette,
feature_rank = "Genus",
title_name = "Mock Genus Composition"

)

8 cosine

composition_plot(
data = mock_data,
palette = mock_palette,
feature_rank = "Genus",
title_name = "Mock Genus Composition by Group",
group_by = "Group"

)

cosine Compute Cosine Dissimilarity from a Dense or Sparse Matrix.

Description

Calculates the cosine disimilarity of a Marix pairwise for each column.

Usage

cosine(x, weighted = TRUE, threads = 1)

Arguments

x A matrix, sparseMatrix or Matrix.

weighted A boolean value, to use abundances (weighted = TRUE) or absence/presence
(weighted=FALSE) (default: TRUE).

threads A wholenumber, the number of threads to use in setThreadOptions (default: 1).

Details

The cosine dissimilarity between two samples A and B, each of length n, is defined as:

d(A,B) = 1−
∑n

i AiBi√∑n
i A2

i

√∑n
i B2

i

where Ai and Bi are the abundances of the i-th feature in sample A and B, respectively. When
weighted is set to FALSE, counts are replaced by presence/absence data.

Value

A column x column dist object.

References

Deza, M. M., & Deza, E. (2009). Encyclopedia of Distances. Springer Science & Business Media.,
308.

diversity 9

Examples

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")
tree_file <- system.file("extdata", "tree.newick", package = "OmicFlow")

taxa <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,
treeData = tree_file

)

taxa$feature_subset(Kingdom == "Bacteria")
taxa$normalize()

cosine(taxa$countData)

diversity Sparse implementation of Alpha Diversity Metrics

Description

Computes the alpha diversity based on Shannon index, simpson or invsimpson. Code is adapted
from diversity and uses sparseMatrix in triplet format over the dense matrix. The code is much
faster and memory efficient, while still being mathematically correct. This function is built into
the class omics with method alpha_diversity() and inherited by other omics classes, such as;
metagenomics and proteomics.

Usage

diversity(
x,
metric = c("shannon", "simpson", "invsimpson"),
normalize = TRUE,
base = exp(1)

)

Arguments

x A matrix, sparseMatrix or Matrix.

metric A character variable for metric; shannon, simpson or invsimpson.

normalize A boolean variable for sample normalization by column sums.

base Input for log to use natural logarithmic scale, log2, log10 or other.

10 diversity_plot

Value

A numeric vector with type double.

See Also

diversity

Examples

n_row <- 1000
n_col <- 100
density <- 0.2
num_entries <- n_row * n_col
num_nonzero <- round(num_entries * density)

set.seed(123)
positions <- sample(num_entries, num_nonzero, replace=FALSE)
row_idx <- ((positions - 1) %% n_row) + 1
col_idx <- ((positions - 1) %/% n_row) + 1

values <- runif(num_nonzero, min = 0, max = 1)
sparse_mat <- sparseMatrix(

i = row_idx,
j = col_idx,
x = values,
dims = c(n_row, n_col)

)

Alpha diversity is computed on column level
Transpose the sparseMatrix if required with t() from Matrix R package.
result <- OmicFlow::diversity(

x = sparse_mat,
metric = "shannon"

)

diversity_plot Diversity plot

Description

Creates an Alpha diversity plot. This function is built into the class omics with method alpha_diversity().
It computes the pairwise wilcox test, paired or non-paired, given a data frame and adds useful la-
belling.

Usage

diversity_plot(
data,
values,

diversity_plot 11

col_name,
group_by = NULL,
palette,
method,
paired = FALSE,
p.adjust.method = "fdr"

)

Arguments

data A data.frame or data.table computed from diversity.

values A column name of a continuous variable.

col_name A column name of a categorical variable.

group_by A column name to perform grouped statistical test (default: NULL).

palette An object with names and hexcode or color names, see colormap.

method A character variable indicating what method is used to compute the diversity.

paired A boolean value to perform paired analysis in wilcox.test.
p.adjust.method

A character variable to specify the p.adjust.method to be used (Default: fdr).

Value

A ggplot2 object to be further modified

Examples

library("ggplot2")

n_row <- 1000
n_col <- 100
density <- 0.2
num_entries <- n_row * n_col
num_nonzero <- round(num_entries * density)

set.seed(123)
positions <- sample(num_entries, num_nonzero, replace=FALSE)
row_idx <- ((positions - 1) %% n_row) + 1
col_idx <- ((positions - 1) %/% n_row) + 1

values <- runif(num_nonzero, min = 0, max = 1)
sparse_mat <- Matrix::sparseMatrix(

i = row_idx,
j = col_idx,
x = values,
dims = c(n_row, n_col)

)

div <- OmicFlow::diversity(
x = sparse_mat,

12 foldchange

metric = "shannon"
)

dt <- data.table::data.table(
"shannon" = div,
"treatment" = c(rep("healthy", n_col / 2), rep("tumor", n_col / 2))

)

colors <- OmicFlow::colormap(dt, "treatment")

plt <- OmicFlow::diversity_plot(
data = dt,
values = "shannon",
col_name = "treatment",
palette = colors,
method = "shannon",
paired = FALSE,
p.adjust.method = "fdr"

)

foldchange Computes Log2(A) - Log2(B) Fold Change of (non-) paired data.

Description

Computes (non-)paired Log2(A) - Log2(B) Fold Change. This function is built into the class omics
with method DFE() and inherited by other omics classes, such as; metagenomics and proteomics.
The function handles zero’s, and doesn’t return +/- infinites.

