Version 3.4.5
Date 2026-01-20

Package ‘Rlabkey’

January 29, 2026

Title Data Exchange Between R and 'LabKey' Server

Description The 'LabKey' client library for R makes it easy for R users to
load live data from a 'LabKey' Server, <https://www.labkey.com/>,
into the R environment for analysis, provided users have permissions
to read the data. It also enables R users to insert, update, and
delete records stored on a 'LabKey' Server, provided they have appropriate
permissions to do so.

License Apache License 2.0
Copyright Copyright (c) 2010-2018 LabKey Corporation

LazyLoad true

Depends httr, jsonlite

LinkingTo Rcpp

Imports Rcpp (>=0.11.0)

NeedsCompilation yes

Author Peter Hussey [aut],
Cory Nathe [cre]

Maintainer Cory Nathe <cnathe@labkey.com>
Repository CRAN
Date/Publication 2026-01-29 06:11:04 UTC

Contents

Rlabkey-package
getFolderPath
getLookups e

getRows

getSchema e
etSeSSION
labkey.acceptSelfSignedCerts

https://www.labkey.com/

Contents

labkey.curlOptions L e e e 12
labkey.deleteRows 12
labkey.domain.create 15
labkey.domain.createAndLoad oL o 17
labkey.domain.createConditionalFormat 20
labkey.domain.createConditionalFormatQueryFilter 21
labkey.domain.createDesign 22
labkey.domain.createlndices 24
labkey.domaindrop 25
labkey.domain. FILTER_TYPES 26
labkey.domain.get 27
labkey.domain.inferFields 28
labkey.domain.save e 29
labkey.executeSql L. 30
labkey.experiment.createData L L L 32
labkey.experiment.createMaterial 0oL Lo 0oL 33
labkey.experiment.createRun Lo 34
labkey.experiment.lineage 36
labkey.experiment. SAMPLE_DERIVATION_PROTOCOL 37
labkey.experiment.saveBatch oL oo 38
labkey.experiment.saveRuns 39
labkey.getBaseUrl 41
labkey.getDefaultViewDetails o 41
labkey.getFolders 43
labkey.getLookupDetails 44
labkey.getModuleProperty 46
labkey.getQueries e e 47
labkey.getQueryDetails L 48
labkey.getQueryViews e 51
labkey.getRequestOptions L 52
labkey.getSchemas 53
labkey.importROWS e e e 54
labkey.insertRows 56
labkey.makeRemotePath 59
labkey.moveRows 60
labkey.pipeline.getFileStatus L 62
labkey.pipeline.getPipelineContainer 63
labkey.pipeline.getProtocolso 64
labkey.pipeline.startAnalysis 65
labkey.provenance.addRecordingStepo oL 0oL L 67
labkey.provenance.createProvenanceParams 0oL L. 68
labkey.provenance.startRecording oL oo 70
labkey.provenance.stopRecordingo Lo 72
labkey.query.import e 73
labkey.rstudio.initReport oL 75
labkey.rstudio.initRStudio 76
labkey.rstudio.initSessiono Lo L 76

labkey.rstudio.isInitialized oL 77

Rlabkey-package 3

Index

labkey.rstudio.saveReport e 78
labkey.saveBatch 78
labkey.security.createContainer e e 80
labkey.security.deleteContainer L o L. 81
labkey.security.getContainers 82
labkey.security.impersonateUser 84
labkey.security.moveContainer 85
labkey.security.renameContainero 86
labkey.security.stopIlmpersonating L. 88
labkey.selectROWS e e e e 89
labkey.setCurlOptions e e e e e 92
labkey.setDebugMode 93
labkey.setDefaults 94
labkey.setModuleProperty oL 96
labkey.setWafEncodingo oL 96
labkey.storage.createol 97
labkey.storage.delete 99
labkey.storage.update L. 100
labkey.transform.getRunPropertyValue o L. 102
labkey.transform.readRunPropertiesFile 102
labkey.truncateTable 103
labkey.updateRows e 104
labkey.webdav.delete 106
labkey.webdav.downloadFolder 0oL 108
labkey.webdav.get 109
labkey.webdav.listDir 111
labkey.webdav.mkDir 112
labkey.webdav.mkDirso 114
labkey.webdav.pathExists 115
labkey.webdav.put e e 116
labkey.whoAml e e 118
IsFolders 119
IsProjects e e e 120
IsSchemas 121
makeFilter L 122
saveResults L 124

126

Rlabkey-package Exchange data between LabKey Server and R

4 Rlabkey-package

Description

This package allows the transfer of data between a LabKey Server and an R session. Data can

be retrieved from LabKey into a data frame in R by specifying the query schema information
(labkey.selectRows and getRows) or by using sql commands (labkey.executeSql). From an R
session, existing data can be updated (1abkey . updateRows), new data can be inserted (Labkey. insertRows
and labkey. importRows) or data can be deleted from the LabKey database (labkey.deleteRows).
Interactive R users can discover available data via schema objects (Labkey.getSchema).

Details

Package: Rlabkey

Type: Package

Version: 34.5

Date: 2026-01-20
License: Apache License 2.0

LazyLoad: yes

The user must have appropriate authorization on the LabKey Server in order to access or modify
data using these functions. All access to secure content on LabKey Server requires authentication
via an api key (see labkey.setDefaults for more details) or a properly configured netrc file that
includes the user’s login information.

The netrc file is a standard mechanism for conveying configuration and autologin information to the
File Transfer Protocol client (ftp) and other programs such as CURL. On a Linux or Mac system
this file should be named .netrc (dot netrc) and on Windows it should be named _netrc (underscore
netrc). The file should be located in the user’s home directory and the permissions on the file should
be unreadable for everybody except the owner.

To create the _netrc on a Windows machine, first create an environment variable called " HOME’
set to your home directory (e.g., c:/Users/<User-Name> on recent versions of Windows) or any
directory you want to use. In that directory, create a text file named _netrc (note that it’s underscore
netrc, not dot netrc like it is on Linux/Mac).

The following three lines must be included in the .netrc or _netrc file either separated by white space
(spaces, tabs, or newlines) or commas.

machine <remote-machine-name>
login <user-email>
password <user-password>

One example would be:
machine localhost

login peter @labkey.com
password mypassword

Another example would be:
machine atlas.scharp.org login vobencha@fhcrc.org password mypassword

Multiple such blocks can exist in one file.

getFolderPath 5

Author(s)

Valerie Obenchain

References
http://www.omegahat.net/RCurl/,
https://www.labkey.org/home/project-begin.view
See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.insertRows, labkey. importRows,
labkey.updateRows, labkey.deleteRows

getFolderPath Returns the folder path associated with a session

Description

Returns the current folder path for a LabKey session

Usage

getFolderPath(session)

Arguments

session the session key returned from getSession

Details

Returns a string containing the current folder path for the passed in LabKey session

Value

A character array containing the folder path, relative to the root.

Author(s)

Peter Hussey

References

https://www.labkey.org/Documentation/wiki-page.view 7name=projects

See Also

getSession 1sFolders

6 getLookups
Examples

Not run:

library(Rlabkey)

lks<- getSession("https://www.labkey.org"”, "/home")
getFolderPath(lks) #returns "/home”

End(Not run)

getLookups Get related data fields that are available to include in a query on a
given query object

Description

Retrieve a related query object referenced by a lookup column in the current query

Usage

getLookups(session, lookupField)

Arguments
session the session key returned from getSession
lookupField an object representing a lookup field on LabKey Server, a named member of a
query object.
Details

Lookup fields in LabKey Server are the equivalent of declared foreign keys

Value

A query object representing the related data set. The fields of a lookup query object are usually
added to the colSelect parameter in getRows, If a lookup query object is used as the query parameter
in getRows, the call will return all of the base query columns and all of the lookup query columns.
A lookup query object is very similar to base query objects that are named elemenets of a schema
object, A lookup query object, however, does not have a parent schema object, it is only returned
by getLookups. Also, the field names in a lookup query object are compound names relative to the
base query object used in getLookups.

Author(s)

Peter Hussey

getRows 7

References

https://www.labkey.org/Documentation/wiki-page.view 7name=propertyFields

See Also

getSession, getRows getSchema
Examples
Not run:

get fields from lookup tables and add to query
library(Rlabkey)

s<- getSession(baseUrl="http://localhost:8080/1labkey",
folderPath="/apisamples”)

scobj <- getSchema(s, "lists")

can add fields from related queries
lucols <- getLookups(s, scobj$AllTypes$Category)

keep going to other tables
lucols2 <- getlLookups(s, lucols[["Category/Group”]])

cols <- c(names(scobj$AllTypes)[2:6], names(lucols)[2:4])

getRows (s, scobj$AllTypes, colSelect=paste(cols, sep=","))

End(Not run)

getRows Retrieve data from LabKey Server

Description

Retrive rows from a LabKey Server given a session and query object

Usage
getRows(session, query, maxRows=NULL, colNameOpt='fieldname', ...)
Arguments
session the session key returned from getSession
query an object representing a query on LabKey Server, a child object of the object

returned by getSchema()

8 getRows

maxRows (optional) an integer specifying how many rows of data to return. If no value is
specified, all rows are returned.

colNameOpt (optional) controls the name source for the columns of the output dataframe,
with valid values of ’caption’, ’fieldname’, and 'rname’

Any of the remaining options to 1ink{labkey.selectRows}

Details

This function works as a shortcut wrapper to labkey.selectRows. All of the arguments are the
same as documented in labkey.selectRows.

See labkey.selectRows for a discussion of the valid options and defaults for colNameOpt. Note
in particular that with getRows the default is *fieldname’ instead of ’caption’.
Value

A data frame containing the query results corresponding to the default view of the specified query.

Author(s)

Peter Hussey

See Also

getSession, getSchema, getLookups, saveResults labkey.selectRows

Examples

Not run:

simple example of getting data using schema objects
library(Rlabkey)

s<-getSession(baseUrl="http://localhost:8080/labkey"”,
folderPath="/apisamples”)

s # shows schemas

scobj <- getSchema(s, "lists")
scobj # shows available queries

scobj$AllTypes ## this is the query object

getRows (s, scobj$AllTypes)

End(Not run)

getSchema 9

getSchema Returns an object representing a LabKey schema

Description

Creates and returns an object representing a LabKey schema, containing child objects representing
LabKey queries

Usage

getSchema(session, schemalndex)

Arguments
session the session key returned from getSession
schemaIndex the name of the schema that contains the table on which you want to base a
query, or the number of that schema as displayed by print(session)
Details

Creates and returns an object representing a LabKey schema, containing child objects represent-
ing LabKey queries. This compound object is created by calling labkey.getQueries on the re-
quested schema and labkey.getQueryDetails on each returned query. The information returned
in the schema objects is essentially the same as the schema and query objects shown in the Schema
Browser on LabKey Server.

Value

an object representing the schema. The named elements of a schema are the queries within that
schema.

Author(s)

Peter Hussey

References

https://www.labkey.org/Documentation/wiki-page.view Tname=querySchemaBrowser

See Also

getSession

10 getSession
Examples
Not run:

the basics of using session, schema, and query objects
library(Rlabkey)

s<- getSession(baseUrl="http://localhost:8080/1labkey",
folderPath="/apisamples”)

sch<- getSchema(s, "lists")

can walk down the populataed schema tree from schema node or query node
sch$AllTypes$Category

sch$A11Types$Category$caption

sch$A11Types$Category$type

can add fields from related queries
lucols <- getLookups(s, sch$AllTypes$Category)

cols <- c(names(sch$AllTypes[2:6]), names(lucols)[2:4])

getRows (s, sch$AllTypes, colSelect=cols)

End(Not run)

getSession Creates and returns a LabKey Server session

Description
The session object holds server address and folder context for a user working with LabKey Server.
The session-based model supports more efficient interactive use of LabKey Server from R.

Usage

getSession(baseUrl, folderPath="/home",
curlOptions=NULL, 1kOptions=NULL)

Arguments
baseUrl a string specifying the address of the LabKey Server, including the context root
folderPath a string specifying the hierarchy of folders to the current folder (container) for
the operation, starting with the project folder
curlOptions (optional) a list of curlOptions to be set on connections to the LabKey Server,

see details

1kOptions (optional) a list of settings for default behavior on naming of objects, see details

getSession 11

Details
Creates a session key that is passed to all the other session-based functions. Associated with the
key are a baseUrl and a folderPath which determine the security context.
curlOptions

The curlOptions parameter gives a mechanism to pass control options down to the RCurl library
used by Rlabkey. This can be very useful for debugging problems or setting proxy server properties.
See example for debugging.

1kOptions

The lkOptions parameter gives a mechanism to change default behavior in the objects returned by
Rlabkey. Currently the only available options are colNameOpt, which affects the names of columns
in the data frames returned by getRows(), and maxRows, which sets a default value for this parameter
when calling getRows()

Value

getSession returns a session object that represents a specific user within a specific project folder
within the LabKey Server identified by the baseUrl. The combination of user, server and project/folder
determines the security context of the client program.

Author(s)

Peter Hussey

See Also

getRows, getSchema, getLookups saveResults

Examples

Not run:
library(Rlabkey)

s <- getSession("https://www.labkey.org"”, "/home")
s #shows schemas

using the curlOptions for generating debug tracesof network traffic

d<- debugGatherer()

copt <- curlOptions(debugfunction=d$update, verbose=TRUE,
cookiefile='/cooks.txt"')

sdbg<- getSession(baseUrl="http://localhost:8080/labkey",
folderPath="/apisamples”, curlOptions=copt)

getRows (sdbg, scobj$AllTypes)

strwrap(d$value(), 100)

End(Not run)

12 labkey.deleteRows

labkey.acceptSelfSignedCerts
Convenience method to configure Rlabkey connections to accept self-
signed certificates

Description

Rlabkey uses the package RCurl to connect to the LabKey Server. This is equivalent to executing
the function: labkey.setCurlOptions(ssl_verifyhost=0, ssl_verifypeer=FALSE)

Usage

labkey.acceptSelfSignedCerts()

labkey.curlOptions Returns the current set of Curl options that are being used in the ex-
isting session

Description

Rlabkey uses the package RCurl to connect to the LabKey Server.

Usage

labkey.curlOptions()

labkey.deleteRows Delete rows of data from a LabKey database

Description

Specify rows of data to be deleted from the LabKey Server

Usage

labkey.deleteRows(baseUrl, folderPath,
schemaName, queryName, toDelete,
provenanceParams=NULL, options=NULL)

labkey.deleteRows 13

Arguments
baseUrl a string specifying the baseUrlfor LabKey server
folderPath a string specifying the folderPath
schemaName a string specifying the schemaName for the query
queryName a string specifying the queryName
toDelete a data frame containing a single column of data containing the data identifiers
of the rows to be deleted
provenanceParams
the provenance parameter object which contains the options to include as part of
a provenance recording. This is a premium feature and requires the Provenance
LabKey module to function correctly, if it is not present this parameter will be
ignored.
options (optional) a list containing options specific to the insert action of the query
Details

A single row or multiple rows of data can be deleted. For the toDelete data frame, version 0.0.5
or later accepts either a single column of data containing the data identifiers (e.g., key or Isid) or
the entire row of data to be deleted. The names of the data in the data frame must be the column
names from the LabKey Server. The data frame must be created with the stringsAsFactors set to
FALSE.

NOTE: Each variable in a dataset has both a column label and a column name. The column label is
visible at the top of each column on the web page and is longer and more descriptive. The column
name is shorter and is used “behind the scenes” for database manipulation. It is the column name
that must be used in the Rlabkey functions when a column name is expected. To identify a particular
column name in a dataset on a web site, use the “export to R script” option available as a drop down
option under the “views” tab for each dataset.

The list of valid options for each query will vary, but some common examples include:
* auditBehavior (string) : Can be used to override the audit behavior for the table the query
is acting on. The set of types include: NONE, SUMMARY, and DETAILED.

* auditUserComment (string) : Can be used to provide a comment from the user that will be
attached to certain detailed audit log records.

Value

A list is returned with named categories of command, rowsAffected, rows, queryName, contain-
erPath and schemaName. The schemaName, queryName and containerPath properties contain
the same schema, query and folder path used in the request. The rowsAffected property indicates
the number of rows affected by the API action. This will typically be the same number as passed in
the request. The rows property contains a list of rows corresponding to the rows deleted.

Author(s)

Valerie Obenchain

14 labkey.deleteRows

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.insertRows, labkey. importRows,
labkey.updateRows, labkey.moveRows,

labkey.provenance.createProvenanceParams, labkey.provenance.startRecording, labkey.provenance.addRecol
labkey.provenance. stopRecording

Examples

Not run:

Insert, update and delete

Note that users must have the necessary permissions in the LabKey Server
to be able to modify data through the use of these functions

library(Rlabkey)

newrow <- data.frame(
DisplayFld="Inserted from R"
, TextFld="how its done”

, IntFld= 98

, DoubleFld = 12.345

, DateTimeFld = "03/01/2010"
, BooleanFld= FALSE

, LongTextFld = "Four score and seven years ago”
, AttachmentFld = NA #attachment fields not supported
, RequiredText = "Veni, vidi, vici”

, RequiredInt = 0
, Category = "LOOKUP2"
, stringsAsFactors=FALSE)

insertedRow <- labkey.insertRows("http://localhost:8080@/1labkey”,
folderPath="/apisamples”, schemaName="lists",
queryName="Al1Types"”, tolnsert=newrow)

newRowId <- insertedRow$rows[[1]]$RowId

selectedRow<-labkey.selectRows("http://localhost:8080/1labkey"”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes",
colFilter=makeFilter(c("RowId"”, "EQUALS", newRowId)))

selectedRow

updaterow=data. frame(
RowId=newRowId

, DisplayFld="Updated from R"
, TextFld="how to update”

, IntFld= 777

, stringsAsFactors=FALSE)

updatedRow <- labkey.updateRows("http://localhost:8080/labkey"”,
folderPath="/apisamples”, schemaName="1lists",
queryName="Al1Types"”, toUpdate=updaterow)
selectedRow<-labkey.selectRows("http://localhost:8080/labkey”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes",
colFilter=makeFilter(c("RowId"”, "EQUALS", newRowId)))

labkey.domain.create 15

selectedRow

deleterow <- data.frame(RowId=newRowId, stringsAsFactors=FALSE)

result <- labkey.deleteRows(baseUrl="http://localhost:8080/labkey"”,
folderPath="/apisamples”, schemaName="lists",
queryName="Al1Types"”, toDelete=deleterow)

result

End(Not run)

labkey.domain.create Create a new LabKey domain

Description

Create a domain of the type specified by the domainKind and the domainDesign. A LabKey domain
represents a table in a specific schema.

Usage

labkey.domain.create(baseUrl=NULL, folderPath,
domainKind=NULL, domainDesign=NULL, options=NULL,
module=NULL, domainGroup=NULL, domainTemplate=NULL,
createDomain=TRUE, importData=TRUE)

Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath
domainKind (optional) a string specifying the type of domain to create

domainDesign (optional) a list containing the domain design to create

options (optional) a list containing options specific to the domain kind
module (optional) the name of the module that contains the domain template group
domainGroup (optional) the name of a domain template group

domainTemplate (optional) the name of a domain template within the domain group
createDomain (optional) when using a domain template, create the domain. Defaults to TRUE

importData (optional) when using a domain template, import initial data asociated in the
template. Defaults to TRUE

16 labkey.domain.create

Details

When creating a domain using a domainKind parameter, the domainDesign parameter will be re-
quired. If a domain template is being used, then module, domainGroup, and domainTemplate are
required.

Will create a domain of the specified domain type, valid types are

» "IntList": A list with an integer key field

* "VarList": A list with a string key field

» "StudyDatasetVisit": A dataset in a visit based study
* "StudyDatasetDate": A dataset in a date based study
* "IssueDefinition": An issue list domain

* "SampleSet": Sample set

e "DataClass": Data class

The domain design parameter describes the set of fields in the domain, see 1labkey.domain.createDesign
for the helper function that can be used to construct this data structure. The options parameter should
contain a list of attributes that are specific to the domain kind specified. The list of valid options for

each domain kind are:

e IntList and VarList

— keyName (required) : The name of the field in the domain design which identifies the
key field

» StudyDatasetVisit and StudyDatasetDate

— datasetId: Specifies a dataset ID to use, the default is to auto generate an ID

— categorylId: Specifies an existing category ID

— categoryName : Specifies an existing category name

— demographics : (TRUE | FALSE) Determines whether the dataset is created as demo-
graphic

— keyPropertyName : The name of an additional key field to be used in conjunction with
participantld and (visitld or date) to create unique records

— useTimeKeyField : (TRUE | FALSE) Specifies to use the time portion of the date field
as an additional key

— isManagedField : (TRUE | FALSE) Specifies whether the field from keyPropertyName
should be managed by LabKey.
* IssueDefinition
— providerName : The type of issue list to create (IssueDefinition (default) or AssayRe-
questDefinition)

— singularNoun : The singular name to use for items in the issue definition (defaults to
issue)

— pluralNoun : The plural name (defaults to issues)
» SampleSet

— idCols : The columns to use when constructing the concatenated unique ID. Can be up
to 3 numeric IDs which represent the zero-based position of the fields in the domain.

labkey.domain.createAndLoad 17

— parentCol : The column to represent the parent identifier in the sample set. This is a
numeric value representing the zero-based position of the field in the domain.

— nameExpression : The name expression to use for creating unique IDs
* DataClass

— sampleSet : The ID of the sample set if this data class is associated with a sample set.

— nameExpression : The name expression to use for creating unique IDs

Value

A list containing elements describing the newly created domain.

Author(s)
Karl Lum

See Also

labkey.domain.get, labkey.domain.inferFields, labkey.domain.createDesign, labkey.domain.createIndices
labkey.domain.save, labkey.domain.drop, labkey.domain.createConditionalFormat, labkey.domain.createCon
labkey.domain.FILTER_TYPES

Examples

Not run:

create a data frame and infer it's fields, then create a domain design from it
library(Rlabkey)

df <- data.frame(ptid=c(1:3), age = c(10,20,30), sex = c("f", "m", "f"))
fields <- labkey.domain.inferFields(baseUrl="http://labkey/", folderPath="home", df=df)
dd <- labkey.domain.createDesign(name="test list"”, fields=fields)

create a new list with an integer key field
labkey.domain.create(baseUrl="http://labkey/", folderPath="home",
domainKind="IntList"”, domainDesign=dd, options=list(keyName = "ptid"))

create a domain using a domain template
labkey.domain.create(baseUrl="http://labkey/", folderPath="home",
domainTemplate="Priority”, module="simpletest”, domainGroup="todolist")

End(Not run)

labkey.domain.createAndLoad
Create a new LabKey domain and load data

18 labkey.domain.createAndLoad

Description

Create a domain of the type specified by the domainKind. A LabKey domain represents a table in a
specific schema. Once the domain is created the data from the data frame will be imported.

Usage
labkey.domain.createAndLoad(baseUrl=NULL, folderPath,
name, description="", df, domainKind, options=NULL, schemaName=NULL)
Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath
name a string specifying the name of the domain to create
description (optional) a string specifying the domain description
df a data frame specifying fields to infer. The data frame must have column names
as well as row data to infer the type of the field from.
domainKind a string specifying the type of domain to create
options (optional) a list containing options specific to the domain kind
schemaName (optional) a string specifying the schema name to import the data into
Details

Will create a domain of the specified domain type, valid types are

» "IntList": A list with an integer key field

e "VarList": A list with a string key field

* "StudyDatasetVisit": A dataset in a visit based study

» "StudyDatasetDate": A dataset in a date based study

* "IssueDefinition": An issue list domain

* "SampleSet": Sample set

e "DataClass": Data class
The options parameter should contain a list of attributes that are specific to the domain kind speci-
fied. The list of valid options for each domain kind are:

* IntList and VarList

— keyName (required) : The name of the field in the domain design which identifies the
key field

» StudyDatasetVisit and StudyDatasetDate

datasetId : Specifies a dataset ID to use, the default is to auto generate an ID

categoryld : Specifies an existing category ID

categoryName : Specifies an existing category name

demographics : (TRUE | FALSE) Determines whether the dataset is created as demo-
graphic

labkey.domain.createAndLoad 19

— keyPropertyName : The name of an additional key field to be used in conjunction with
participantld and (visitld or date) to create unique records
— useTimeKeyField : (TRUE | FALSE) Specifies to use the time portion of the date field
as an additional key
¢ IssueDefinition
— providerName : The type of issue list to create (IssueDefinition (default) or AssayRe-
questDefinition)
— singularNoun : The singular name to use for items in the issue definition (defaults to
issue)
— pluralNoun : The plural name (defaults to issues)
* SampleSet

— idCols : The columns to use when constructing the concatenated unique ID. Can be up
to 3 numeric IDs which represent the zero-based position of the fields in the domain.

— parentCol : The column to represent the parent identifier in the sample set. This is a
numeric value representing the zero-based position of the field in the domain.

— nameExpression : The name expression to use for creating unique IDs
* DataClass

— sampleSet : The ID of the sample set if this data class is associated with a sample set.
— nameExpression : The name expression to use for creating unique IDs

Value

A list containing the newly uploaded data frame rows.

Author(s)
Karl Lum

See Also

labkey.domain.get, labkey.domain.inferFields, labkey.domain.createDesign, labkey.domain.createlndices,
labkey.domain.save, labkey.domain.drop

Examples

Not run:
library(Rlabkey)

Prepare a data.frame

participants = c("0001","0001","0002","0002","0007","0008")

Visit = c("v1", "v2", "v2" "Vi1", "v2"] "V1")

IntValue = c(256:261)

dataset = data.frame("ParticipantID” = participants, Visit,
"IntegerValue” = IntValue, check.names = FALSE)

Create the dataset and import
labkey.domain.createAndLoad(baseUrl="http://labkey”, folderPath="home",

20 labkey.domain.createConditional Format

name="demo dataset”, df=dataset, domainKind="StudyDatasetVisit")

End(Not run)

labkey.domain.createConditionalFormat
Create a conditional format data frame

Description

Create a conditional format data frame.

Usage
labkey.domain.createConditionalFormat(queryFilter, bold=FALSE, italic=FALSE,
strikeThrough=FALSE, textColor="", backgroundColor="")
Arguments

queryFilter a string specifying what logical filter should be applied

bold a boolean for if the text display should be formatted in bold

italic a boolean for if the text display should be formatted in italic
strikeThrough aboolean for if the text display should be formatted with a strikethrough

textColor a string specifying the hex code of the text color for display
backgroundColor
a string specifying the hex code of the text background color for display

Details

This function can be used to construct a conditional format data frame intended for use within a do-
main design’s conditionalFormats component while creating or updating a domain. The queryFilter

parameter can be used in conjunction with 1abkey.domain.createConditionalFormatQueryFilter

for convenient construction of a query filter string. Multiple conditional formats can be applied to
one field, where each format specified constitutes a new row of the field’s conditionalFormats data
frame. If text formatting options are not specified, the default is to display the value as black text
on a white background.

Value

The data frame containing values describing a conditional format.

Author(s)

Rosaline Pyktel

labkey.domain.createConditionalFormatQueryFilter 21

See Also

labkey.domain.get, labkey.domain.create, labkey.domain.createDesign, labkey.domain.inferFields,
labkey.domain.save, labkey.domain.drop, labkey.domain.createConditionalFormatQueryFilter,
labkey.domain.FILTER_TYPES

Examples

Not run:
library(Rlabkey)

domain <- labkey.domain.get(baseUrl="http://labkey/", folderPath="home",
schemaName="1ists", queryName="test list")

update the third field to use two conditional formats

gf <- labkey.domain.FILTER_TYPES

cf1 = labkey.domain.createConditionalFormat(labkey.domain.createConditionalFormatQueryFilter (gf$GT,
100), bold=TRUE, text_color="D33115", background_color="333333")

cf2 = labkey.domain.createConditionalFormat(labkey.domain.createConditionalFormatQueryFilter(
gf$LESS_THAN, 400), italic=TRUE, text_color="68BC00")

domain$fields$conditionalFormats[[3]] = rbind(cf1,cf2)

labkey.domain.save(baseUrl="http://labkey/", folderPath="home",
schemaName="1ists"”, queryName="test list”, domainDesign=domain)

End(Not run)

labkey.domain.createConditionalFormatQueryFilter
Create a conditional format query filter

Description

Create a conditional format query filter string.

Usage

labkey.domain.createConditionalFormatQueryFilter(filterType, value,
additionalFilter=NULL, additionalValue=NULL)

Arguments

filterType a string specifying a permitted relational operator
value a string specifying a comparand
additionalFilter

a string specifying a second relational operator
additionalValue

a string specifying a second comparand

22 labkey.domain.createDesign

Details

This function can be used to as a convenience wrapper to construct a query filter string for condi-
tional formats. Two relational expressions may be formed, one with the first two parameters (for
instance, parameter values 50’ and ’eq’ for value and filter respectively would create a condition
of “equals 50’) and the second with the remaining two optional parameters. If both conditions are
created, they are conjunct with a logical AND, and a value would have to pass both conditions to
clear the filter. This function can be used in conjunction with labkey.domain.FILTER_TYPES for
easy access to the set of permitted relational operators.

Value

The string specifying a query filter in LabKey filter URL format.

Author(s)

Rosaline Pyktel

See Also

labkey.domain.get, labkey.domain.create, labkey.domain.createDesign, labkey.domain.inferFields,
labkey.domain.save, labkey.domain.drop, labkey.domain.createConditionalFormat, labkey.domain.FILTER_TYI

Examples
Not run:
library(Rlabkey)
gf <- labkey.domain.FILTER_TYPES
Filters for values equal to 750
gf1 <- labkey.domain.createConditionalFormatQueryFilter(qf$EQUAL, 750)

Filters for values greater than 500, but less than 1000
gf2 <- labkey.domain.createConditionalFormatQueryFilter (qf $GREATER_THAN, 500, qf$LESS_THAN, 1000)

End(Not run)

labkey.domain.createDesign
Helper function to create a domain design data structure

Description

Create a domain design data structure which can then be used by labkey.domain.create or
labkey.domain.save

labkey.domain.createDesign 23

Usage

labkey.domain.createDesign(name, description = NULL, fields, indices = NULL)

Arguments
name a string specifying the name of the domain
description (optional) a string specifying domain description
fields a list containing the fields of the domain design, this should be in the same
format as returned by labkey.inferFields.
indices (optional) a list of indices definitions to be used for this domain design on cre-
ation
Details

This is a function which can be used to create a domain design data structure. Domain designs are
used both when creating a new domain or updating an existing domain.

Value
A list containing elements describing the domain design. Any of the APIs which take a domain
design parameter can accept this data structure.

Author(s)

Karl Lum

See Also

labkey.domain.get, labkey.domain.inferFields, labkey.domain.createlIndices, labkey.domain.create,
labkey.domain. save, labkey.domain.drop, labkey.domain.createConditionalFormat, labkey.domain.createCone
labkey.domain.FILTER_TYPES

Examples

Not run:

create a data frame and infer it's fields, then create a domain design from it
library(Rlabkey)

df <- data.frame(ptid=c(1:3), age = ¢(10,20,30), sex = c("f", "m", "f"))

fields <- labkey.domain.inferFields(baseUrl="http://labkey/", folderPath="home", df=df)
indices = labkey.domain.createIndices(list("ptid”, "age"), TRUE)

indices = labkey.domain.createIndices(list("age"), FALSE, indices)

dd <- labkey.domain.createDesign(name="test list"”, fields=fields, indices=indices)

End(Not run)

24 labkey.domain.createlndices

labkey.domain.createIndices
Helper function to create a domain design indices list

Description

Create a list of indices definitions which can then be used by labkey.domain.createDesign

Usage

labkey.domain.createIndices(colNames, asUnique, existingIndices = NULL)

Arguments
colNames a list of string column names for the index
asUnique a logical TRUE or FALSE value for if a UNIQUE index should be used
existingIndices
a list of previously created indices definitions to append to
Details

This helper function can be used to construct the list of indices definitions for a domain design
structure. Each call to this function takes in the column names from the domain to use in the index
and a parameter indicating if this should be a UNIQUE index. A third parameter can be used to
build up more then one indices definitions.

Value
The data frame containing the list of indices definitions, concatenated with the existingIndices ob-
ject if provided.