Usage

foldchange(
data,
feature_rank,
condition_A,
condition_B,
condition_labels,
paired = FALSE

)

Arguments

data A data.table.
feature_rank A character variable of the feature level (e.g. "Genus" in taxonomy).
condition_A A vector of categorical characters, it is possible to specify multiple labels.
condition_B A vector of categorical characters, it is possible to specify multiple labels.
condition_labels

A vector character wherein condition_A and condition_B are present.
paired A Boolean value to perform paired or non-paired test, see wilcox.test.

foldchange 13

Value

A data.table

Examples

#-------------------------#
NON-PAIRED
#-------------------------#
Load required library
library(data.table)

Define parameters and variables
sample_ids <- c("S1_A", "S2_A", "S3_A", "S4_B", "S5_B", "S6_B")
feature_ids <- c("Feature1", "Feature2", "Feature3")

Simulated abundance matrix (features x samples)
abundances <- matrix(

c(
Feature1 (e.g. GenusA)
100, 120, 110, 55, 60, 65,
Feature2 (e.g. GenusB)
50, 65, 60, 130, 120, 125,
Feature3 (e.g. GenusC)
80, 85, 90, 80, 85, 90

),
nrow = 3, byrow = TRUE,
dimnames = list(feature_ids, sample_ids)

)

A wide table with columns as samples, rows as features
And an additional column as the feature_rank, a column for feature comparison.
mock_data <- data.table(

Genus = feature_ids, # feature_rank column (e.g. "Genus")
S1_A = abundances[, 1],
S2_A = abundances[, 2],
S3_A = abundances[, 3],
S4_B = abundances[, 4],
S5_B = abundances[, 5],
S6_B = abundances[, 6]

)
print(mock_data)

It uses substring matching, and multiple conditions can be used
res <- foldchange(

data = mock_data,
feature_rank = "Genus",
condition_A = c("_A", "_B"),
condition_B = c("_B", "_A"),

This can also be a column wherein, conditions A and B are present
condition_labels = sample_ids,
paired = FALSE

14 hill_taxa

)
print(res)

#---------------------#
PAIRED
#---------------------#
library(data.table)

Define paired sample ids for 3 pairs:
paired_ids <- paste0("Pair", 1:3)

Features:
feature_ids <- c("Feature1", "Feature2", "Feature3")

Simulate abundances for each paired sample:
For each pair, we have two samples: condition A and condition B.
Make sure the length of condition A and condition B are the same!

Construct the data.table with features as rows
mock_data_paired <- data.table(

Genus = feature_ids,
Pair1_A = c(100, 50, 80),
Pair1_B = c(60, 130, 75),
Pair2_A = c(120, 65, 85),
Pair2_B = c(60, 120, 90),
Pair3_A = c(110, 60, 90),
Pair3_B = c(65, 125, 85)

)

res <- foldchange(
data = mock_data_paired,
feature_rank = "Genus",
condition_A = c("_A", "_B"),
condition_B = c("_B", "_A"),

This can also be a column wherein, conditions A and B are present
condition_labels = names(mock_data_paired)[-1],
paired = TRUE

)
print(res)

hill_taxa Sparse implementation of Hill numbers

Description

Computes the hill numbers for q is 0, 1 or 2. Code is adapted from hill_taxa and uses sparseMatrix
in triplet format over the dense matrix. The code is much faster and memory efficient, while still
being mathematical correct.

hill_taxa 15

Usage

hill_taxa(x, q = 0, normalize = TRUE, base = exp(1))

Arguments

x A matrix, sparseMatrix or Matrix.

q A wholenumber for 0, 1 or 2, default is 0.

normalize A boolean variable for sample normalization by column sums.

base Input for log to use natural logarithmic scale, log2, log10 or other.

Value

A numeric vector with type double.

See Also

hill_taxa

Examples

library("Matrix")

n_row <- 1000
n_col <- 100
density <- 0.2
num_entries <- n_row * n_col
num_nonzero <- round(num_entries * density)

set.seed(123)
positions <- sample(num_entries, num_nonzero, replace=FALSE)
row_idx <- ((positions - 1) %% n_row) + 1
col_idx <- ((positions - 1) %/% n_row) + 1

values <- runif(num_nonzero, min = 0, max = 1)
sparse_mat <- sparseMatrix(

i = row_idx,
j = col_idx,
x = values,
dims = c(n_row, n_col)

)

result <- OmicFlow::hill_taxa(
x = sparse_mat,
q = 2

)

16 jaccard

jaccard Compute Jaccard Dissimilarity from a Dense or Sparse Matrix.

Description

Calculates the Jaccard dissimilarity of a Matrix pairwise for each column.

Usage

jaccard(x, weighted = TRUE, threads = 1)

Arguments

x A matrix, sparseMatrix or Matrix.

weighted A boolean value, to use abundances (weighted = TRUE) or absence/presence
(weighted=FALSE) (default: TRUE).

threads A wholenumber, the number of threads to use in setThreadOptions (default: 1).

Details

The weighted Jaccard disimilarity between two samples A and B, each of length n, is defined as:

d(A,B) = 1−
∑n

i min(Ai,Bi)∑n
i max(Ai,Bi)

where Ai and Bi are the abundances of the i-th feature in sample A and B, respectively. When
weighted is set to FALSE, abundances are changed to 1 (classical Jaccard for binary data).

Value

A column x column dist object.

References

Jaccard, P. (1912) The distribution of the flora in the alpine zone. New Phytologist, 11(2), 37–50.
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow") counts_file <- sys-
tem.file("extdata", "counts.tsv", package = "OmicFlow") features_file <- system.file("extdata", "fea-
tures.tsv", package = "OmicFlow") tree_file <- system.file("extdata", "tree.newick", package =
"OmicFlow")

taxa <- metagenomics$new(metaData = metadata_file, countData = counts_file, featureData = fea-
tures_file, treeData = tree_file)

taxa$feature_subset(Kingdom == "Bacteria") taxa$normalize()

jaccard(taxa$countData)

jsd 17

jsd Compute Jensen-Shannon Divergence from a Dense or Sparse Matrix.

Description

Calculates the Jensen-Shannon divergence of a Matrix pairwise for each column.

Usage

jsd(x, weighted = TRUE, threads = 1)

Arguments

x A matrix, sparseMatrix or Matrix.

weighted A boolean value, to use abundances (weighted = TRUE) or absence/presence
(weighted=FALSE) (default: TRUE).

threads A wholenumber, the number of threads to use in setThreadOptions (default: 1).

Details

The Jensen-Shannon divergence between two probability distributions A and B, each of length n,
is defined as:

d(A,B) = 1
2DKL(A ∥ M) + 1

2DKL(B ∥ M)

where M = 1
2 (A + B) is the mixture distribution, and DKL is the Kullback-Leibler divergence.

When weighted is set to FALSE, counts are replaced by presence/absence data.

Value

A column x column dist object.

References

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Infor-
mation Theory, 37(1), 145-151.

Examples

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")
tree_file <- system.file("extdata", "tree.newick", package = "OmicFlow")

taxa <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,

18 manhattan

featureData = features_file,
treeData = tree_file

)

taxa$feature_subset(Kingdom == "Bacteria")
taxa$normalize()

jsd(taxa$countData)

manhattan Compute Manhattan Dissimilarity from a Dense or Sparse Matrix.

Description

Calculates the Manhattan dissimilarity of a Matrix pairwise for each column.

Usage

manhattan(x, weighted = TRUE, threads = 1)

Arguments

x A matrix, sparseMatrix or Matrix.

weighted A boolean value, to use abundances (weighted = TRUE) or absence/presence
(weighted=FALSE) (default: TRUE).

threads A wholenumber, the number of threads to use in setThreadOptions (default: 1).

Details

The Manhattan dissimilarity between two samples A and B, each of length n, is defined as:

d(A,B) =
∑n

i |Ai −Bi|

where Ai and Bi are the abundances of the i-th feature in sample A and B, respectively. When
weighted is set to FALSE, counts are replaced by presence/absence data.

Value

A column x column dist object.

References

Deza, M. M., & Deza, E. (2009). Encyclopedia of Distances. Springer Science & Business Media.,
313.

matrix_to_dtable 19

Examples

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")
tree_file <- system.file("extdata", "tree.newick", package = "OmicFlow")

taxa <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,
treeData = tree_file

)

taxa$feature_subset(Kingdom == "Bacteria")
taxa$normalize()

manhattan(taxa$countData)

matrix_to_dtable Converting a Matrix to data.table

Description

Wrapper function that converts a sparseMatrix to data.table

Usage

matrix_to_dtable(x)

Arguments

x A matrix, sparseMatrix or Matrix.

Value

A data.table class.

20 metagenomics

metagenomics Sub-class metagenomics

Description

This is a sub-class that is compatible to data obtained from either 16S rRNA marker-gene se-
quencing or shot-gun metagenomics sequencing. It inherits all methods from the abstract class
omics and only adapts the initialize function. It supports BIOM format data (v2.1.0 from
http://biom-format.org/) in both HDF5 and JSON format, also pre-existing data structures
can be used or text files. When omics data is very large, data loading becomes very expensive. It is
therefore recommended to use the reset() method to reset your changes. Every omics class creates
an internal memory efficient back-up of the data, the resetting of changes is an instant process.

Super class

OmicFlow::omics -> metagenomics

Active bindings

treeData A "phylo" class, see as.phylo.

Methods

Public methods:
• metagenomics$new()

• metagenomics$write_biom()

• metagenomics$clone()

Method new(): Initializes the metagenomics class object with metagenomics$new()

Usage:
metagenomics$new(
countData = NULL,
metaData = NULL,
featureData = NULL,
treeData = NULL,
biomData = NULL,
feature_names = c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")

)

Arguments:
countData A path to an existing file or a dense/sparse Matrix format.
metaData A path to an existing file, data.table or data.frame.
featureData A path to an existing file, data.table or data.frame.
treeData A path to an existing newick file or class "phylo", see read.tree.
biomData A path to an existing biom file, version 2.1.0 (http://biom-format.org/), see h5read.
feature_names A character vector to name the feature names that fit the supplied featureData.

http://biom-format.org/

metagenomics 21

Returns: A new metagenomics object.

Method write_biom(): Creates a BIOM file in HDF5 format of the loaded items via ’new()’,
which is compatible to the python biom-format version 2.1, see http://biom-format.org.

Usage:
metagenomics$write_biom(filename)

Arguments:

filename A character variable of either the full path of filename of the biom file (e.g. output.biom)

Examples:

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")
tree_file <- system.file("extdata", "tree.newick", package = "OmicFlow")

taxa <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,
treeData = tree_file

)

taxa$write_biom(filename = "output.biom")
file.remove("output.biom")

Method clone(): The objects of this class are cloneable with this method.

Usage:
metagenomics$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

omics

Examples

--
Method `metagenomics$write_biom`
--

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")

22 omics

features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")
tree_file <- system.file("extdata", "tree.newick", package = "OmicFlow")

taxa <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,
treeData = tree_file

)

taxa$write_biom(filename = "output.biom")
file.remove("output.biom")

omics Abstract omics class

Description

This is the abstract class ’omics’, contains a variety of methods that are inherited and applied in the
omics classes: metagenomics, proteomics and metabolomics.

Details

Every class is created with the R6Class method. Methods are either public or private, and only
the public components are inherited by other omic classes. The omics class by default uses a
sparseMatrix and data.table data structures for quick and efficient data manipulation and returns the
object by reference, same as the R6 class. The method by reference is very efficient when dealing
with big data.

Value

A list of components:

• div A data.frame from diversity.

• stats A pairwise statistics from pairwise_wilcox_test.

• plot A ggplot object.

A list of components:

• data A data.table of feature compositions.

• palette A setNames palette from colormap.

A list of components:

• distmat A distance dissimilarity in matrix format.

• stats A statistical test as a data.frame.

• pcs principal components as a data.frame.

omics 23

• scree_plot A ggplot object.

• anova_plot A ggplot object.

• scores_plot A ggplot object.

• dfe A long data.table table.

• volcano_plot A ggplot object.

Active bindings

metaData A data.table with SAMPLE_ID column.

featureData A data.table with FEATURE_ID column.

countData A dense or sparse Matrix.

Methods

Public methods:
• omics$new()

• omics$validate()

• omics$print()

• omics$reset()

• omics$removeNAs()

• omics$feature_subset()

• omics$sample_subset()

• omics$samplepair_subset()

• omics$feature_merge()

• omics$transform()

• omics$normalize()

• omics$rankstat()

• omics$alpha_diversity()

• omics$composition()

• omics$distance()

• omics$ordination()

• omics$DFE()

• omics$autoFlow()

• omics$clone()

Method new(): Wrapper function that is inherited and adapted for each omics class. The omics
classes requires a metadata samplesheet, that is validated by the metadata_schema.json. It requires
a column SAMPLE_ID and optionally a SAMPLEPAIR_ID can be supplied. The SAMPLE_ID will be
used to link the metaData to the countData, and will act as the key during subsetting of other
columns. To create a new object use new() method. Do notice that the abstract class only checks
if the metadata is valid! The countData and featureData will not be checked, these are handled
by the sub-classes. Using the omics class to load your data is not supported and still experimental.