Author(s)

Cory Nathe

See Also

labkey.domain.get, labkey.domain.create, labkey.domain.createDesign, labkey.domain.inferFields,
labkey.domain.save, labkey.domain.drop

Examples

Not run:

create a list of indices definitions to use for a domain design
library(Rlabkey)

indices = labkey.domain.createIndices(list("intKey"”, "customInt"”), TRUE)

labkey.domain.drop 25

indices = labkey.domain.createlndices(list("customInt”), FALSE, indices)

End(Not run)

labkey.domain.drop Delete a LabKey domain

Description

Delete an existing domain.

Usage

labkey.domain.drop(baseUrl=NULL, folderPath, schemaName, queryName)

Arguments
baseUrl a string specifying the baseUrlfor the labkey server
folderPath a string specifying the folderPath
schemaName a string specifying the name of the schema of the domain
queryName a string specifying the query name

Details

This function will delete an existing domain along with any data that may have been uploaded to it.

Author(s)
Karl Lum

See Also

labkey.domain.get, labkey.domain.inferFields, labkey.domain.createDesign, labkey.domain.createlndices,
labkey.domain.save, labkey.domain.create

Examples
Not run:

delete an existing domain
library(Rlabkey)

labkey.domain.drop(baseUrl="http://labkey/", folderPath="home",
schemaName="1ists"”, queryName="test list")

End(Not run)

26 labkey.domain.FILTER_TYPES

labkey.domain.FILTER_TYPES
Provide comparator access

Description

A list specifying permitted validator comparators.

Usage
labkey.domain.FILTER_TYPES

Details

This constant contains a list specifying the set of permitted validator operators, using names to map
conventional terms to the expressions used by LabKey filter URL formats. The values are intended
to be used in conjunction with conditional formats or property validators.

Value

A named list of strings.

Author(s)

Rosaline Pyktel

See Also

labkey.domain.get, labkey.domain.create, labkey.domain.createDesign, labkey.domain.inferFields,
labkey.domain. save, labkey.domain.drop, labkey.domain.createConditionalFormat, labkey.domain.createCone

Examples

Not run:
library(Rlabkey)

gf <- labkey.domain.FILTER_TYPES

Example of available comparators
comparatorl <- gf$EQUAL

comparator2 <- qf$GREATER_THAN
comparator3 <- gqf$DATE_LESS_THAN_OR_EQUAL
comparator4 <- qf$STARTS_WITH

comparator5 <- gf$CONTAINS_ONE_OF

End(Not run)

labkey.domain.get 27

labkey.domain.get Returns the metadata for an existing LabKey domain

Description

Get the data structure for a domain.

Usage
labkey.domain.get(baseUrl=NULL, folderPath, schemaName, queryName)

Arguments
baseUrl a string specifying the baseUrlfor the labkey server
folderPath a string specifying the folderPath
schemaName a string specifying the name of the schema of the domain
queryName a string specifying the query name

Details

Returns the domain design of an existing domain. The returned domain design can be used for
reporting purposes or it can be modified and used to create a new domain or update the domain
source.

Value
A list containing elements describing the domain. The structure is the same as a domain design
created by labkey.createDomainDesign

Author(s)
Karl Lum

See Also

labkey.domain.create, labkey.domain.inferFields, labkey.domain.createDesign, labkey.domain.createIndice
labkey.domain.save, labkey.domain.drop

Examples
Not run:

retrieve an existing domain
library(Rlabkey)

labkey.domain.get(baseUrl="http://labkey/", folderPath="home",
schemaName="1ists", queryName="test list")

End(Not run)

28 labkey.domain.inferFields

labkey.domain.inferFields
Infer field metadata from a data frame

Description

Generate field information from the specified data frame. The resulting list can be used to create or
edit a domain using the labkey.domain.create or labkey.domain.save APIs.

Usage

labkey.domain.inferFields(baseUrl = NULL, folderPath, df)

Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath
df a data frame specifying fields to infer. The data frame must have column names
as well as row data to infer the type of the field from.
Details

Field information can be generated from a data frame by introspecting the data associated with it
along with other properties about that column. The data frame is posted to the server endpoint
where the data is analyzed and returned as a list of fields each with it’s associated list of properties
and values. This list can be edited and/or used to create a domain on the server.

Value

The inferred metadata will be returned as a list with an element called : "fields" which contains the
list of fields inferred from the data frame. Each field will contain the list of attributes and values for
that field definition.

Author(s)

Karl Lum

See Also

labkey.domain.get, labkey.domain.create, labkey.domain.createDesign, labkey.domain.createlndices,
labkey.domain.save, labkey.domain.drop

labkey.domain.save 29

Examples

Not run:

create a data frame and infer it's fields
library(Rlabkey)

df <- data.frame(ptid=c(1:3), age = c(10,20,30), sex = c("f", "m", "f"))
fields <- labkey.domain.inferFields(baseUrl="http://labkey/", folderPath="home", df=df)

End(Not run)

labkey.domain. save Updates an existing LabKey domain

Description

Modify an existing domain with the specified domain design.

Usage

labkey.domain.save(baseUrl=NULL, folderPath, schemaName, queryName, domainDesign)

Arguments
baseUrl a string specifying the baseUrlfor the labkey server
folderPath a string specifying the folderPath
schemaName a string specifying the name of the schema of the domain
queryName a string specifying the query name

domainDesign a list data structure with the domain design to update to

Value

A list containing elements describing the domain after the update. The structure is the same as a
domain design created by labkey.createDomainDesign

Author(s)
Karl Lum

See Also

labkey.domain.get, labkey.domain.inferFields, labkey.domain.createDesign, labkey.domain.createIndices
labkey.domain.create, labkey.domain.drop, labkey.domain.createConditionalFormat, labkey.domain.createC
labkey.domain.FILTER_TYPES

30 labkey.executeSql
Examples
Not run:
library(Rlabkey)
change the type of one of the columns
domain <- labkey.domain.get(baseUrl="http://labkey/", folderPath="home",
schemaName="1ists", queryName="test list")
domain$fields[3,]1$rangeURI = "xsd:string”
domain$fields[3,]$name = "changed to string”
labkey.domain.save(baseUrl="http://labkey/"”, folderPath="home",
schemaName="1ists", queryName="test list"”, domainDesign=domain)
End(Not run)
labkey.executeSql Retrieve data from a LabKey Server using SOL commands

Description

Use Sql commands to specify data to be imported into R. Prior to import, data can be manipulated
through standard SQL commands supported in LabKey SQL.

Usage

labkey.executeSql (baseUrl, folderPath, schemaName, sql,
maxRows = NULL, rowOffset = NULL, colSort=NULL,

showHidden

= FALSE, colNameOpt='caption',

containerFilter=NULL, parameters=NULL)

Arguments

baseUrl
folderPath
schemaName
sql

maxRows

rowOffset

colSort

showHidden

a string specifying the baseUr1lfor the labkey server
a string specifying the folderPath

a string specifying the schemaName for the query

a string containing the sql commands to be executed

(optional) an integer specifying the maximum number of rows to return. If no
value is specified, all rows are returned.

(optional) an integer specifying which row of data should be the first row in the
retrieval. If no value is specified, rows will begin at the start of the result set.

(optional) a string including the name of the column to sort preceeded by a “+”
or “-” to indicate sort direction

(optional) a logical value indicating whether or not to return data columns that
would normally be hidden from user view. Defaults to FALSE if no value pro-
vided.

labkey.executeSql

31

colNameOpt (optional) controls the name source for the columns of the output dataframe,
with valid values of ’caption’, ’fieldname’, and 'rname’ See labkey.selectRows
for more details.

containerFilter

(optional) Specifies the containers to include in the scope of selectRows request.
A value of NULL is equivalent to "Current". Valid values are

"Current": Include the current folder only

"CurrentAndSubfolders": Include the current folder and all subfolders
"CurrentPlusProject": Include the current folder and the project that con-
tains it

"CurrentAndParents": Include the current folder and its parent folders

"CurrentPlusProjectAndShared": Include the current folder plus its project
plus any shared folders

"AllFolders": Include all folders for which the user has read permission

parameters (optional) List of name/value pairs for the parameters if the SQL references
underlying queries that are parameterized. For example, parameters=c("X=1",
||Y=2ll).
Details

A full dataset or any portion of a dataset can be imported into an R data frame using the labkey . executeSql

function. Function arguments are components of the url that identify the location of the data and
the SQL actions that should be taken on the data prior to import.

See labkey.selectRows for a discussion of the valid options and defaults for colNameOpt.

Value

The requested data are returned in a data frame with stringsAsFactors set to FALSE. Column names
are set as determined by the colNameOpt parameter.

Author(s)

Valerie Obenchain

See Also

labkey.selectRows, makeFilter, labkey.insertRows, labkey. importRows, labkey.updateRows,

labkey.deleteRows, getRows

Examples

Not run:

Example of an expicit join and use of group by and aggregates

library(Rlabkey)

sql<- "SELECT AllTypesCategories.Category AS Category,
SUM(Al1Types.IntFld) AS SumOfIntFld,

32 labkey.experiment.createData

AVG(AllTypes.DoubleFld) AS AvgOfDoubleFld

FROM AllTypes LEFT JOIN AllTypesCategories

ON (AllTypes.Category = AllTypesCategories.TextKey)
WHERE AllTypes.Category IS NOT NULL

GROUP BY AllTypesCategories.Category”

sqlResults <- labkey.executeSql(
baseUrl="http://localhost:8080/labkey",
folderPath="/apisamples”,
schemaName="1ists",
sql = sql)

sqlResults

End(Not run)

labkey.experiment.createData
Create an experiment data object

Description

Create an experiment data object.

Usage

labkey.experiment.createData(config,
dataClassId = NULL, dataClassName = NULL, dataFileUrl = NULL)

Arguments
config a list of base experiment object properties
dataClassId (optional) a integer specifying the data class row ID

dataClassName (optional) a string specifying the name of the data class
dataFileUrl (optional) a string specifying the local file url of the uploaded file

Details

Create an experiment data object which can be used as either input or output datas for an experiment
run.

Value

Returns the object representation of the experiment data object.

Author(s)
Karl Lum

labkey.experiment.createMaterial 33

See Also

labkey.experiment.saveBatch, labkey.experiment.createMaterial, labkey.experiment.createRun

Examples

Not run:
library(Rlabkey)
create a non-assay backed run with data classes as data inputs and outputs

d1 <- labkey.experiment.createData(
list(name = "dc-01"), dataClassId = 400)
d2 <- labkey.experiment.createData(
list(name = "dc-02"), dataClassIld = 402)
run <- labkey.experiment.createRun(
list(name="new run"), datalnputs = d1, dataOutputs = d2)
labkey.experiment.saveBatch(baseUrl="http://labkey/", folderPath="home",
protocolName=1labkey.experiment.SAMPLE_DERIVATION_PROTOCOL, runList=run)

End(Not run)

labkey.experiment.createMaterial
Create an experiment material object

Description

Create an experiment material object.

Usage

labkey.experiment.createMaterial (config, sampleSetId = NULL, sampleSetName = NULL)

Arguments
config a list of base experiment object properties
sampleSetId (optional) a integer specifying the sample set row ID

sampleSetName (optional) a string specifying the name of the sample set

Details
Create an experiment material object which can be used as either input or output materials for an
experiment run.

Value

Returns the object representation of the experiment material object.

34 labkey.experiment.createRun

Author(s)
Karl Lum

See Also

labkey.experiment.saveBatch, labkey.experiment.createData, labkey.experiment.createRun

Examples

Not run:
library(Rlabkey)
create a non-assay backed run with samples as material inputs and outputs

ml <- labkey.experiment.createMaterial(
list(name = "87444063.2604.626"), sampleSetName = "Study Specimens”)
m2 <- labkey.experiment.createMaterial(
list(name = "87444063.2604.625"), sampleSetName = "Study Specimens")
run <- labkey.experiment.createRun(
list(name="new run”), materiallnputs = m1, materialOutputs = m2)
labkey.experiment.saveBatch(baseUrl="http://labkey/", folderPath="home",
protocolName=1labkey.experiment.SAMPLE_DERIVATION_PROTOCOL, runList=run)

End(Not run)

labkey.experiment.createRun
Create an experiment run object

Description

Create an experiment run object.

Usage

labkey.experiment.createRun(config,
datalnputs = NULL, dataOutputs = NULL, dataRows = NULL,
materialInputs = NULL, materialOutputs = NULL)

Arguments
config A list of base experiment object properties. Note that run domain properties
must be added to a properties sub-object.
datalnputs (optional) a list of experiment data objects to be used as data inputs to the run
dataOutputs (optional) a list of experiment data objects to be used as data outputs to the run
dataRows (optional) a data frame containing data rows to be uploaded to the assay backed

run

labkey.experiment.createRun 35

materialInputs (optional) a list of experiment material objects to be used as material inputs to

the run
materialOQutputs
(optional) a list of experiment material objects to be used as material outputs to
the run
Details

Create an experiment run object which can be used in the saveBatch function.

Value

Returns the object representation of the experiment run object.

Author(s)

Karl Lum

See Also

labkey.experiment.saveBatch, labkey.experiment.createData, labkey.experiment.createMaterial

Examples

Not run:
library(Rlabkey)
create a non-assay backed run with samples as material inputs and outputs

ml <- labkey.experiment.createMaterial(

list(name = "87444063.2604.626"), sampleSetName = "Study Specimens”)
m2 <- labkey.experiment.createMaterial(

list(name = "87444063.2604.625"), sampleSetName = "Study Specimens”)

create the run configuration and include optional run level properties
runConfig <- list(name="new run”, properties <- list(textField="run prop 1", floatField=3.14))

run <- labkey.experiment.createRun(
runConfig, materiallnputs = m1, materialOutputs = m2)
labkey.experiment.saveBatch(baseUrl="http://labkey/", folderPath="home",
protocolName=1abkey.experiment.SAMPLE_DERIVATION_PROTOCOL, runList=run)

End(Not run)

36 labkey.experiment.lineage

labkey.experiment.lineage
Get lineage parent/child relationships for experiment objects

Description

Get lineage parent/child relationships and information for exp objects by LSID(s)

Usage

labkey.experiment.lineage(baseUr1=NULL, folderPath,
lsids, options = NULL)

Arguments
baseUrl A string specifying the baseUr1 for the labkey server.
folderPath A string specifying the folderPath to be renamed. Additionally, the container
entity id is also valid.
lsids One or more LSID seed values for the experiment objects to retrieve lineage
information for.
options (optional) A list containing optional parameters specific to the lineage action.
Details

This function retrieves lineage parent/child relationships and information for experiment objects by
LSID(s).

Optional parameters (passed via options) include:

* parents (boolean) : include parent objects in the lineage

* children (boolean) : include child objects in the lineage

* depth (integer) : the depth of the lineage to retrieve

* expType (string) : the type of experiment objects to retrieve lineage for

* cpasType (string) : the type of CPAS object to retrieve lineage for

* runProtocollLsid (string) : the LSID of the run protocol to retrieve lineage for

* includeProperties (boolean) : include properties in the lineage response

* includeInputsAndOutputs (boolean) : include inputs and outputs in the lineage response

* includeRunSteps (boolean) : include run steps in the lineage response

Value

Returns a lineage response object based on the LSID seed values provided. The response object
contains:
* seeds : the LSID of the object(s) requested

* nodes : an object with LSID keys for each lineage node and values containing the lineage
information

labkey.experiment. SAMPLE DERIVATION_PROTOCOL 37

Author(s)
Cory Nathe

Examples

Not run:
library(Rlabkey)

labkey.experiment.lineage(
baseUrl="http://labkey/",
folderPath = "/home/OriginalFolder”,
lsids=c("urn:1lsid:labkey.com:Sample.519.Blood: 23", "urn:1lsid:labkey.com:Sample.519.Blood:12"),
options=list(
parents=TRUE,
children=TRUE,
depth=10,
expType="Material”,
includeProperties=TRUE,
includeInputsAndOutputs=FALSE,
includeRunSteps=FALSE

End(Not run)

labkey.experiment.SAMPLE_DERIVATION_PROTOCOL
Constant for the Simple Derivation Protocol

Description

Simple Derivation Protocol constant.

Details

This value can be used in the labkey.experiment.saveBatch function when creating runs that aren’t
backed by an assay protocol.

Author(s)
Karl Lum

See Also

labkey.experiment.saveBatch

38 labkey.experiment.saveBatch

labkey.experiment.saveBatch
Saves a modified experiment batch

Description

Saves a modified experiment batch.