Usage:

24 omics

omics$new(countData = NULL, featureData = NULL, metaData = NULL)

Arguments:

countData A path to an existing file or a dense/sparse Matrix format.
featureData A path to an existing file, data.table or data.frame.
metaData A path to an existing file, data.table or data.frame.

Returns: A new omics object.

Method validate(): Validates an input metadata against the JSON schema. The metadata
should look as follows and should not contain any empty spaces. For example; 'sample 1' is not
allowed, whereas 'sample1' is allowed!
Acceptable column headers:

• SAMPLE_ID (required)
• SAMPLEPAIR_ID (optional)
• CONTRAST_ (optional), used for autoFlow().
• VARIABLE_ (optional), not supported yet.

This function is used during the creation of a new object via new() to validate the supplied meta-
data via a filepath or existing data.table or data.frame.

Usage:
omics$validate()

Returns: None

Method print(): Displays parameters of the omics class via stdout.

Usage:
omics$print()

Returns: object in place

Examples:

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")

obj <- omics$new(
metaData = metadata_file,
countData = counts_file

)

method 1 to call print function
obj

method 2 to call print function
obj$print()

omics 25

Method reset(): Upon creation of a new omics object a small backup of the original data
is created. Since modification of the object is done by reference and duplicates are not made,
it is possible to reset changes to the class. The methods from the abstract class omics also
contains a private method to prevent any changes to the original object when using methods such
as ordination alpha_diversity or $DFE.

Usage:
omics$reset()

Returns: object in place

Examples:

library(ggplot2)
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

taxa <- omics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file

)

Performs modifications
taxa$transform(log2)

resets
taxa$reset()

An inbuilt reset function prevents unwanted modification to the taxa object.
taxa$rankstat(feature_ranks = c("Kingdom", "Phylum", "Family", "Genus", "Species"))

Method removeNAs(): Remove NAs from metaData and updates the countData.

Usage:
omics$removeNAs(column)

Arguments:

column The column from where NAs should be removed, this can be either a wholenumbers or
characters. Vectors are also supported.

Returns: object in place

Examples:

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

26 omics

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

obj$removeNAs(column = "treatment")

Method feature_subset(): Feature subset (based on featureData), automatically applies
data synchronization.

Usage:
omics$feature_subset(...)

Arguments:

... Expressions that return a logical value, and are defined in terms of the variables in featureData.
Only rows for which all conditions evaluate to TRUE are kept.

Returns: object in place

Examples:

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

obj$feature_subset(Genus == "Pseudomonas")

Method sample_subset(): Sample subset (based on metaData), automatically applies syn-
chronization.

Usage:
omics$sample_subset(...)

Arguments:

... Expressions that return a logical value, and are defined in terms of the variables in metaData.
Only rows for which all conditions evaluate to TRUE are kept.

Returns: object in place

Examples:

omics 27

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

obj$sample_subset(treatment == "tumor")

Method samplepair_subset(): Samplepair subset (based on metaData), automatically applies
synchronization.

Usage:
omics$samplepair_subset(num_unique_pairs = NULL)

Arguments:

num_unique_pairs An integer value to define the number of pairs to subset. The default is
NULL, meaning the maximum number of unique pairs will be used to subset the data. Let’s
say you have three samples for each pair, then the num_unique_pairs will be set to 3.

Returns: object in place

Method feature_merge(): Agglomerates features by column, automatically applies synchro-
nization.

Usage:
omics$feature_merge(feature_rank, feature_filter = NULL)

Arguments:

feature_rank A character value or vector of columns to aggregate from the featureData.
feature_filter A character value or vector of characters to remove features via regex pattern.

Returns: object in place

Examples:

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

28 omics

obj$feature_merge(feature_rank = c("Kingdom", "Phylum"))
obj$feature_merge(feature_rank = "Genus", feature_filter = c("uncultured", "metagenome"))

Method transform(): Performs transformation on the positive values from the countData.

Usage:
omics$transform(FUN)

Arguments:
FUN A function such as log2, log

Returns: object in place

Examples:
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

obj$transform(log2)

Method normalize(): Relative abundance computation by column sums on the countData.

Usage:
omics$normalize()

Returns: object in place

Examples:
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

obj$normalize()

omics 29

Method rankstat(): Rank statistics based on featureData

Usage:
omics$rankstat(feature_ranks, unique = FALSE)

Arguments:
feature_ranks A vector of characters or integers that match the featureData.
unique A boolean value to display only unique entries in feature_ranks.

Details: Counts the number of features identified for each column, for example in case of 16S
metagenomics it would be the number of OTUs or ASVs on different taxonomy levels.

Returns: A ggplot object.

Examples:
library("ggplot2")
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

plt <- obj$rankstat(feature_ranks = c("Kingdom", "Phylum", "Family", "Genus", "Species"))
plt

Method alpha_diversity(): Alpha diversity based on diversity

Usage:
omics$alpha_diversity(
col_name,
metric = c("shannon", "invsimpson", "simpson"),
Brewer.palID = "Set2",
group_by = NULL,
evenness = FALSE,
paired = FALSE,
p.adjust.method = "fdr"

)

Arguments:
col_name A character variable from the metaData.
metric An alpha diversity metric as input to diversity.
Brewer.palID A character name for the palette set to be applied, see brewer.pal or colormap.
group_by A column name to perform grouped statistical test in diversity_plot (default: NULL).
evenness A boolean wether to divide diversity by number of species, see specnumber.
paired A boolean value to perform paired analysis in wilcox.test and samplepair subsetting via

samplepair_subset()

30 omics

p.adjust.method A character variable to specify the p.adjust.method to be used, default is
’fdr’.

Examples:
library("ggplot2")
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

plt <- obj$alpha_diversity(col_name = "treatment",
metric = "shannon")

Method composition(): Creates a table most abundant compositional features. Also assigns a
color blind friendly palette for visualizations.

Usage:
omics$composition(
feature_rank,
feature_filter = NULL,
col_name = NULL,
normalize = TRUE,
feature_top = c(10, 15),
Brewer.palID = "RdYlBu"

)

Arguments:
feature_rank A character variable in featureData to aggregate via feature_merge().
feature_filter A character or vector of characters to removes features by regex pattern.
col_name Optional, a character or vector of characters to add to the final compositional data

output.
normalize A boolean value, whether to normalize() by total sample sums (Default: TRUE).
feature_top A wholenumber of the top features to visualize, the max is 15, due to a limit of

palettes.
Brewer.palID A character name for the palette set to be applied, see brewer.pal or colormap.