Usage

labkey.experiment.saveBatch(baseUr1=NULL, folderPath,
assayConfig = NULL, protocolName = NULL,
batchPropertylList = NULL, runList)

Arguments
baseUrl (optional) a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath
assayConfig (optional) a list specifying assay configuration information

protocolName (optional) a string specifying the protocol name of the protocol to use

batchPropertylList
(optional) a list of batch properties
runList a list of experiment run objects
Details

Saves a modified batch. Runs within the batch may refer to existing data and material objects,
either inputs or outputs, by ID or LSID. Runs may also define new data and materials objects by not
specifying an ID or LSID in their properties.

Runs can be created for either assay or non-assay backed protocols. For an assay backed protocol,
either the assayld or the assayName and providerName name must be specified in the assayConfig
parameter. If a non-assay backed protocol is to be used, specify the protocolName string value,
note that currently only the simple : labkey.experiment. SAMPLE_DERIVATION_PROTOCOL is
supported.

Refer to the labkey.experiment.createData, labkey.experiment.createMaterial, and labkey.experiment.createRun
helper functions to assemble the data structure that saveBatch expects.

Value

Returns the object representation of the experiment batch.

Author(s)
Karl Lum

labkey.experiment.saveRuns 39

See Also

labkey.experiment.createData, labkey.experiment.createMaterial, labkey.experiment.createRun

Examples

Not run:
library(Rlabkey)
uploads data to an existing assay

df <- data.frame(participantId=c(1:3), visitId = c(10,20,30), sex = c("f", "m", "f"))

bprops <- list(LabNotes="this is a simple demo")

bpl <- list(name=paste("Batch ", as.character(date())),properties=bprops)

run <- labkey.experiment.createRun(list(name="new assay run"), dataRows = df)

labkey.experiment.saveBatch(baseUrl="http://labkey/", folderPath="home",
assayConfig=list(assayName="GPAT", providerName="General"),
batchPropertylList=bpl, runList=run)

create a non-assay backed run with samples as material inputs and outputs

ml <- labkey.experiment.createMaterial(
list(name = "87444063.2604.626"), sampleSetName = "Study Specimens")
m2 <- labkey.experiment.createMaterial(
list(name = "87444063.2604.625"), sampleSetName = "Study Specimens”)
run <- labkey.experiment.createRun(
list(name="new run”), materiallnputs = m1, materialOutputs = m2)
labkey.experiment.saveBatch(baseUrl="http://labkey/", folderPath="home",
protocolName=1abkey.experiment.SAMPLE_DERIVATION_PROTOCOL, runList=run)

End(Not run)

labkey.experiment.saveRuns
Saves Runs.

Description

Saves experiment runs.

Usage

labkey.experiment.saveRuns(baseUrl1=NULL, folderPath,
protocolName, runList)

40 labkey.experiment.saveRuns

Arguments
baseUrl (optional) a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath

protocolName a string specifying the protocol name of the protocol to use

runList a list of experiment run objects

Details

Saves experiment runs. Runs may refer to existing data and material objects, either inputs or out-
puts, by ID or LSID. Runs may also define new data and materials objects by not specifying an ID
or LSID in their properties.

Refer to the labkey.experiment.createData, labkey.experiment.createMaterial, and labkey.experiment.createRun
helper functions to assemble the data structure that saveRuns expects.

Value

Returns the object representation of the experiment run.

Author(s)

Ankur Juneja

See Also

labkey.experiment.createData, labkey.experiment.createMaterial, labkey.experiment.createRun

Examples

Not run:
library(Rlabkey)
example with materiallnputs and materialOutputs

ml <- labkey.experiment.createMaterial(
list(name = "87444063.2604.626"), sampleSetName = "Study Specimens”)
m2 <- labkey.experiment.createMaterial(
list(name = "87444063.2604.625"), sampleSetName = "Study Specimens”)
run <- labkey.experiment.createRun(
list(name="new run"), materiallnputs = m1, materialOutputs = m2)
labkey.experiment.saveRuns(baseUrl="http://labkey/", folderPath="home",
protocolName=1labkey.experiment.SAMPLE_DERIVATION_PROTOCOL, runList=run)

End(Not run)

labkey.getBaseUrl 41

labkey.getBaseUrl Get the default baseUrl parameter used for all http or https requests

Description

Use this function to get "baseUrl" package environment variables to be used for all http or https
requests.

Usage

labkey.getBaseUrl (baseUr1=NULL)

Arguments

baseUrl server location including context path, if any. e.g. https://www.labkey.org/

Details

The function takes an optional baseUrl parameter. When non empty parameter is passed in and
if baseUrl has not been previously set, the function will remember the baseUrl value in package
environment variables and return the formatted baseUrl. Skip baseUrl parameter to get previously
set baseUrl.

Examples

Not run:

Example of getting previously set baseUrl

library(Rlabkey)

labkey.setDefaults(apiKey="abcdef0123456789abcdef0123456789",
baseUrl="http://labkey/")

labkey.getBaseUrl()

End(Not run)

labkey.getDefaultViewDetails
Retrieve the fields of a LabKey query view

Description

Fetch a list of output fields and their attributes that are avaialble from the default view of a given
query

42 labkey.getDefault ViewDetails

Usage

labkey.getDefaultViewDetails(baseUrl, folderPath,
schemaName, queryName)

Arguments
baseUrl a string specifying the baseUr1for the labkey server
folderPath a string specifying the folderPath
schemaName a string specifying the schemaName for the query
queryName a string specifying the queryName

Details

Queries have a default “views” associeated with them. A query view can describe a subset or
superset of the fields defined by the query. A query view is defined by using the “Customize View”
button option on a LabKey data grid page. getDefaultViewDetails has the same arguments and
returns the same shape of result data frame as getQueryDetails.The default view is the what you
will get back on calling labkey.selectRows or getRows.

Value
The output field attributes of the default view are returned as a data frame. See labkey.getQueryDetails
for a description.

Author(s)

Peter Hussey, peter@labkey.com

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey. insertRows,
labkey. importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueries, labkey.getQueryViews,
labkey.getQueryDetails, labkey.getlLookupDetails

Examples

Not run:

Details of fields of a default query view
library(Rlabkey)

queryDF <- labkey.getDefaultViewDetails(
baseUrl="http://localhost:8080/labkey"”,
folderPath="/apisamples”,
schemaName="1ists",
queryName="Al1lTypes")

queryDF

labkey.getFolders 43

End(Not run)

labkey.getFolders Retrieve a list of folders accessible to the current user

Description

Fetch a list of all folders accessible to the current user, starting from a given folder.

Usage

labkey.getFolders(baseUrl, folderPath,
includeEffectivePermissions=TRUE,
includeSubfolders=FALSE, depth=50,
includeChildWorkbooks=TRUE,
includeStandardProperties=TRUE)

Arguments
baseUrl a string specifying the address of the LabKey Server, including the context root
folderPath the starting point for the search.

includeEffectivePermissions
If set to false, the effective permissions for this container resource will not be
included. (defaults to TRUE).

includeSubfolders
whether the search for subfolders should recurse down the folder hierarchy

depth maximum number of subfolder levels to show if includeSubfolders=TRUE

includeChildWorkbooks
If true, include child containers of type workbook in the response (defaults to
TRUE).

includeStandardProperties

If true, include the standard container properties like title, formats, etc. in the
response (defaults to TRUE).

Details

Folders are a hierarchy of containers for data and files. The are the place where permissions are
set in LabKey Server. The top level in a folder hierarchy is the project. Below the project is an
arbitrary hierarchy of folders that can be used to partition data for reasons of security, visibility, and
organization.

Folders cut across schemas. Some schemas, like the lists schema are not visible in a folder that has
no list objects defined in it. Other schemas are visible in all folders.

44 labkey.getLookupDetails

Value
The available folders are returned as a three-column data frame containing

name the name of the folder

folderPath the full path of the folder from the project root

effectivePermissions
the current user’s effective permissions for the given folder

Author(s)

Peter Hussey, peter @labkey.com

See Also

labkey.getQueries, labkey.getQueryViews, labkey.getQueryDetails, labkey.getDefaultViewDetails,

labkey.getlLookupDetails, labkey.security.getContainers, labkey.security.createContainer,

labkey.security.deleteContainer, labkey.security.moveContainer labkey.security.renameContainer
Examples

Not run:

List of folders
library(Rlabkey)

folders <- labkey.getFolders("https://www.labkey.org”, "/home")
folders

End(Not run)

labkey.getlLookupDetails
Retrieve detailed information on a LabKey query

Description

Fetch a list of output columns and their attributes from the query referenced by a lookup field

Usage

labkey.getlLookupDetails(baseUrl, folderPath,
schemaName, queryName, lookupKey)

labkey.getLookupDetails 45

Arguments
baseUrl a string specifying the address of the LabKey Server, including the context root
folderPath a string specifying the hierarchy of folders to the current folder (container) for
the operation, starting with the project folder
schemaName a string specifying the schema name in which the query object is defined
queryName a string specifying the name the query
lookupKey a string specifying the qualified name of a lookup field (foreign key) relative to
the query specified by queryName
Details

When getQueryDetails returns non-NA values for the lookupQueryName, the getLookupDetails
function can be called to enumerate the fields from the query referenced by the lookup. These
lookup fields can be added to the colSelect list of selectRows.

Value

The available schemas are returned as a data frame, with the same columns as detailed in 1abkey.getQueryDetails

Author(s)

Peter Hussey, peter @labkey.com

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey. insertRows,
labkey.importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueries, labkey.getQueryViews,
labkey.getQueryDetails, labkey.getDefaultViewDetails

Examples

Not run:

Details of fields of a query referenced by a lookup field
library(Rlabkey)

lul <- labkey.getLookupDetails(
baseUrl="http://localhost:8080/labkey"”,
folderPath="/apisamples”,
schemaName="1ists",
queryName="Al1Types",
lookupKey="Category”

)

lul

When a lookup field points to a query object that itself has a lookup
field, use a compound fieldkey consisting of the lookup fields from
the base query object to the target lookupDetails, separated by

forward slashes

46

labkey.getModuleProperty

lu2<- labkey.getlLookupDetails(
baseUrl="http://localhost:8080/1labkey",
folderPath="/apisamples”,
schemaName="1ists",
queryName="Al1Types",
lookupKey="Category/Group”

)
lu2

Now select a result set containing a field from the base query, a
field from the 1st level of lookup, and one from the 2nd

rows<- labkey.selectRows(
baseUrl="http://localhost:8080/labkey"”,
folderPath="/apisamples”,
schemaName="1ists",
queryName="Al1Types",
colSelect=c("DisplayFld"”, "Category/Category”, "Category/Group/GroupName"),
colFilter = makeFilter(c("Category/Group/GroupName",

"NOT_EQUALS", "TypeRange")), maxRows=20
)

rows

End(Not run)

labkey.getModuleProperty

Get effective module property value

Description

Get a specific effective module property value for folder

Usage

labkey.getModuleProperty(baseUrl=NULL, folderPath, moduleName, propName)

Arguments
baseUrl server location including context path, if any. e.g. https://www.labkey.org/
folderPath a string specifying the folderPath
moduleName name of the module

propName The module property name

labkey.getQueries 47

Examples

Not run:

library(Rlabkey)

labkey.getModuleProperty(baseUrl="http://labkey/", folderPath="flowProject"”,
moduleName="flow", propName="ExportToScriptFormat")

End(Not run)

labkey.getQueries Retrieve a list of available queries for a specified LabKey schema

Description

Fetch a list of queries available to the current user within in a specified folder context and specified
schema

Usage

labkey.getQueries(baseUrl, folderPath, schemaName)

Arguments
baseUrl a string specifying the address of the LabKey Server, including the context root
folderPath a string specifying the hierarchy of folders to the current folder (container) for
the operation, starting with the project folder
schemaName a string specifying the schema name in which the query object is defined
Details

“Query” is the LabKey term for a data container that acts like a relational table within LabKey
Server. Queries include lists, assay data results, user-defined queries, built-in SQL tables in individ-
ual modules, and tables or table-like objects in external schemas, For a specific queriable object, the
data that is visible depends on the current user’s permissions in a given folder. Function arguments
identify the location of the server and the folder path.

Value

The available queries are returned as a three-column data frame containing one row for each field
for each query in the specified schema. The three columns are

queryName the name of the query object, repeated once for every field defined as output of
the query.

fieldName the name of a query output field

48 labkey.getQueryDetails

caption the caption of the named field as shown in the column header of a data grid, also
known as a label

Author(s)

Peter Hussey, peter@labkey.com

References

http://www.omegahat.net/RCurl/,
https://www.labkey.org/home/project-begin.view

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey.insertRows,
labkey.importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueryViews, labkey.getQueryDetails,
labkey.getDefaultViewDetails, labkey.getlLookupDetails

Examples

Not run:

List of queries in a schema
library(Rlabkey)

queriesDF <- labkey.getQueries(
baseUrl="https://www.labkey.org",
folderPath="/home",
schemaName="1ists"

)

queriesDF

End(Not run)

labkey.getQueryDetails
Retrieve detailed information on a LabKey query

Description

Fetch a list of output columns and their attributes that are avaialble from a given query

Usage

labkey.getQueryDetails(baseUrl, folderPath, schemaName, queryName)

labkey.getQueryDetails 49

Arguments
baseUrl a string specifying the address of the LabKey Server, including the context root
folderPath a string specifying the hierarchy of folders to the current folder (container) for
the operation, starting with the project folder
schemaName a string specifying the schema name in which the query object is defined
queryName a string specifying the name of the query
Details

Queries have a default output list of fields defined by the "default view" of the query. To retrieve that

set of fields with their detailed properties such as type and nullability, use labkey.getQueryDetails
function. Function arguments are the components of the url that identify the location of the server,

the folder path, the schema, and the name of the query.

The results from getQueryDetails describe the “field names” that are used to build the colSelect,
colFilter and colSort parameters to selectRows. Each column in the data frame returned from se-
lectRows corresponds to a field in the colSelect list.

There are two types of fieldNames that will be reported by the server in the output of this function.
For fields that are directly defined in the query corresponding the queryName parameter for this
function, the fieldName is simply the name assigned by the query. Because selectRows returns the
results specified by the default view, however, there may be cases where this default view incor-
porates data from other queries that have a defined 1-M relationship with the table designated by
the queryName. Such fields in related tables are referred to as “lookup” fields. Lookup fields have
multi-part names using a forward slash as the delimiter. For example, in a samples data set, if the
Participantld identifies the source of the sample, ParticipantId/CohortId/CohortName could be
a reference to a CohortName field in a Cohorts data set.

These lookup fieldNames can appear in the default view and show up in the selectRows result. If
a field from a lookup table is not in the default view, it can still be added to the output column list
of labkey.selectRows. Use the labkey.getL.ookups to discover what additional fields are available
via lookups, and then put their multipart fieldName values into the colSelect list. Lookup fields have
the semantics of a LEFT JOIN in SQL, such that every record from the target queryName appears
in the output whether or not there is a matching lookup field value.

Value
The available schemas are returned as a data frame:

queryName the name of the query, repeated n times, where n is the number of output fields
from the query

fieldName the fully qualified name of the field, relative to the specified queryName.
caption a more readable label for the data field, appears as a column header in grids
fieldKey the name part that identifies this field within its containing table, independent of

its use as a lookup target.

50 labkey.getQueryDetails

type a string specifying the field type, e.g. Text, Number, Date, Integer
isNullable TRUE if the field can be left empty (null)

isKeyField TRUE if the field is part of the primary key

isAutoIncrement

TRUE if the system will automatically assign a sequential integer in this on in-
serting a record

isVersionField TRUE if the field issued to detect changes since last read
isHidden TRUE if the field is not displayed by default
isSelectable reserved for future use.

isUserkditable reserved for future use.

isReadOnly reserved for future use

isMvEnabled reserved for future use

lookupKeyField for a field defined as a lookup the primary key column of the query referenced
by the lookup field; NA for non-lookup fields

lookupSchemaName
the schema of the query referenced by the lookup field; NA for non-lookup fields

lookupDisplayField
the field from the query referenced by the lookup field that is shown by default
in place of the lookup field; NA for non-lookup fields

lookupQueryName
the query referenced by the lookup field; NA for non-lookup fields. A non-NA
value indicates that you can use this field in a call to getLookups

lookupIsPublic reserved for future use

Author(s)

Peter Hussey, peter @labkey.com

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey.insertRows,
labkey.importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueries, labkey.getQueryViews,
labkey.getDefaultViewDetails, labkey.getlLookupDetails

labkey.getQuery Views 51

Examples

Not run:

Details of fields of a query
library(Rlabkey)

queryDF<-labkey.getQueryDetails(
baseUrl="http://localhost:8080/labkey",
folderPath="/apisamples”,
schemaName="1ists",
queryName="Al1Types")

End(Not run)

labkey.getQueryViews Retrieve a list of available named views defined on a query in a schema

Description
Fetch a list of named query views available to the current user in a specified folder context, schema
and query

Usage

labkey.getQueryViews(baseUrl, folderPath, schemaName, queryName)

Arguments
baseUrl a string specifying the address of the LabKey Server, including the context root
folderPath a string specifying the hierarchy of folders to the current folder (container) for
the operation, starting with the project folder
schemaName a string specifying the schema name in which the query object is defined
queryName a string specifying the name the query
Details

Queries have a default “view” associeated with them, and can also have any number of named
views. A named query view is created by using the “Customize View” button option on a LabKey
data grid page. Use getDefaultViewDetails to get inforation about the default (unnamed) view.

Value

The available views for a query are returned as a three-column data frame, with one row per view
output field.

52 labkey.getRequestOptions

viewName The name of the view, or NA for the default view.

fieldName The name of a field within the view, as defined in the query object to which the
field belongs

key The name of the field relative to the base query, Use this value in the colSelect

parameter of labkey.selectRows().

Author(s)

Peter Hussey, peter@labkey.com

References

https://www.labkey.org/Documentation/wiki-page.view 7name=saving Views

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey. insertRows,
labkey.importRows, labkey.deleteRows, labkey.getSchemas, labkey.getQueries, labkey.getQueryDetails,
labkey.getDefaultViewDetails, labkey.getlLookupDetails

Examples

Not run:

List of views defined for a query in a schema
library(Rlabkey)

viewsDF <- labkey.getQueryViews(
baseUrl="http://localhost:8080/1labkey",
folderPath="/apisamples”,
schemaName="1ists",
queryName="Al1Types"

)

End(Not run)

labkey.getRequestOptions

Helper function to get the HTTP request options for a specific method
type.

labkey.getSchemas 53

Description

The internal functions for labkey.get() and labkey.post() use this labkey.getRequestOptions() helper
to build up the HTTP request options for things like CSRF, CURL options, and authentication
properties. This function is also exposed for general use if you would like to make your own HTTP
request but need to use those request options as set in your session context.

Usage

labkey.getRequestOptions(method = 'GET', encoding = NULL)

Arguments

method a string specifying the HTTP method for the request options you want to get

encoding a string specifying the type of encoding to add to the header properties, defaults
to UTF-8 when NULL

Author(s)
Cory Nathe

Examples

Not run:

library(Rlabkey)
labkey.getRequestOptions()

End(Not run)

labkey.getSchemas Retrieve a list of available schemas from a labkey database

Description

Fetch a list of schemas available to the current user in a specified folder context

Usage

labkey.getSchemas(baseUrl, folderPath)

Arguments
baseUrl a string specifying the address of the LabKey Server, including the context root
folderPath a string specifying the hierarchy of folders to the current folder (container) for

the operation, starting with the project folder

54 labkey.importRows

Details

Schemas act as the name space for query objects in LabKey Server. Schemas are generatlly associ-
ated with a LabKey Server "module" that provides some specific functionality. Within a queriable
object, the specific data that is visible depends on the current user’s permissions in a given folder.
Function arguments are the components of the url that identify the location of the server and the
folder path.

Value

The available schemas are returned as a single-column data frame.

Author(s)

Peter Hussey, peter @labkey.com

References

http://www.omegahat.net/RCurl/,
https://www.labkey.org/home/project-begin.view

See Also

labkey.selectRows, makeFilter, labkey.executeSql, labkey.updateRows, labkey. insertRows,
labkey.importRows, labkey.deleteRows, labkey.getQueries, labkey.getQueryViews, labkey.getQueryDetails,
labkey.getDefaultViewDetails, labkey.getLookupDetails,

Examples

Not run:

List of schemas
library(Rlabkey)

schemasDF <- labkey.getSchemas(
baseUrl="http://localhost:8080/labkey",
folderPath="/apisamples”

)

End(Not run)

labkey. importRows Import rows of data into a LabKey Server

Description

Bulk import rows of data into the database.

labkey.importRows 55

Usage

labkey.importRows(baseUrl, folderPath,
schemaName, queryName, toImport, na)

Arguments
baseUrl a string specifying the baseUrlfor the labkey server
folderPath a string specifying the folderPath
schemaName a string specifying the schemaName for the query
queryName a string specifying the queryName
toImport a data frame containing rows of data to be imported
na (optional) the value to convert NA’s to, defaults to NULL
Details

Multiple rows of data can be imported in bulk. The toImport data frame must contain values for
each column in the dataset and must be created with the stringsAsFactors option set to FALSE.
The names of the data in the data frame must be the column names from the LabKey Server. To im-
port a value of NULL, use an empty string ("") in the data frame (regardless of the database column
type). Also, when importing data into a study dataset, the sequence number must be specified.

Value

A list is returned with named categories of command, rowsAffected, queryName, container-
Path and schemaName. The schemaName, queryName and containerPath properties contain
the same schema, query and folder path used in the request. The rowsAffected property indicates
the number of rows affected by the API action. This will typically be the same number as passed in
the request.

Author(s)
Cory Nathe

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.insertRows, labkey.updateRows,
labkey.deleteRows, labkey.query. import

Examples
Not run:
Note that users must have the necessary permissions in the database

to be able to modify data through the use of these functions
library(Rlabkey)

newrows <- data.frame(
DisplayFld="Imported from R"

56 labkey.insertRows

—_n

, RequiredText="abc"
, RequiredInt=1
, stringsAsFactors=FALSE)

newrows = newrows[rep(1:nrow(newrows),each=5),]
importedInfo <- labkey.importRows("http://localhost:8080/1labkey”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes",

toImport=newrows)

importedInfo$rowsAffected

End(Not run)

labkey.insertRows Insert new rows of data into a LabKey Server

Description

Insert new rows of data into the database.

Usage

labkey.insertRows(baseUrl, folderPath,
schemaName, queryName, tolnsert, na,
provenanceParams=NULL, options=NULL)

Arguments
baseUrl a string specifying the baseUrlfor the labkey server
folderPath a string specifying the folderPath
schemaName a string specifying the schemaName for the query
queryName a string specifying the queryName
toInsert a data frame containing rows of data to be inserted
na (optional) the value to convert NA’s to, defaults to NULL
provenanceParams

the provenance parameter object which contains the options to include as part of
a provenance recording. This is a premium feature and requires the Provenance
LabKey module to function correctly, if it is not present this parameter will be
ignored.

options (optional) a list containing options specific to the insert action of the query

labkey.insertRows 57

Details

A single row or multiple rows of data can be inserted. The toInsert data frame must contain
values for each column in the dataset and must be created with the stringsAsFactors option set
to FALSE. The names of the data in the data frame must be the column names from the LabKey
Server.To insert a value of NULL, use an empty string ("") in the data frame (regardless of the
database column type). Also, when inserting data into a study dataset, the sequence number must
be specified.

The list of valid options for each query will vary, but some common examples include:

* auditBehavior (string) : Can be used to override the audit behavior for the table the query
is acting on. The set of types include: NONE, SUMMARY, and DETAILED.

* auditUserComment (string) : Can be used to provide a comment from the user that will be
attached to certain detailed audit log records.

Value

A list is returned with named categories of command, rowsAffected, rows, queryName, contain-
erPath and schemaName. The schemaName, queryName and containerPath properties contain
the same schema, query and folder path used in the request. The rowsAffected property indicates
the number of rows affected by the API action. This will typically be the same number as passed in
the request. The rows property contains a list of row objects corresponding to the rows inserted.

Author(s)

Valerie Obenchain

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey. importRows, labkey.updateRows,
labkey.deleteRows, labkey.moveRows,

labkey.query.import, labkey.provenance.createProvenanceParams, labkey.provenance.startRecording,
labkey.provenance.addRecordingStep, labkey.provenance.stopRecording

Examples

Not run:

Insert, update and delete

Note that users must have the necessary permissions in the database
to be able to modify data through the use of these functions

library(Rlabkey)

newrow <- data.frame(
DisplayFld="Inserted from R"
, TextFld="how its done”

, IntFld= 98

, DoubleFld = 12.345

, DateTimeFld = "@3/01/2010"
, BooleanFld= FALSE

labkey.insertRows

, LongTextFld = "Four score and seven years ago"
, AttachmentFld = NA #attachment fields not supported
, RequiredText = "Veni, vidi, vici”

, RequiredInt = @
, Category = "LOOKUP2"
, stringsAsFactors=FALSE)

insertedRow <- labkey.insertRows("http://localhost:8080/1labkey”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes”,
toInsert=newrow, options=list(auditBehavior="DETAILED",
auditUserComment="testing audit comment for insert”))

newRowId <- insertedRow$rows[[1]]$RowId

selectedRow<-labkey.selectRows("http://localhost:8080/1labkey”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes”,
colFilter=makeFilter(c("RowId”, "EQUALS", newRowId)))

updaterow=data.frame(

RowId=newRowId

, DisplayFld="Updated from R"

, TextFld="how to update”

, IntFld= 777

, stringsAsFactors=FALSE)

updatedRow <- labkey.updateRows("http://localhost:8080/labkey”,
folderPath="/apisamples”, schemaName="lists", queryName="AllTypes",
toUpdate=updaterow, options=list(auditBehavior="DETAILED",
auditUserComment="testing audit comment for update”))

selectedRow<-labkey.selectRows("http://localhost:8080/1labkey”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes",
colFilter=makeFilter(c("RowId”, "EQUALS", newRowId)))

deleterow <- data.frame(RowId=newRowId, stringsAsFactors=FALSE)

result <- labkey.deleteRows(baseUrl="http://localhost:8080/labkey"”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes",
toDelete=deleterow)

Example of creating a provenance run with an initial step with material inputs, a second step

with provenance mapping to link existing samples with newly inserted samples, and a final step

with a data output

##

mi <- data.frame(lsid=c("urn:1lsid:labkey.com:Sample.251.MySamples:samplel”,
"urn:1lsid:labkey.com:Sample.251.MySamples:sample2"))

p <- labkey.provenance.createProvenanceParams(name="step1”, description="initial step”,
materiallnputs=mi)

ra <- labkey.provenance.startRecording(baseUrl="https://labkey.org/labkey/",
folderPath = "Provenance”, provenanceParams=p)

rows <- fromJSON(txt='[{
"name"” : "sample3”,
"protein” : "p3",
"prov:objectInputs” : [
"urn:1sid:labkey.com:Sample.251.MySamples:sample21”,
"urn:1lsid:labkey.com:Sample.251.MySamples:sample22”

labkey.makeRemotePath 59

It
"name” : "sample4",
"protein” : "p4",
"prov:objectInputs” : [
"urn:1lsid:labkey.com:Sample.251.MySamples:sample21”,
"urn:1lsid:labkey.com:Sample.251.MySamples:sample22”

}
i)

labkey.insertRows(baseUrl="https://labkey.org/labkey/", folderPath = "Provenance”,
schemaName="samples"”, queryName="MySamples"”, tolInsert=rows,
provenanceParams=1labkey.provenance.createProvenanceParams(name="query step",
recordingId=ra$recordingId))
labkey.provenance. stopRecording(baseUrl="https://labkey.org/labkey/", folderPath = "Provenance”,
provenanceParams=1labkey.provenance.createProvenanceParams(name="final step",
recordingIld=ra$recordingId, dataOutputs=do))

End(Not run)

labkey.makeRemotePath Build a file path to data on a remote machine

Description

Replaces a local root with a remote root given a full path

Usage

labkey.makeRemotePath(localRoot, remoteRoot, fullPath)

Arguments
localRoot local root part of the fullPath
remoteRoot remote root that will replace the local root of the fullPath
fullPath the full path to make remote

Details

A helper function to translate a file path on a LabKey web server to a path accessible by a remote
machine. For example, if an R script is run on an R server that is a different machine than the
LabKey server and that script references data files on the LabKey server, a remote path needs to be
created to correctly reference these files. The local and remote roots of the data pipeline are included
by LabKey in the prolog of an R View report script. Note that the data pipeline root references
are only included if an administrator has enabled the Rserve Reports experimental feature on the
LabKey server. If the remoteRoot is empty or the fullPath does not contain the localRoot then the
fullPath is returned without its root being changed.

60 labkey.moveRows

Value

A character array containing the full path.

Author(s)

Dax Hawkins

Examples

library(Rlabkey)

labkey.pipeline.root <- "c:/data/fcs”
labkey.remote.pipeline.root <- "/volumes/fcs"
fcsFile <- "c:/data/fcs/runA/aaa.fcs”

returns "/volumes/fcs/runA/aaa.fcs
labkey.makeRemotePath(
localRoot=labkey.pipeline.root,
remoteRoot=1abkey.remote.pipeline.root,
fullPath=fcsFile);

labkey.moveRows Move rows of data from a LabKey database

Description

Specify rows of data to be moved from the LabKey Server

Usage

labkey.moveRows(baseUrl, folderPath, targetFolderPath,
schemaName, queryName, toMove, options=NULL)

Arguments
baseUrl a string specifying the baseUrlfor LabKey server
folderPath a string specifying the folderPath for the source container of the rows
targetFolderPath
a string specifying the targetFolderPath where the rows should be moved
schemaName a string specifying the schemaName for the query
queryName a string specifying the queryName
toMove a data frame containing a single column of data containing the data identifiers

of the rows to be moved

options (optional) a list containing options specific to the move action of the query

labkey.moveRows 61

Details

Move a set of rows from the source container to a target container for a table. Note that this is not
implemented for all tables.

The list of valid options for each query will vary, but some common examples include:

* auditBehavior (string) : Can be used to override the audit behavior for the table the query
is acting on. The set of types include: NONE, SUMMARY, and DETAILED.

* auditUserComment (string) : Can be used to provide a comment from the user that will be
attached to certain detailed audit log records.

Value

A list is returned with named categories of command, rowsAffected, schemaName, queryName,
containerPath and updateCounts. The containerPath will be the target container path where
the rows were moved. The rowsAffected property indicates the number of rows affected by the
API action. This will typically be the same number as passed in the request. The updateCounts
property is a list of the number of items moved for various related items.

Author(s)
Cory Nathe

See Also

labkey.deleteRows,
labkey. importRows,
labkey.importRows,
labkey.updateRows,

Examples

Not run:

Note that users must have the necessary permissions in the LabKey Server
to be able to modify data through the use of these functions
library(Rlabkey)

newrow <- data.frame(
DisplayFld="Inserted from R"
, IntFld= 98

, DateTimeFld = "03/01/2010"
, stringsAsFactors=FALSE)

insertedRow <- labkey.insertRows("http://localhost:808@/1labkey”,
folderPath="/apisamples”, schemaName="samples",
queryName="Blood", tolInsert=newrow)

newRowId <- insertedRow$rows[[1]1]$RowId

result <- labkey.moveRows(baseUrl="http://localhost:8080/labkey”,
folderPath="/apisamples”, folderPath="/apisamples/subA", schemaName="samples"”,

62 labkey.pipeline.getFileStatus

queryName="Blood"”, toMove=data.frame(RowId=c(newRowId)),
options = list(auditUserComment="testing comment from API call"”, auditBehavior="DETAILED"))
result

End(Not run)

labkey.pipeline.getFileStatus
Gets the protocol file status for a pipeline

Description

Gets the status of analysis using a particular protocol for a particular pipeline.

Usage

labkey.pipeline.getFileStatus(baseUrl=NULL, folderPath,
taskId, protocolName, path, files)

Arguments

baseUrl a string specifying the baseUrl for the LabKey server

folderPath a string specifying the folderPath

taskId a string identifier for the pipeline

protocolName a string name of the analysis protocol

path a string for the relative path from the folder’s pipeline root

files a list of names of the files within the subdirectory described by the path property
Value

The response will contain a list of file status objects, i.e. files, each of which will have the following
properties:

e "name": name of the file

e "status": status of the file

The response will also include the name of the action that would be performed on the files if the
user initiated processing, i.e. submitType.