Examples:
library("ggplot2")
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")

omics 31

features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

result <- obj$composition(feature_rank = "Genus",
feature_filter = c("uncultured"),
feature_top = 10)

plt <- composition_plot(data = result$data,
palette = result$palette,
feature_rank = "Genus")

Method distance(): Compute a distance metric from countData

Usage:
omics$distance(metric, normalized = TRUE, weighted = TRUE, threads = 1)

Arguments:

metric A dissimilarity metric to be applied on the countData, thus far supports ’bray’, ’jac-
card’, ’cosine’, ’manhattan’, ’jsd’ (jensen-shannon divergence), ’canberra’ and ’unifrac’
when a tree is provided via treeData, see distance().

normalized A boolean value, whether to normalize() by total sample sums (Default: TRUE).
weighted A boolean value, to use abundances (weighted = TRUE) or absence/presence (weighted=FALSE)

(default: TRUE).
threads A wholenumber, indicating the number of threads to use (Default: 1).

Returns: A column x column dist object.

Examples:

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file

)

obj$feature_subset(Kingdom == "Bacteria")
dist <- obj$distance(metric = "bray")

Method ordination(): Ordination of countData with statistical testing.

32 omics

Usage:
omics$ordination(
metric = "bray",
method = c("pcoa", "nmds"),
group_by,
distmat = NULL,
weighted = TRUE,
normalize = TRUE,
threads = 1,
perm_design = NULL,
perm = 999

)

Arguments:

metric A dissimilarity or similarity metric to be applied on the countData, thus far supports
’bray’, ’jaccard’, ’cosine’, ’manhattan’, ’jsd’ (jensen-shannon divergence), ’canberra’ and
’unifrac’ when a tree is provided via treeData, see distance().

method Ordination method, supports "pcoa" and "nmds", see wcmdscale.
group_by A character variable in metaData to be used for the pairwise_adonis or pairwise_anosim

statistical test.
distmat A custom distance matrix in either dist or Matrix format.
weighted A boolean value, whether to compute weighted or unweighted dissimilarities (De-

fault: TRUE).
normalize A boolean value, whether to normalize() by total sample sums (Default: TRUE).
threads A wholenumber, indicating the number of threads to use (Default: 1).
perm_design A function that takes metaData and constructs a permutation design with how

(default: NULL).
perm A wholenumber, number of permutations to compare against the null hypothesis of ado-

nis2 and anosim (default: perm=999).

Examples:

library("ggplot2")
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

pcoa_plots <- obj$ordination(metric = "bray",
method = "pcoa",
group_by = "treatment",
weighted = TRUE,

omics 33

normalize = TRUE)
pcoa_plots

Method DFE(): Differential feature expression (DFE) using the foldchange for both paired and
non-paired test.

Usage:
omics$DFE(
feature_rank,
feature_filter = NULL,
paired = FALSE,
normalize = TRUE,
condition.group,
condition_A,
condition_B,
pvalue.threshold = 0.05,
logfold.threshold = 0.06,
abundance.threshold = 0

)

Arguments:
feature_rank A character or vector of characters in the featureData to aggregate via feature_merge().
feature_filter A character or vector of characters to remove features via regex pattern (De-

fault: NULL).
paired A boolean value, the paired is only applicable when a SAMPLEPAIR_ID column exists

within the metaData. See wilcox.test and samplepair_subset().
normalize A boolean value, whether to normalize() by total sample sums (Default: TRUE).
condition.group A character variable of an existing column name in metaData, wherein the

conditions A and B are located.
condition_A A character value or vector of characters.
condition_B A character value or vector of characters.
pvalue.threshold A numeric value used as a p-value threshold to label and color significant

features (Default: 0.05).
logfold.threshold A numeric value used as a fold-change threshold to label and color sig-

nificantly expressed features (Default: 0.06).
abundance.threshold A numeric value used as an abundance threshold to size the scatter dots

based on their mean abundance (default: 0.01).

Examples:
library("ggplot2")
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,

34 omics

countData = counts_file,
featureData = features_file,

)

unpaired <- obj$DFE(feature_rank = "Genus",
paired = FALSE,
condition.group = "treatment",
condition_A = c("healthy"),
condition_B = c("tumor"))

Method autoFlow(): Automated Omics Analysis based on the metaData, see validate(). For
now only works with headers that start with prefix CONTRAST_. If the data is from the class omics
or proteomics than FDR adjusted p-values are computed for the volcano plots.

Usage:
omics$autoFlow(
feature_contrast = "FEATURE_ID",
feature_filter = NULL,
feature_ranks = NULL,
distance_metrics = c("unifrac"),
beta_div_table = NULL,
alpha_div_table = NULL,
normalize = TRUE,
weighted = TRUE,
pvalue.threshold = 0.05,
logfold.threshold = 1,
abundance.threshold = 0.01,
perm = 999,
threads = 1,
report = TRUE,
filename = paste0(getwd(), "/report.html")

)

Arguments:

feature_contrast A character vector of feature columns in the featureData to aggregate via
feature_merge() (default: "FEATURE_ID").

feature_filter A character vector to filter unwanted features, (default: NULL).
feature_ranks A character vector as input to rankstat() (default: NULL).
distance_metrics A character vector specifying what (dis)similarity metrics to use (default:

c("unifrac")).
beta_div_table A path to an existing file or a dense/sparse Matrix format (default: NULL).
alpha_div_table A path to pre-computed alpha diversity table, with columns: alpha_div

(containing diversity values) and the same CONTRAST columns from metaData (default:
NULL).

normalize A boolean value, whether to normalize() by total sample sums (default: TRUE).
weighted A boolean value, whether to compute weighted or unweighted dissimilarities (de-

fault: TRUE).

omics 35

pvalue.threshold A numeric value, the p-value is used to include/exclude composition and
foldchanges plots coming from alpha- and beta diversity analysis (default: 0.05).

logfold.threshold A numeric value used as a fold-change threshold to label and color sig-
nificantly expressed features, see DFE() (Default: 1).

abundance.threshold A numeric value used as an abundance threshold to size the scatter dots
based on their mean abundance, see DFE() (default: 0.01).

perm A wholenumber, number of permutations to compare against the null hypothesis of ado-
nis2 or anosim (default: 999).

threads Number of threads to use, only used in distance() when beta_div_table is not sup-
plied (default: 1).

report A boolean value to create a HTML markdown report (default: FALSE). If FALSE a nested
list of the plots and data is returned.

filename A character to name the HTML report to be saved in the current working directory
(default: paste0(getwd(), "/report.html")). The getwd() is required for rmarkdown
to save it in the right path.