Author(s)
Cory Nathe

See Also

labkey.pipeline.getPipelineContainer, labkey.pipeline.getProtocols, labkey.pipeline.startAnalysis

labkey.pipeline.getPipelineContainer 63

Examples

Not run:

labkey.pipeline.getFileStatus(
baseUrl="http://labkey/",
folderPath="home",
taskId = "pipelinetest:pipeline:r-copy”,
path = "r-copy”,
protocolName = "Test protocol name”,
files = list("sample.txt”, "result.txt")

End(Not run)

labkey.pipeline.getPipelineContainer
Gets the container in which the pipeline is defined

Description
Gets the container in which the pipeline for this container is defined. This may be the container in
which the request was made, or a parent container if the pipeline was defined there.

Usage

labkey.pipeline.getPipelineContainer(baseUrl=NULL, folderPath)

Arguments
baseUrl a string specifying the baseUrl for the LabKey server
folderPath a string specifying the folderPath

Value

The response will contain the following:

* "containerPath": The container path in which the pipeline is defined. If no pipeline has been
defined in this container hierarchy, then the value of this property will be null.

* "webDavURL": The WebDavURL for the pipeline root.

Author(s)
Cory Nathe

See Also

labkey.pipeline.getProtocols, labkey.pipeline.getFileStatus, labkey.pipeline.startAnalysis

64 labkey.pipeline.getProtocols
Examples

Not run:

labkey.pipeline.getPipelineContainer(

baseUrl="http://labkey/",
folderPath="home"

End(Not run)

labkey.pipeline.getProtocols
Gets the protocols that have been saved for a particular pipeline

Description

Gets the protocols that have been saved for a particular pipeline.

Usage

labkey.pipeline.getProtocols(baseUrl=NULL, folderPath,
taskId, path, includeWorkbooks = FALSE)

Arguments
baseUrl a string specifying the baseUrl for the LabKey server
folderPath a string specifying the folderPath
taskId a string identifier for the pipeline
path a string for the relative path from the folder’s pipeline root
includeWorkbooks
(optional) If true, protocols from workbooks under the selected container will
also be included. Defaults to FALSE.
Value

The response will contain a list of protocol objects, each of which will have the following properties:

* "name": Name of the saved protocol.

* "description": Description of the saved protocol, if provided.

» "xmlParameters": Bioml representation of the parameters defined by this protocol.
* "jsonParameters": A list representation of the parameters defined by this protocol.
* "containerPath": The container path where this protocol was saved.

The response will also include a defaultProtocolName property representing which of the protocol
names is the default.

labkey.pipeline.startAnalysis 65

Author(s)
Cory Nathe

See Also

labkey.pipeline.getPipelineContainer, labkey.pipeline.getFileStatus, labkey.pipeline.startAnalysis

Examples

Not run:

labkey.pipeline.getProtocols(
baseUrl="http://labkey/",
folderPath="home",
taskId = "pipelinetest:pipeline:r-copy”,
path = "r-copy”,
includeWorkbooks = FALSE

End(Not run)

labkey.pipeline.startAnalysis
Start an analysis of a set of files using a pipeline

Description

Starts analysis of a set of files using a particular protocol definition with a particular pipeline.

Usage

labkey.pipeline.startAnalysis(baseUrl=NULL, folderPath,
taskId, protocolName, path, files, filelds = list(),
pipelineDescription = NULL, protocolDescription = NULL,
jsonParameters = NULL, xmlParameters = NULL,
allowNonExistentFiles = FALSE, saveProtocol = TRUE)

Arguments
baseUrl a string specifying the baseUrl for the LabKey server
folderPath a string specifying the folderPath
taskId a string identifier for the pipeline

protocolName a string name of the analysis protocol
path a string for the relative path from the folder’s pipeline root

files a list of names of the files within the subdirectory described by the path property

66 labkey.pipeline.startAnalysis

filelds (optional) list of data IDs of files to be used as inputs for this pipeline. These
correspond to the rowlds from the table ext.data. They do not need to be located
within the file path provided. The user does need read access to the container
associated with each file.

pipelineDescription
(optional) a string description displayed in the pipeline

protocolDescription
(optional) a string description of the analysis protocol

jsonParameters (optional) a list of key / value pairs, or a JSON string representation, for the
protocol description. Not allowed if a protocol with the same name has already
been saved. If no protocol with the same name exists, either this property or
xmlParameters must be specified.

xmlParameters (optional) a string XML representation of the protocol description. Not allowed
if a protocol with the same name has already been saved. If no protocol with the
same name exists, either this property or jsonParameters must be specified.

allowNonExistentFiles
(optional) a boolean indicating if the pipeline should allow non existent files.
Defaults to false.

saveProtocol (optional) a boolean indicating if no protocol with this name already exists,
whether or not to save this protocol definition for future use. Defaults to true.

Value

On success, the response will contain the jobGUID string value for the newly created pipeline job.

Author(s)
Cory Nathe

See Also

labkey.pipeline.getPipelineContainer, labkey.pipeline.getProtocols, labkey.pipeline.getFileStatus

Examples

Not run:

labkey.pipeline.startAnalysis(
baseUrl="http://labkey/",
folderPath="home",
taskId = "pipelinetest:pipeline:r-copy”,
protocolName = "Test protocol name”,
path="r-copy”,
files = list("sample.txt”, "result.txt"),
protocolDescription = "Test protocol description”,
pipelineDescription = "test pipeline description”,
jsonParameters = list(assay = "Test assay name”, comment = "Test assay comment"),
saveProtocol = TRUE

labkey.provenance.addRecordingStep 67

End(Not run)

labkey.provenance.addRecordingStep
Add a step to a provenance recording

Description

Function to add a step to a previously created provenance recording session. Note: this function is
in beta and not yet final, changes should be expected so exercise caution when using it.

Usage

labkey.provenance.addRecordingStep(baseUrl=NULL, folderPath, provenanceParams = NULL)

Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath
provenanceParams
the provenance parameter object which contains the options to include in this
recording step
Details

Function to add a step to a previously created provenance recording. The recording ID that was
obtained from a previous startRecording function call must be passed into the provenanceParams
config. This is a premium feature and requires the Provenance LabKey module to function correctly.

Value
The generated recording ID which can be used in subsequent steps (or queries that support prove-
nance).

Author(s)

Karl Lum

See Also

labkey.provenance.createProvenanceParams, labkey.provenance.startRecording, labkey.provenance. stopRec

68 labkey.provenance.createProvenanceParams

Examples

Not run:

start a provenance recording and add a recording step
library(Rlabkey)

mi <- data.frame(lsid=c("urn:1lsid:labkey.com:Sample.251.MySamples:samplel”,
"urn:1lsid:labkey.com:Sample.251.MySamples:sample2"))

p <- labkey.provenance.createProvenanceParams(name="stepl1"”, description="initial step”,
materiallnputs=mi)
r <- labkey.provenance.startRecording(baseUrl="https://labkey.org/labkey/",
folderPath = "Provenance”, provenanceParams=p)
do <- data.frame(
lsid="urn:1sid:labkey.com:AssayRunTSVData.Folder-251:12c70994-7ce5-1038-82f0-9c1487dbd334")

labkey.provenance.addRecordingStep(baseUrl="https://labkey.org/labkey/", folderPath = "Provenance”,
provenanceParams=labkey.provenance.createProvenanceParams(name="additional step”,

recordingId=r$recordingId, dataOutputs=do))

End(Not run)

labkey.provenance.createProvenanceParams
Create provenance parameter object

Description

Helper function to create the data structure that can be used in provenance related APIs. Note: this
function is in beta and not yet final, changes should be expected so exercise caution when using it.

Usage

labkey.provenance.createProvenanceParams(recordingId=NULL, name=NULL, description=NULL,
runName=NULL, materialInputs=NULL, materialOutputs=NULL, dataInputs=NULL,
dataOutputs=NULL, inputObjectUriProperty=NULL, outputObjectUriProperty=NULL,
objectInputs=NULL, objectOutputs=NULL, provenanceMap=NULL,
params=NULL, properties=NULL)

Arguments
recordingId (optional) the recording ID to associate with other steps using the same ID
name (optional) the name of this provenance step
description (optional) the description of this provenance step
runName (optional) the name of the provenance run, if none specified a default run name

will be created

labkey.provenance.createProvenanceParams 69

materialInputs (optional) the list of materials (samples) to be used as the provenance run input.
The data structure should be a dataframe with the column name describing the
data type (Isid, id)

materialOutputs
(optional) the list of materials (samples) to be used as the provenance run output.
The data structure should be a dataframe with the column name describing the
data type (Isid, id)

dataInputs (optional) the list of data inputs to be used for the run provenance map

dataOutputs (optional) the list of data outputs to be used for the run provenance map
inputObjectUriProperty

(optional) for incoming data rows, the column name to interpret as the input to
the provenance map. Defaults to : *prov:objectlnputs’

outputObjectUriProperty
(optional) for provenance mapping, the column name to interpret as the output
to the provenance map. Defaults to : ’Isid’

objectInputs (optional) the list of object inputs to be used for the run provenance map
objectOutputs (optional) the list of object outputs to be used for the run provenance map

provenanceMap (optional) the provenance map to be used directly for the run step. The data
structure should be a dataframe with the column names of from’ and ’to’ to
indicate which sides of the mapping the identifiers refer to

params (optional) the list of initial run step parameters. Parameters supported in the
parameter list such as name, description, runName, can be specified in this data
structure as well as other run step parameters not available in the parameter list

properties (optional) custom property values to associate with the run step. The data struc-
ture should be a dataframe with the property URIs as column names and the
column value to associate with the property. The Vocabulary domain and fields
must have been created prior to using

Details

This function can be used to generate a provenance parameter object which can then be used as an
argument in the other provenance related functions to assemble provenance runs. This is a premium
feature and requires the Provenance LabKey module to function correctly.

Value

A list containing elements describing the passed in provenance parameters.

Author(s)
Karl Lum

See Also

labkey.provenance.startRecording, labkey.provenance.addRecordingStep, labkey.provenance.stopRecording

70 labkey.provenance.startRecording

Examples

Not run:

create provenance params with material inputs and data outputs
library(Rlabkey)

mi <- data.frame(lsid=c("urn:lsid:labkey.com:Sample.251.MySamples:samplel”,
"urn:1lsid:labkey.com:Sample.251.MySamples:sample2"))
do <- data.frame(
lsid="urn:1sid:labkey.com:AssayRunTSVData.Folder-251:12c70994-7ce5-1038-82f0-9c1487dbd334")

p <- labkey.provenance.createProvenanceParams(name="stepl1"”, description="initial step”,
materialInputs=mi, dataOutputs=do)

create provenance params with object inputs (from an assay run)

0oi <- labkey.selectRows(baseUrl="https://labkey.org/labkey/", folderPath = "Provenance”,
schemaName="assay.General.titer",
queryName="Data",
colSelect= c("LSID"),
colFilter=makeFilter(c("Run/RowId"”,"EQUAL",6"253")))

mi <- data.frame(lsid=c("urn:1lsid:labkey.com:Sample.251.MySamples:samplel”,
"urn:1lsid:labkey.com:Sample.251.MySamples:sample2"))

p <- labkey.provenance.createProvenanceParams(name="step1"”, description="initial step”,
objectInputs=0i[["LSID"]], materialInputs=mi)

add run step properties and custom properties to the provenance params

props <- data.frame(
"urn:1sid:labkey.com:Vocabulary.Folder-996:ProvenanceDomain#version”=c(22.3),

"urn:1lsid:labkey.com:Vocabulary.Folder-996:ProvenanceDomain#instrumentName"”=c("NAb reader"),

check.names=FALSE)

params <- list()

params$comments <- "adding additional step properties”

params$activityDate <- "2022-3-21"

params$startTime <- "2022-3-21 12:35:00"

params$endTime <- "2022-3-22 02:15:30"

params$recordCount <- 2

p <- labkey.provenance.createProvenanceParams(recordingId=ra$recordingId, name="step2",
properties=props, params=params)

End(Not run)

labkey.provenance.startRecording
Start a provenance recording

labkey.provenance.startRecording 71

Description

Function to start a provenance recording session, if successful a provenance recording ID is returned
which can be used to add additional steps to the provenance run. Note: this function is in beta and
not yet final, changes should be expected so exercise caution when using it.

Usage

labkey.provenance.startRecording(baseUrl1=NULL, folderPath, provenanceParams = NULL)

Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath
provenanceParams
the provenance parameter object which contains the options to include in this
recording step
Details

Function to start a provenance recording. A provenance recording can contain an arbitrary number
of steps to create a provenance run, but stopRecording must be called to finish the recording and
create the run. If successful this will return a recording ID which is needed for subsequent steps.
This is a premium feature and requires the Provenance LabKey module to function correctly.
Value
The generated recording ID which can be used in subsequent steps (or queries that support prove-
nance).
Author(s)
Karl Lum

See Also

labkey.provenance.createProvenanceParams, labkey.provenance.addRecordingStep, labkey.provenance. stopR

Examples

Not run:

create provenance params with material inputs and data outputs and start a recording
library(Rlabkey)

mi <- data.frame(lsid=c("urn:1lsid:labkey.com:Sample.251.MySamples:samplel”,
"urn:1sid:labkey.com:Sample.251.MySamples:sample2"))
do <- data.frame(
lsid="urn:1sid:labkey.com:AssayRunTSVData.Folder-251:12c70994-7ce5-1038-82f0-9c1487dbd334")

p <- labkey.provenance.createProvenanceParams(name="stepl1"”, description="initial step”,

72 labkey.provenance.stopRecording

materialInputs=mi, dataOutputs=do)
labkey.provenance.startRecording(baseUrl="https://labkey.org/labkey/",
folderPath = "Provenance”, provenanceParams=p)

End(Not run)

labkey.provenance. stopRecording
Stop a provenance recording

Description

Function to end a provenance recording and create and save the provenance run on the server. Note:
this function is in beta and not yet final, changes should be expected so exercise caution when using
it.

Usage

labkey.provenance.stopRecording(baseUrl=NULL, folderPath, provenanceParams = NULL)

Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath
provenanceParams
the provenance parameter object which contains the options to include in this
recording step, including the recording ID
Details

Function to stop the provenance recording associated with the recording ID, this will create a prove-
nance run using all the steps (with inputs and outputs) associated with the recording ID. The record-
ing ID that was obtained from a previous startRecording function call must be passed into the
provenanceParams config. This is a premium feature and requires the Provenance LabKey module
to function correctly.

Value

The serialized provenance run that was created.

Author(s)
Karl Lum

See Also

labkey.provenance.createProvenanceParams, labkey.provenance.startRecording, labkey.provenance. addRecol

labkey.query.import 73

Examples

Not run:
library(Rlabkey)

object inputs (from an assay run) and material inputs

#H#

0oi <- labkey.selectRows(baseUrl="https://labkey.org/labkey/", folderPath = "Provenance”,
schemaName="assay.General.titer",
queryName="Data",
colSelect= c("LSID"),
colFilter=makeFilter(c("Run/RowId"”,"EQUAL",6"253")))

mi <- data.frame(lsid=c("urn:lsid:labkey.com:Sample.251.MySamples:samplel”,
"urn:1sid:labkey.com:Sample.251.MySamples:sample2"))

p <- labkey.provenance.createProvenanceParams(name="stepl1"”, description="initial step”,
objectInputs=0i[["LSID"]], materialInputs=mi)
r <- labkey.provenance.startRecording(baseUrl="https://labkey.org/labkey/",

folderPath = "Provenance"”, provenanceParams=p)
run <- labkey.provenance.stopRecording(baseUrl="https://labkey.org/labkey/",
folderPath = "Provenance”,

provenanceParams=labkey.provenance.createProvenanceParams(name="final step”,
recordingId=r$recordingld))

End(Not run)

labkey.query.import Bulk import an R data frame into a LabKey Server table using file
import.

Description

Bulk import an R data frame into a LabKey Server table using file import.

Usage

labkey.query.import(baseUrl, folderPath,
schemaName, queryName, toImport, options = NULL)

Arguments
baseUrl a string specifying the baseUrlfor the labkey server
folderPath a string specifying the folderPath
schemaName a string specifying the schemaName for the query
queryName a string specifying the queryName
toImport a data frame containing rows of data to be imported

options (optional) a list containing options specific to the import action of the query

74

Details

labkey.query.import

This command mimics the "Import bulk data" option that you see in the LabKey server Ul for a ta-
ble/query. It takes the passed in toImport data frame and writes it to a temp file to be posted to the
import action for the given LabKey query. It is very similar to the labkey.importRows command
but will be much more performant.