Returns: List of plots/data or rendered HTML report

Method clone(): The objects of this class are cloneable with this method.

Usage:
omics$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

diversity_plot

composition_plot

bray, canberra, cosine, jaccard, jsd, manhattan, unifrac

ordination_plot, plot_pairwise_stats, pairwise_anosim, pairwise_adonis

volcano_plot, foldchange

Examples

--
Method `omics$print`
--

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")

obj <- omics$new(
metaData = metadata_file,
countData = counts_file

)

36 omics

method 1 to call print function
obj

method 2 to call print function
obj$print()

--
Method `omics$reset`
--

library(ggplot2)
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

taxa <- omics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file

)

Performs modifications
taxa$transform(log2)

resets
taxa$reset()

An inbuilt reset function prevents unwanted modification to the taxa object.
taxa$rankstat(feature_ranks = c("Kingdom", "Phylum", "Family", "Genus", "Species"))

--
Method `omics$removeNAs`
--

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

obj$removeNAs(column = "treatment")

omics 37

--
Method `omics$feature_subset`
--

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

obj$feature_subset(Genus == "Pseudomonas")

--
Method `omics$sample_subset`
--

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

obj$sample_subset(treatment == "tumor")

--
Method `omics$feature_merge`
--

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

38 omics

obj$feature_merge(feature_rank = c("Kingdom", "Phylum"))
obj$feature_merge(feature_rank = "Genus", feature_filter = c("uncultured", "metagenome"))

--
Method `omics$transform`
--

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

obj$transform(log2)

--
Method `omics$normalize`
--

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

obj$normalize()

--
Method `omics$rankstat`
--

library("ggplot2")
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

omics 39

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

plt <- obj$rankstat(feature_ranks = c("Kingdom", "Phylum", "Family", "Genus", "Species"))
plt

--
Method `omics$alpha_diversity`
--

library("ggplot2")
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

plt <- obj$alpha_diversity(col_name = "treatment",
metric = "shannon")

--
Method `omics$composition`
--

library("ggplot2")
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

result <- obj$composition(feature_rank = "Genus",
feature_filter = c("uncultured"),
feature_top = 10)

plt <- composition_plot(data = result$data,

40 omics

palette = result$palette,
feature_rank = "Genus")

--
Method `omics$distance`
--

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file

)

obj$feature_subset(Kingdom == "Bacteria")
dist <- obj$distance(metric = "bray")

--
Method `omics$ordination`
--

library("ggplot2")
library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

pcoa_plots <- obj$ordination(metric = "bray",
method = "pcoa",
group_by = "treatment",
weighted = TRUE,
normalize = TRUE)

pcoa_plots

--
Method `omics$DFE`
--

library("ggplot2")

ordination_plot 41

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")

obj <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,

)

unpaired <- obj$DFE(feature_rank = "Genus",
paired = FALSE,
condition.group = "treatment",
condition_A = c("healthy"),
condition_B = c("tumor"))

ordination_plot Ordination plot

Description

Creates an ordination plot pre-computed principal components from wcmdscale. This function is
built into the class omics with method ordination() and inherited by other omics classes, such as;
metagenomics and proteomics.

Usage

ordination_plot(
data,
col_name,
pair,
dist_explained = NULL,
dist_metric = NULL

)

Arguments

data A data.frame or data.table of Principal Components as columns and rows as
loading scores.

col_name A categorical variable to color the contrasts (e.g. "groups").
pair A vector of character variables indicating what dimension names (e.g. PC1,

NMDS2).
dist_explained A vector of numeric values of the percentage dissimilarity explained for the

dimension pairs, default is NULL.
dist_metric A character variable indicating what metric is used (e.g. unifrac, bray-curtis),

default is NULL.

42 pairwise_adonis

Value

A ggplot2 object to be further modified

Examples

library(ggplot2)

Mock principal component scores
set.seed(123)
mock_data <- data.frame(

SampleID = paste0("Sample", 1:10),
PC1 = rnorm(10, mean = 0, sd = 1),
PC2 = rnorm(10, mean = 0, sd = 1),
groups = rep(c("Group1", "Group2"), each = 5)

)

Basic usage
ordination_plot(

data = mock_data,
col_name = "groups",
pair = c("PC1", "PC2")

)

Adding variance/dissimilarity explained.
ordination_plot(

data = mock_data,
col_name = "groups",
pair = c("PC1", "PC2"),
dist_explained = c(45, 22),
dist_metric = "bray-curtis"

)

pairwise_adonis Pairwise adonis2 (PERMANOVA) computation

Description

Computes pairwise adonis2, given a distance matrix and a vector of labels. This function is built
into the class omics with method ordination() and inherited by other omics classes, such as;
metagenomics and proteomics.

Usage

pairwise_adonis(
x,
groups,
metadata = NULL,
perm_design = NULL,
p.adjust.method = "bonferroni",

pairwise_adonis 43

perm = 999
)

Arguments

x A distance matrix in the form of dist. Obtained from a dissimilarity metric, in
the case of similarity metric please use 1-dist

groups A character vector (column from a table) of labels.
metadata A data.table or data.frame of extra metadata for perm_design (default: NULL).
perm_design A function that takes a data.frame and constructs a permutation design with how

(default: NULL).
p.adjust.method

P adjust method see p.adjust.
perm Number of permutations to compare against the null hypothesis of adonis2 (de-

fault: perm=999).

Value

A data.frame of

• pairs that are used
• Degrees of freedom (Df)
• Sums of Squares of H_0
• F.Model of H_0
• R2 of H_0
• p value of F^p > F
• p adjusted

See Also

adonis2

Examples

Create random data
set.seed(42)
mock_data <- matrix(rnorm(15 * 10), nrow = 15, ncol = 10)

Create euclidean dissimilarity matrix
mock_dist <- dist(mock_data, method = "euclidean")

Define group labels, should be equal to number of columns and rows to dist
mock_groups <- rep(c("A", "B", "C"), each = 5)

Compute pairwise adonis (PERMANOVA)
result <- pairwise_adonis(x = mock_dist,

groups = mock_groups,
p.adjust.method = "bonferroni",
perm = 99)

44 pairwise_anosim

pairwise_anosim Pairwise anosim (ANOSIM) computation

Description

Computes pairwise anosim, given a distance matrix and a vector of labels. This function is built
into the class omics with method ordination() and inherited by other omics classes, such as;
metagenomics and proteomics.

Usage

pairwise_anosim(
x,
groups,
metadata = NULL,
perm_design = NULL,
p.adjust.method = "bonferroni",
perm = 999

)

Arguments

x A distance matrix in the form of dist. Obtained from a dissimilarity metric, in
the case of similarity metric please use 1-dist

groups A vector (column from a table) of labels.

metadata A data.table or data.frame of extra metadata for perm_design (default: NULL).

perm_design A function that takes a data.frame and constructs a permutation design with how
(default: NULL).

p.adjust.method

P adjust method see p.adjust

perm Number of permutations to compare against the null hypothesis of anosim (de-
fault: perm=999).

Value

A data.frame of

• pairs that are used

• R2 of H_0

• p value of F^p > F

• p adjusted

See Also

anosim

plot_pairwise_stats 45

Examples

Create random data
set.seed(42)
mock_data <- matrix(rnorm(15 * 10), nrow = 15, ncol = 10)

Create euclidean dissimilarity matrix
mock_dist <- dist(mock_data, method = "euclidean")

Define group labels, should be equal to number of columns and rows to dist
mock_groups <- rep(c("A", "B", "C"), each = 5)

Compute pairwise anosim
result <- pairwise_anosim(x = mock_dist,

groups = mock_groups,
p.adjust.method = "bonferroni",
perm = 99)

plot_pairwise_stats Create pairwise stats plot

Description

Creates a pairwise stats plot from pairwise_adonis or pairwise_anosim results. This function is
built into the class omics with method ordination() and inherited by other omics classes, such as;
metagenomics and proteomics.

Usage

plot_pairwise_stats(
data,
stats_col,
group_col,
label_col,
y_axis_title = NULL,
plot_title = NULL

)

Arguments

data A data.frame or data.table.

stats_col A column name of a continuous variable.

group_col A column name of a categorical variable.

label_col A column name of a categorical variable to label the bars.

y_axis_title A character variable to name the Y - axis title (default: NULL).

plot_title A character variable to name the plot title (default: NULL).

46 proteomics

Value

A ggplot2 object to be further modified

Examples

library("ggplot2")

Create random data
set.seed(42)
mock_data <- matrix(rnorm(15 * 10), nrow = 15, ncol = 10)

Create euclidean dissimilarity matrix
mock_dist <- dist(mock_data, method = "euclidean")

Define group labels, should be equal to number of columns and rows to dist
mock_groups <- rep(c("A", "B", "C"), each = 5)

Compute pairwise adonis
adonis_res <- pairwise_adonis(x = mock_dist,

groups = mock_groups,
p.adjust.method = "bonferroni",
perm = 99)

Compute pairwise anosim
anosim_res <- pairwise_anosim(x = mock_dist,

groups = mock_groups,
p.adjust.method = "bonferroni",
perm = 99)

Visualize PERMANOVA pairwise stats
plot_pairwise_stats(data = adonis_res,

group_col = "pairs",
stats_col = "F.Model",
label_col = "p.adj",
y_axis_title = "Pseudo F test statistic",
plot_title = "PERMANOVA")

Visualize ANOSIM pairwise stats
plot_pairwise_stats(data = anosim_res,

group_col = "pairs",
stats_col = "anosimR",
label_col = "p.adj",
y_axis_title = "ANOSIM R statistic",
plot_title = "ANOSIM")

proteomics Sub-class proteomics

proteomics 47

Description

This is a sub-class that is compatible to preprocessed data obtained from https://fragpipe.nesvilab.org/.
It inherits all methods from the abstract class omics and only adapts the initialize function. It
supports pre-existing data structures or paths to text files. When omics data is very large, data load-
ing becomes very expensive. It is therefore recommended to use the reset() method to reset your
changes. Every omics class creates an internal memory efficient back-up of the data, the resetting
of changes is an instant process.

Super class

OmicFlow::omics -> proteomics

Active bindings

treeData A "phylo" class, see as.phylo.

Methods

Public methods:
• proteomics$new()

• proteomics$clone()

Method new(): Initializes the proteomics class object with proteomics$new()

Usage:
proteomics$new(
countData = NULL,
metaData = NULL,
featureData = NULL,
treeData = NULL

)

Arguments:
countData A path to an existing file or a dense/sparse Matrix format.
metaData A path to an existing file, data.table or data.frame.
featureData A path to an existing file, data.table or data.frame.
treeData A path to an existing newick file or class "phylo", see read.tree.

Returns: A new proteomics object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
proteomics$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

omics

48 unifrac

unifrac Compute UniFrac Dissimilarity from a Dense or Sparse Matrix.

Description

Calculates the UniFrac dissimilarity between samples based on phylogenetic branch lengths and
abundance or presence/absence data.

Usage

unifrac(x, tree, weighted = TRUE, normalized = TRUE, threads = 1)

Arguments

x A matrix, sparseMatrix or Matrix of strictly positive counts or presence/absence
data.

tree A phylo class tree.

weighted A boolean value, to use abundances (weighted = TRUE) or absence/presence
(weighted=FALSE) (default: TRUE).

normalized A boolean value, whether to normalize weighted UniFrac distances to be be-
tween 0 and 1 (default: TRUE). Unweighted UniFrac is always normalized.

threads A wholenumber, the number of threads to use in setThreadOptions (default: 1).

Details

The UniFrac distance between two samples A and B, with phylogenetic tree edges i = 1 . . . n
of lengths Li, is computed differently depending on the weighted and normalized flags. When
weighted = FALSE, input counts are first converted to presence/absence data.