Multiple rows of data can be imported in bulk using the toImport data frame. The names of
the data in the data frame must be the column names from the LabKey Server.

LabKey data types support different import options. The list of valid options for each query will
vary, but some common examples include:

Value

insertOption (string) : Whether the import action should be done as an insert, creating
new rows for each provided row of the data frame, or a merge. When merging during import,
any data you provide for the rows representing records that already exist will replace the
previous values. Note that when updating an existing record, you only need to provide the
columns you wish to update, existing data for other columns will be left as is. Available
options are "INSERT" and "MERGE". Defaults to "INSERT".

auditBehavior (string) : Set the level of auditing details for this import action. Available
options are "SUMMARY" and "DETAILED". SUMMARY - Audit log reflects that a change
was made, but does not mention the nature of the change. DETAILED - Provides full details
on what change was made, including values before and after the change. Defaults to the setting
as specified by the LabKey query.

importLookupByAlternateKey (boolean) : Allows lookup target rows to be resolved by
values rather than the target’s primary key. This option will only be available for lookups that
are configured with unique column information. Defaults to FALSE.

A list is returned with the row count for the number of affected rows. If options are provided,
additional details may be included in the response object related to those options.

Author(s)

Cory Nathe

See Also

labkey.insertRows, labkey.updateRows, labkey.importRows

Examples

Not run:

Note that users must have the necessary permissions in the database
to be able to modify data through the use of these functions
library(Rlabkey)

df <-

data.frame(

labkey.rstudio.initReport 75

name=c("test1”,"test2","test3"),
customInt=c(1:3),
customString=c("aaa", "bbb", "ccc")

)

importedInfo <- labkey.query.import(
"http://localhost:8080/labkey"”,
folderPath="/apisamples”, schemaName="samples"”, queryName="SampleTypel",
toImport=df, options=list(insertOption = "MERGE", auditBehavior = "DETAILED")
)

importedInfo$rowCount

End(Not run)

labkey.rstudio.initReport
Initialize a RStudio session for LabKey R report source editing

Description

LabKey-RStudio integration helper. Not intended for use outside RStudio.

Usage
labkey.rstudio.initReport(apiKey = "", baseUrl = "", folderPath,
reportEntityId, skipViewer = FALSE, skipEdit = FALSE)
Arguments
apiKey session key from your server
baseUrl server location including context path, if any. e.g. https://www.labkey.org/
folderPath a string specifying the folderPath
reportEntityId LabKey report’s entityld
skipViewer (TRUE | FALSE) TRUE to skip setting up LabKey schema viewer in RStudio
skipEdit (TRUE | FALSE) TRUE to open file in editor
Examples
Not run:
RStudio console only
library(Rlabkey)

labkey.rstudio.initReport(apiKey="abcdef@123456789abcdef@123456789",
baseUrl="http://labkey/", folderPath="home",
reportEntityId="0123456a-789b-1000-abcd-01234567abcde")

End(Not run)

76 labkey.rstudio.initSession

labkey.rstudio.initRStudio

Initialize a RStudio session for LabKey integration

Description

LabKey-RStudio integration helper. Not intended for use outside RStudio.

Usage

labkey.rstudio.initRStudio(apiKey = "", baseUrl = "", folderPath, skipViewer = FALSE)
Arguments

apiKey session key from your server

baseUrl server location including context path, if any. e.g. https://www.labkey.org/

folderPath a string specifying the folderPath

skipViewer (TRUE | FALSE) TRUE to skip setting up LabKey schema viewer in RStudio
Examples

Not run:

RStudio console only

library(Rlabkey)

labkey.rstudio.initRStudio(apiKey="abcdef@123456789abcdef@123456789",
baseUrl="http://labkey/", folderPath="home")

End(Not run)

labkey.rstudio.initSession

Initialize a RStudio session for LabKey integration using a time one
request id

Description

LabKey-RStudio integration helper. Not intended for use outside RStudio.

Usage

labkey.rstudio.initSession(requestId, baseUrl)

labkey.rstudio.isInitialized 77

Arguments

requestId A one time request id generated by LabKey server for initializing RStudio

baseUrl server location including context path, if any. e.g. https://www.labkey.org/

Examples

Not run:
RStudio console only
library(Rlabkey)

labkey.rstudio.initSession(requestId="a60228c8-9448-1036-a7c5-ab541dc15ee9",
baseUrl="http://labkey/")

End(Not run)

labkey.rstudio.isInitialized
Check valid rlabkey session

Description

LabKey-RStudio integration helper. Not intended for use outside RStudio.

Usage

labkey.rstudio.isInitialized()

Examples

Not run:

RStudio console only
library(Rlabkey)
labkey.rstudio.isInitialized()

End(Not run)

78 labkey.saveBatch

labkey.rstudio.saveReport
Update RStudio report source back to LabKey

Description

LabKey-RStudio integration helper. Not intended for use outside RStudio.

Usage

labkey.rstudio.saveReport(folderPath, reportEntityld, reportFilename,
useWarning = FALSE)

Arguments

folderPath a string specifying the folderPath
reportEntityId LabKey report’s entityld
reportFilename The filename to save

useWarning (TRUE | FALSE) TRUE to prompt user choices to save

Examples

Not run:

RStudio console only

library(Rlabkey)

labkey.rstudio.saveReport(folderPath="home",
reportEntityId="0123456a-789b-1000-abcd-01234567abcde”,
reportFilename="knitrReport.Rhtml"”, useWarning=TRUE)

End(Not run)

labkey.saveBatch Save an assay batch object to a labkey database

Description

Save an assay batch object to a labkey database

Usage

labkey.saveBatch(baseUrl, folderPath, assayName, resultDataFrame,
batchPropertyList=NULL, runPropertyList=NULL)

labkey.saveBatch 79

Arguments
baseUrl a string specifying the baseUrlfor the labkey server
folderPath a string specifying the folderPath
assayName a string specifying the name of the assay instance
resultDataFrame
a data frame containing rows of data to be inserted
batchPropertylList
a list of batch Properties
runPropertylList
a list of run Properties
Details

This function has been deprecated and will be removed in a future release, please use labkey.experiment.saveBatch
instead as it supports the newer options for saving batch objects.

To save an R data.frame an assay results sets, you must create a named assay using the "General"
assay provider. Note that saveBatch currently supports only a single run with one result set per
batch.

Value

Returns the object representation of the Assay batch.

Author(s)

Peter Hussey

References

https://www.labkey.org/Documentation/wiki-page.view 7name=createDatasetViaAssay

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.updateRows,
labkey.deleteRows, labkey.experiment.saveBatch

Examples

Not run:

Very simple example of an analysis flow: query some data, calculate
some stats, then save the calculations as an assay result set in

LabKey Server

Note this example expects to find an assay named "SimpleMeans” in
the apisamples project

library(Rlabkey)

simpledf <- labkey.selectRows(
baseUrl="http://localhost:8080/labkey"”,

80 labkey.security.createContainer

folderPath="/apisamples”,
schemaName="1ists",
queryName="Al1lTypes")

some dummy calculations to produce and example analysis result
testtable <- simpledf[,3:4]

colnames(testtable) <- c("IntFld"”, "DoubleFld")

row <- c(list("Measure”="colMeans"), colMeans(testtable, na.rm=TRUE))
results <- data.frame(row, row.names=NULL, stringsAsFactors=FALSE)
row <- c(list("Measure”="colSums"), colSums(testtable, na.rm=TRUE))
results <- rbind(results, as.vector(row))

bprops <- list(LabNotes="this is a simple demo")
bpl <- list(name=paste("Batch ", as.character(date())),properties=bprops)
rpl <- list(name=paste("”Assay Run ", as.character(date())))

assayInfo<- labkey.saveBatch(
baseUrl="http://localhost:8080/1labkey"”,
folderPath="/apisamples”,
"SimpleMeans”,

results,

batchPropertylList=bpl,
runPropertylList=rpl

)

End(Not run)

labkey.security.createContainer

Creates a new container, which may be a project, folder, or workbook,
on the server

Description
Create a new container, which may be a project, folder, or workbook, on the LabKey server with
parameters to control the containers name, title, description, and folder type.

Usage

labkey.security.createContainer(baseUrl=NULL, parentPath, name = NULL, title = NULL,
description = NULL, folderType = NULL, isWorkbook = FALSE)

Arguments
baseUrl A string specifying the baseUr1 for the labkey server.
parentPath A string specifying the parentPath for the new container.
name The name of the container, required for projects or folders.

title The title of the container, used primarily for workbooks.

labkey.security.deleteContainer 81

description The description of the container, used primarily for workbooks.
folderType The name of the folder type to be applied (ex. Study or Collaboration).
isWorkbook Whether this a workbook should be created. Defaults to false.

Details

This function allows for users with proper permissions to create a new container, which may be
a project, folder, or workbook, on the LabKey server with parameters to control the containers
name, title, description, and folder type. If the container already exists or the user does not have
permissions, an error message will be returned.

Value

Returns information about the newly created container.

Author(s)
Cory Nathe

See Also

labkey.getFolders, labkey.security.getContainers, labkey.security.deleteContainer,
labkey.security.moveContainer labkey.security.renameContainer

Examples
Not run:
library(Rlabkey)
labkey.security.createContainer(baseUrl="http://labkey/", parentPath = "/home",

name = "NewFolder”, description = "My new folder has this description”,
folderType = "Collaboration”

End(Not run)

labkey.security.deleteContainer

Deletes an existing container, which may be a project, folder, or work-
book

Description

Deletes an existing container, which may be a project, folder, or workbook, and all of its children
from the Labeky server.

82 labkey.security.getContainers

Usage
labkey.security.deleteContainer(baseUrl=NULL, folderPath)

Arguments
baseUrl A string specifying the baseUr1l for the labkey server.
folderPath A string specifying the folderPath to be deleted.
Details

This function allows for users with proper permissions to delete an existing container, which may
be a project, folder, or workbook, from the LabKey server. This will also remove all subfolders of
the container being deleted. If the container does not exist or the user does not have permissions,
an error message will be returned.

Value

Returns a success message for the container deletion action.

Author(s)
Cory Nathe

See Also

labkey.getFolders, labkey.security.getContainers, labkey.security.createContainer,
labkey.security.moveContainer labkey.security.renameContainer

Examples
Not run:

library(Rlabkey)

labkey.security.deleteContainer(baseUrl="http://labkey/", folderPath = "/home/FolderToDelete")

End(Not run)

labkey.security.getContainers
Returns information about the specified container

Description

Returns information about the specified container, including the user’s current permissions within
that container. If the includeSubfolders config option is set to true, it will also return information
about all descendants the user is allowed to see.

labkey.security.getContainers 83

Usage

labkey.security.getContainers(baseUrl=NULL, folderPath,
includeEffectivePermissions=TRUE, includeSubfolders=FALSE, depth=50,
includeChildWorkbooks=TRUE, includeStandardProperties = TRUE)

Arguments
baseUrl A string specifying the baseUrl for the labkey server.
folderPath A string specifying the folderPath.

includeEffectivePermissions
If set to false, the effective permissions for this container resource will not be
included (defaults to true).

includeSubfolders
If set to true, the entire branch of containers will be returned. If false, only the
immediate children of the starting container will be returned (defaults to false).

depth May be used to control the depth of recursion if includeSubfolders is set to true.

includeChildWorkbooks
If true, include child containers of type workbook in the response (defaults to
TRUE).

includeStandardProperties

If true, include the standard container properties like title, formats, etc. in the
response (defaults to TRUE).

Details

This function returns information about the specified container, including the user’s current per-
missions within that container. If the includeSubfolders config option is set to true, it will also
return information about all descendants the user is allowed to see. The depth of the results for the
included subfolders can be controlled with the depth parameter.

Value
The data frame containing the container properties for the current folder and subfolders, including
name, title, id, path, type, folderType, and effectivePermissions.

Author(s)

Cory Nathe

See Also

labkey.getFolders, labkey.security.createContainer, labkey.security.deleteContainer,
labkey.security.moveContainer labkey.security.renameContainer

84 labkey.security.impersonateUser

Examples

Not run:

library(Rlabkey)

labkey.security.getContainers(
baseUrl="http://labkey/", folderPath = "home",

includeEffectivePermissions = FALSE, includeSubfolders = TRUE, depth = 2,
includeChildWorkbooks = FALSE, includeStandardProperties = FALSE

End(Not run)

labkey.security.impersonateUser
Start impersonating a user

Description

For site-admins or project-admins only, start impersonating a user based on the userld or email
address.

Usage

labkey.security.impersonateUser(baseUrl=NULL, folderPath,
userId=NULL, email=NULL)

Arguments
baseUrl A string specifying the baseUr1 for the LabKey server.
folderPath A string specifying the folderPath in which to impersonate the user.
userId The id of the user to be impersonated. Either this or email is required.
email The email of the user to be impersonated. Either this or userID is required.
Details

Admins may impersonate other users to perform actions on their behalf. Site admins may imper-
sonate any user in any project. Project admins must execute this command in a project in which
they have admin permission and may impersonate only users that have access to the project.

To finish an impersonation session use labkey.security.stopImpersonating.

Value

Returns a success message based on a call to 1labkey.whoAmI.

labkey.security.moveContainer 85

Author(s)
Cory Nathe

See Also

labkey.whoAmI, labkey.security.stopImpersonating

Examples
Not run:
library(Rlabkey)
labkey.security. impersonateUser(baseUrl="http://labkey/", folderPath = "/home",

email = "reader@localhost.test”

)

End(Not run)

labkey.security.moveContainer
Moves an existing container, which may be a folder or workbook

Description

Moves an existing container, which may be a folder or workbook, to be the subfolder of another
folder and/or project on the LabKey server.

Usage

labkey.security.moveContainer(baseUrl=NULL, folderPath,
destinationParent, addAlias = TRUE)

Arguments

baseUrl A string specifying the baseUr1l for the labkey server.

folderPath A string specifying the folderPath to be moved. Additionally, the container
entity id is also valid.

destinationParent
The container path of destination parent. Additionally, the destination parent
entity id is also valid.

addAlias Add alias of current container path to container that is being moved (defaults to

true).

86 labkey.security.renameContainer

Details

This function moves an existing container, which may be a folder or workbook, to be the subfolder
of another folder and/or project on the LabKey server. Projects and the root container can not be
moved. If the target or destination container does not exist or the user does not have permissions,
an error message will be returned.

Value

Returns a success message for the container move action with the new path.

Author(s)
Cory Nathe

See Also

labkey.getFolders, labkey.security.getContainers, labkey.security.createContainer,
labkey.security.deleteContainer labkey.security.renameContainer

Examples

Not run:
library(Rlabkey)

labkey.security.moveContainer(baseUrl="http://labkey/", folderPath = "/home/FolderToMove",
destinationParent = "/OtherProject”, addAlias = TRUE
)

End(Not run)

labkey.security.renameContainer
Rename an existing container at the given container path

Description

Renames an existing container at the given container path. This action allows for updating the
container name, title, or both.

Usage

labkey.security.renameContainer(baseUrl=NULL, folderPath,
name=NULL, title=NULL, addAlias=TRUE)

labkey.security.renameContainer 87

Arguments
baseUrl A string specifying the baseUr1l for the labkey server.
folderPath A string specifying the folderPath to be renamed. Additionally, the container
entity id is also valid.
name The new container name. If not specified, the container name will not be changed.
title The new container title. If not specified, the container name will be used.
addAlias Add alias of current container path for the current container name (defaults to
true).
Details

This function renames an existing container at the given container path on the LabKey server. A
new container name and/or title must be specified. If a new name is provided but not a title, the
name will also be set as the container title.

Value

Returns a success message for the container rename action.

Author(s)

Cory Nathe

See Also

labkey.getFolders, labkey.security.getContainers, labkey.security.createContainer,
labkey.security.deleteContainer labkey.security.moveContainer

Examples
Not run:
library(Rlabkey)
labkey.security.renameContainer(baseUrl="http://labkey/", folderPath = "/home/OriginalFolder”,

name = "NewFolderName"”, title = "New Folder Title”, addAlias = TRUE
)

End(Not run)

88 labkey.security.stopImpersonating

labkey.security.stopImpersonating
Stop impersonating a user

Description

Stop impersonating a user while keeping the original user logged in.