Weighted UniFrac (normalized = FALSE and weighted = TRUE): d(A,B) =
∑n

i Li|Ai−Bi|∑n
i Li(Ai+Bi)

Normalized Weighted UniFrac (normalized = TRUE and weighted = TRUE): d(A,B) =
∑n

i Li|Ai−
Bi|

Unweighted UniFrac (weighted = FALSE, unweighted is always normalized): d(A,B) =
∑n

i Li|Ai−Bi|∑n
i Li max(Ai,Bi)

Value

A column x column dist object.

References

Lozupone, C., & Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial
communities. Applied and Environmental Microbiology, 71(12), 8228–8235.

volcano_plot 49

Examples

library("OmicFlow")

metadata_file <- system.file("extdata", "metadata.tsv", package = "OmicFlow")
counts_file <- system.file("extdata", "counts.tsv", package = "OmicFlow")
features_file <- system.file("extdata", "features.tsv", package = "OmicFlow")
tree_file <- system.file("extdata", "tree.newick", package = "OmicFlow")

taxa <- metagenomics$new(
metaData = metadata_file,
countData = counts_file,
featureData = features_file,
treeData = tree_file

)

taxa$feature_subset(Kingdom == "Bacteria")
taxa$normalize()

Weighted UniFrac
unifrac(x = taxa$countData, tree = taxa$treeData, weighted=TRUE, normalized=FALSE)

Weighted Normalized UniFrac
unifrac(x = taxa$countData, tree = taxa$treeData, weighted=TRUE, normalized=TRUE)

Unweighted UniFrac
unifrac(x = taxa$countData, tree = taxa$treeData, weighted=FALSE)

volcano_plot Volcano plot

Description

Creates a Volcano plot from the output of foldchange, it plots the foldchanges on the x-axis, log10
trasnformed p-values on the y-axis and adjusts the scatter size based on the percentage abundance
of the features. This function is built into the class omics with method DFE() and inherited by other
omics classes, such as; metagenomics and proteomics.

Usage

volcano_plot(
data,
logfold_col,
pvalue_col,
feature_rank,
abundance_col,
pvalue.threshold = 0.05,
logfold.threshold = 0.6,
abundance.threshold = 0.01,

50 volcano_plot

label_A = "A",
label_B = "B"

)

Arguments

data A data.table.

logfold_col A column name of a continuous variable.

pvalue_col A column name of a continuous variable.

feature_rank A character variable of the feature column.

abundance_col A column name of a continuous variable.
pvalue.threshold

A P-value threshold (default: 0.05).
logfold.threshold

A Log2(A/B) Fold Change threshold (default: 0.6).
abundance.threshold

An abundance threshold (default: 0.01).

label_A A character to describe condition A.

label_B A character to describe condition B.

Value

A ggplot2 object to be further modified.

Examples

library(data.table)
library(ggplot2)

Create mock data frame
mock_volcano_data <- data.table(

Feature names (feature_rank)
Feature = paste0("Gene", 1:20),

Log2 fold changes (X)
log2FC = c(1.2, -1.5, 0.3, -0.7, 2.3,

-2.0, 0.1, 0.5, -1.0, 1.8,
-0.4, 0.7, -1.4, 1.5, 0.9,
-2.1, 0.2, 1.0, -0.3, -1.8),

P-values (Y)
pvalue = c(0.001, 0.02, 0.3, 0.04, 0.0005,

0.01, 0.7, 0.5, 0.02, 0.0008,
0.15, 0.06, 0.01, 0.005, 0.3,
0.02, 0.8, 0.04, 0.12, 0.03),

Mean (relative) abundance for point sizing
rel_abun = runif(20, 0.01, 0.1)

volcano_plot 51

)

volcano_plot(
data = mock_volcano_data,
logfold_col = "log2FC",
pvalue_col = "pvalue",
abundance_col = "rel_abun",
feature_rank = "Feature",

)

Index

adonis2, 32, 35, 42, 43
anosim, 32, 35, 44
as.phylo, 20, 47

bray, 2, 35
brewer.pal, 5, 29, 30

canberra, 4, 35
colormap, 5, 6, 11, 22, 29, 30
column_exists, 6
composition_plot, 6, 35
cosine, 8, 35

data.frame, 5, 6, 11, 22, 24, 41, 43–45
data.table, 5, 6, 11–13, 19, 20, 22–24, 41,

45, 47, 50
dist, 3, 4, 8, 16–18, 31, 32, 43, 44, 48
diversity, 9, 9, 10, 11, 22, 29
diversity_plot, 10, 29, 35

foldchange, 12, 33, 35, 49

ggplot, 6, 22, 23, 29
ggplot2, 7, 11, 42, 46, 50

h5read, 20
hill_taxa, 14, 14, 15
how, 32, 43, 44

jaccard, 16, 35
jsd, 17, 35

log, 9, 15

manhattan, 18, 35
Matrix, 3, 4, 8, 9, 15–20, 23, 24, 32, 34, 47, 48
matrix, 3, 4, 8, 9, 15–19, 22, 48
matrix_to_dtable, 19
metagenomics, 5, 9, 12, 20, 22, 41, 42, 44, 45,

49

OmicFlow::omics, 20, 47

omics, 5, 6, 9, 10, 12, 20, 21, 22, 25, 41, 42,
44, 45, 47, 49

ordination_plot, 35, 41

p.adjust, 43, 44
pairwise_adonis, 32, 35, 42, 45
pairwise_anosim, 32, 35, 44, 45
pairwise_wilcox_test, 22
plot_pairwise_stats, 35, 45
proteomics, 5, 9, 12, 41, 42, 44, 45, 46, 49

R6Class, 22
read.tree, 20, 47

setNames, 5, 22
setThreadOptions, 3, 4, 8, 16–18, 48
sparseMatrix, 3, 4, 8, 9, 14–19, 22, 48
specnumber, 29

unifrac, 35, 48

volcano_plot, 35, 49

wcmdscale, 32, 41
wilcox.test, 11, 12, 29, 33

52

	bray
	canberra
	colormap
	column_exists
	composition_plot
	cosine
	diversity
	diversity_plot
	foldchange
	hill_taxa
	jaccard
	jsd
	manhattan
	matrix_to_dtable
	metagenomics
	omics
	ordination_plot
	pairwise_adonis
	pairwise_anosim
	plot_pairwise_stats
	proteomics
	unifrac
	volcano_plot
	Index