Usage

labkey.security.stopImpersonating(baseUrl=NULL)

Arguments

baseUrl A string specifying the baseUr1 for the LabKey server.

Details

If you are currently impersonating a user in this session, you can use this function to stop the
impersonation and return back to the original user logged in.

To start an impersonation session use labkey.security.impersonateUser.

Value

Returns a success message based on a call to 1labkey.whoAmI.

Author(s)
Cory Nathe

See Also

labkey.whoAmI, labkey.security.impersonateUser

Examples

Not run:
library(Rlabkey)

labkey.security.stopImpersonating(baseUrl="http://labkey/")

End(Not run)

labkey.selectRows 89

labkey.selectRows Retrieve data from a labkey database

Description

Import full datasets or selected rows into R. The data can be sorted and filtered prior to import.

Usage

labkey.selectRows(baseUrl = NULL, folderPath, schemaName, queryName,
viewName = NULL, colSelect = NULL, maxRows = NULL,
rowOffset = NULL, colSort = NULL, colFilter = NULL,
showHidden = FALSE, colNameOpt="caption”,
containerFilter = NULL, parameters = NULL,
includeDisplayValues = FALSE, method = "POST")

Arguments
baseUrl a string specifying the baseUrlfor the labkey server
folderPath a string specifying the folderPath
schemaName a string specifying the schemaName for the query
queryName a string specifying the queryName
viewName (optional) a string specifying the viewName associated with the query. If not
specified, the default view determines the rowset returned.
colSelect (optional) a vector of strings specifying which columns of a dataset or view to
import.
* The wildcard character ("*") may also be used here to get all columns in-
cluding those not in the default view.
* If you include a column that is a lookup (foreign key) the value of the
primary key for that target will be returned.
* Use a backslash character ("/") to include non-primary key columns from a
lookup target (foreign key), e.g "LookupColumnName/targetColumn".
* When using a string to specify the colSelect set, the column names must be
separated by a comma and not include spaces between the names.
maxRows (optional) an integer specifying how many rows of data to return. If no value is
specified, all rows are returned.
rowOffset (optional) an integer specifying which row of data should be the first row in the
retrieval. If no value is specified, the retrieval starts with the first row.
colSort (optional) a string including the name of the column to sort preceded by a “+”
or “-” to indicate sort direction
colFilter (optional) a vector or array object created by the makeFilter function which

contains the column name, operator and value of the filter(s) to be applied to the
retrieved data.

90 labkey.selectRows

showHidden (optional) a logical value indicating whether or not to return data columns that
would normally be hidden from user view. Defaults to FALSE if no value pro-
vided.

colNameOpt (optional) controls the name source for the columns of the output dataframe,

with valid values of ’caption’, ’fieldname’, and 'rname’
containerFilter
(optional) Specifies the containers to include in the scope of selectRows request.
A value of NULL is equivalent to "Current". Valid values are
* "Current": Include the current folder only
* "CurrentAndSubfolders": Include the current folder and all subfolders
* "CurrentPlusProject": Include the current folder and the project that con-
tains 1t
e "CurrentAndParents": Include the current folder and its parent folders

¢ "CurrentPlusProjectAndShared": Include the current folder plus its project
plus any shared folders

* "AllFolders": Include all folders for which the user has read permission

parameters (optional) List of name/value pairs for the parameters if the SQL references
underlying queries that are parameterized. For example, parameters=c("X=1",
YYY:ZII).

includeDisplayValues

(optional) a logical value indicating if display values should be included in the
response object for lookup fields.

method (optional) HTTP method to use for the request, defaults to POST.

Details

A full dataset or any portion of a dataset can be downloaded into an R data frame using the
labkey.selectRows function. Function arguments are the components of the url that identify
the location of the data and what actions should be taken on the data prior to import (ie, sorting,
selecting particular columns or maximum number of rows, etc.).

Stored queries in LabKey Server have an associated default view and may have one or more named
views. Views determine the column set of the return data frame. View columns can be a subset or
superset of the columns of the underlying query (a subset if columns from the query are left out
of the view, and a superset if lookup columns in the underlying query are used to include columns
from related queries). Views can also include filter and sort properties that will make their result
set different from the underlying query. If no view is specified, the columns and rows returned are
determined by the default view, which may not be the same as the result rows of the underlying
query. Please see the topic on Saving Views in the LabKey online documentation.

In the returned data frame, there are three different ways to have the columns named: colNameOpt="caption’
uses the caption value, and is the default option for backward compatibility. It may be the best option
for displaying to another user, but may make scripting more difficult. colNameOpt="'fieldname’
uses the field name value, so that the data frame colnames are the same names that are used as
arguments to labkey function calls. It is the default for the new getRows session-based function.
colNameOpt="rname' transforms the field name value into valid R names by substituting an under-
score for both spaces and forward slash (/) characters and lower casing the entire name. This option
is the way a data frame is passed to a script running in a LabKey server in the R View feature of the

labkey.selectRows 91

data grid. If you are writing scripts for running in an R view on the server, or if you prefer to work
with legal r names in the returned grid, this option may be useful.

For backward compatibility, column names returned by 1abkey.executeSql and labkey.selectRows
are field captions by default. The getRows function has the same colNameOpt parameter but de-
faults to field names instead of captions.

Value

The requested data are returned in a data frame with stringsAsFactors set to FALSE. Column names
are set as determined by the colNameOpt parameter.

Author(s)

Valerie Obenchain

References

https://www.labkey.org/Documentation/wiki-page.view ?name=saving Views

See Also

makeFilter, labkey.executeSql, labkey.updateRows, labkey.insertRows, labkey.importRows,
labkey.deleteRows, labkey.getSchemas, labkey.getQueries, labkey.getQueryViews, labkey.getQueryDetails,
labkey.getDefaultViewDetails, labkey.getlLookupDetails

Examples

Not run:

select from a list named AllTypes
library(Rlabkey)

rows <- labkey.selectRows(
baseUrl="http://localhost:8080/1labkey",
folderPath="/apisamples”,
schemaName="1ists",
queryName="Al1lTypes")

select from a view on that list

viewrows <- labkey.selectRows(baseUrl="http://localhost:8080/labkey",
folderPath="/apisamples”, schemaName="Lists"”, queryName="AllTypes",
viewName="rowbyrow")

select a subset of columns

colSelect=c("TextFld", "IntFld")

subsetcols <- labkey.selectRows(baseUrl="http://localhost:8080/labkey”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes",
colSelect=colSelect)

including columns from a lookup (foreign key) field
lookupcols <- labkey.selectRows(baseUrl="http://localhost:8080/labkey”,

92 labkey.setCurlOptions

folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes",
colSelect="TextFld, IntFld, IntF1d/LookupValue")

End(Not run)

labkey.setCurlOptions Modify the current set of Curl options that are being used in the exist-
ing session

Description

Rlabkey uses the package httr to connect to the LabKey Server.

Arguments

options args a variable list of arguments to set the RCurl options

ssl_verifyhost check the existence of a common name and also verify that it matches the host-
name provided

ssl_verifypeer specifies whether curl will verify the peer’s certificate
followlocation specify is curl should follow any location header that is sent in the HTTP request

sslversion the SSL version to use

Details

This topic explains how to configure Rlabkey to work with a LabKey Server running SSL.

Rlabkey uses the package httr to connect to the LabKey Server. On Windows, the httr package is
not configured for SSL by default. In order to connect to a HTTPS enabled LabKey Server, you
will need to perform the following steps:

1. Create or download a "ca-bundle" file.

We recommend using ca-bundle file that is published by Mozilla. See http://curl.haxx.se/docs/caextract.html.
You have two options:

Download the ca-bundle.crt file from the link named "HTTPS from github:" on http://curl.haxx.se/docs/caextract.html
Create your own ca-bundle.crt file using the instructions provided on http://curl.haxx.se/docs/caextract.html

2. Copy the ca-bundle.crt file to a location on your hard-drive.
If you will be the only person using the Rlabkey package on your computer, we recommend that you

create a directory named ‘labkey* in your home directory
copy the ca-bundle.crt into the ‘labkey* directory

labkey.setDebugMode 93

If you are installing this file on a server where multiple users will use may use the Rlabkey package,
we recommend that you create a directory named ‘c:labkey*

copy the ca-bundle.crt into the ‘c:labkey* directory

3. Create a new Environment variable named ‘RLABKEY_CAINFO_FILE*

On Windows 7, Windows Server 2008 and earlier

Select Computer from the Start menu.

Choose System Properties from the context menu.

Click Advanced system settings > Advanced tab.

Click on Environment Variables.

Under System Variables click on the new button.

For Variable Name: enter RLABKEY_CAINFO_FILE

For Variable Value: enter the path of the ca-bundle.crt you created above.
Hit the Ok buttons to close all the windows.

On Windows 8, Windows 2012 and above

Drag the Mouse pointer to the Right bottom corner of the screen.

Click on the Search icon and type: Control Panel.

Click on -> Control Panel -> System and Security.

Click on System -> Advanced system settings > Advanced tab.

In the System Properties Window, click on Environment Variables.
Under System Variables click on the new button.

For Variable Name: enter RLABKEY_CAINFO_FILE

For Variable Value: enter the path of the ca-bundle.crt you created above.
Hit the Ok buttons to close all the windows.

Now you can start R and begin working.

This command can also be used to provide an alternate location / path to your . netrc file. Example:
labkey.setCurlOptions(NETRC_FILE = '/path/to/alternate/_netrc')

labkey. setDebugMode Helper function to enable/disable debug mode.

Description

When debug mode is enabled, the GET/POST calls with output information about the request being
made and will output a raw string version of the response object.

Usage

labkey. setDebugMode (debug = FALSE)

94 labkey.setDefaults

Arguments

debug a boolean specifying if debug mode is enabled or disabled

Author(s)

Cory Nathe

Examples

Not run:

library(Rlabkey)
labkey.setDebugMode (TRUE)
labkey.executeSql(
baseUrl="http://localhost:8080/labkey”,
folderPath="/home",
schemaName="core",
sql = "select * from containers”)

End(Not run)

labkey.setDefaults Set the default parameters used for all http or https requests

Description

Use this function to set the default baseUrl and authentication parameters as package environment
variables to be used for all http or https requests. You can also use labkey.setDefaults() without any
parameters to reset/clear these settings.

Usage
labkey.setDefaults(apiKey="", baseUrl="", email="", password="")
Arguments
apiKey api or session key from your server
baseUrl server location including context path, if any. e.g. https://www.labkey.org/
email user email address

password user password

labkey.setDefaults 95

Details

An API key can be used to authorize Rlabkey functions that access secure content on LabKey
Server. Using an API key avoids copying and storing credentials on the client machine. An API
key can be revoked and set to expire. It also acts as a credential for those who sign in using a single
sign-on authentication mechanism such as CAS or SAML.

A site administrator must first enable the use of API keys on that LabKey Server. Once enabled, any
logged in user can generate an API key by clicking their display name (upper right) and selecting
"External Tool Access". The API Key page creates and displays keys that can be copied and pasted
into a labkey.setDefaults() statement to give an Rlabkey session the permissions of the correspond-
ing user.

If an API key is not provided, you can also use this function for basic authentication via email and
password. Note that both email and password must be set via a labkey.setDefaults() call. If an API
key is also set, that will be given preference and the email/password will not be used for authenti-
cation.

On servers that enable them, a session key can be used in place of an API key. A session key ties all
Rlabkey access to a user’s current browser session, which means the code runs in the same context
as the browser (e.g. same user, same authorizations, same declared terms of use and PHI level, same
impersonation state, etc.). Session keys can be useful in certain compliance scenarios.

Once valid credentials are provided to labkey.setDefaults(), subsequent labkey.get or labkey.post
API calls will authenticate using those credentials.

Examples

Example of setting and clearing email/password, API key, and Session key
library(Rlabkey)

labkey.setDefaults(email="testing@localhost.test”, password="password")

Functions invoked at this point respect the role assignments and
other authorizations of the specified user

A user can create an API key via the LabKey UI and set it as follows:
labkey.setDefaults(apiKey="abcdef0123456789abcdef@123456789")

Functions invoked at this point respect the role assignments and
other authorizations of the user who created the API key

A user can create a session key via the LabKey UI and set it as follows:
labkey.setDefaults(apiKey="0123456789abcdef@123456789%abcdef")

Functions invoked at this point share authorization
and session information with the user's browser session

96 labkey.setWafEncoding

labkey.setDefaults() # called without any parameters will reset/clear the environment variables

labkey.setModuleProperty
Set module property value

Description

Set module property value for a specific folder or as site wide (with folderPath */*)

Usage
labkey.setModuleProperty(baseUrl=NULL, folderPath, moduleName, propName, propValue)

Arguments
baseUrl server location including context path, if any. e.g. https://www.labkey.org/
folderPath a string specifying the folderPath
moduleName name of the module
propName The module property name
propValue The module property value to save
Examples
Not run:
library(Rlabkey)

labkey.setModuleProperty(baseUrl="http://labkey/", folderPath="flowProject",
moduleName="flow", propName="ExportToScriptFormat”, propValue="zip")

End(Not run)

labkey.setWafEncoding Helper function to enable/disable wafEncoding mode.

Description

By default, this command encodes the SQL parameter to allow it to pass through web application
firewalls. This is compatible with LabKey Server v23.9.0 and above. If targeting an earlier server,
pass FALSE to this method.

Usage
labkey.setWafEncoding(wafEncode = TRUE)

labkey.storage.create 97

Arguments

wafEncode a boolean specifying if wafEncode mode is enabled or disabled

Author(s)
Cory Nathe

Examples

Not run:

library(Rlabkey)
labkey.setWafEncoding (FALSE)
labkey.executeSql(
baseUrl="http://localhost:8080/labkey”,
folderPath="/home",
schemaName="core",
sql = "select * from containers”)

End(Not run)

labkey.storage.create Create a new LabKey Freezer Manager storage item

Description

Create a new LabKey Freezer Manager storage item that can be used in the creation of a storage
hierarchy. Storage items can be of the following types: Physical Location, Freezer, Primary Storage,
Shelf, Rack, Canister, Storage Unit Type, or Terminal Storage Location.

Usage

labkey.storage.create(baseUrl=NULL, folderPath, type, props)

Arguments
baseUrl a string specifying the baseUrlfor the LabKey server
folderPath a string specifying the folderPath
type a string specifying the type of storage item to create
props a list properties for the storage item (i.e. name, description, etc.)
Value

A list containing a data element with the property values for the newly created storage item.

98

labkey.storage.create

Author(s)

Cory Nathe

See Also

labkey.storage.update, labkey.storage.delete

Examples

Not run:

library(Rlabkey)
create a storage Freezer with a Shelf and 2 Plates on that Shelf

freezer <- labkey.storage.create(

)

baseUrl="http://labkey/",

folderPath="home",

type="Freezer”,

props=list(name="Test Freezer”, description="My example storage freezer")

shelf = labkey.storage.create(

)

baseUrl="http://labkey/",

folderPath="home",

type="Shelf"”,

props=list(name="Test Shelf"”, locationIld=freezer$data$rowId)

plateType = labkey.storage.create(

)

baseUrl="http://labkey/",

folderPath="home",

type="Storage Unit Type”,

props=list(name="Test 8X12 Well Plate”, unitType="Plate", rows=8, cols=12)

platel = labkey.storage.create(

)

baseUrl="http://labkey/",
folderPath="home",
type="Terminal Storage Location”,
props=list(name="Plate #1", typeld=plateType$data$rowId, locationId=shelf$data$rowId)

plate2 = labkey.storage.create(

baseUrl="http://labkey/",
folderPath="home",
type="Terminal Storage Location”,
props=list(name="Plate #2", typeld=plateType$data$rowld, locationId=shelf$data$rowId)

End(Not run)

labkey.storage.delete 99

labkey.storage.delete Delete a LabKey Freezer Manager storage item

Description

Delete an existing LabKey Freezer Manager storage item. Note that deletion of freezers, primary
storage, or locations within the storage hierarchy will cascade the delete down the hierarchy to
remove child locations and terminal storage locations. Samples in the deleted storage location(s)
will not be deleted but will be removed from storage. Storage items can be of the following types:
Physical Location, Freezer, Primary Storage, Shelf, Rack, Canister, Storage Unit Type, or Terminal
Storage Location.

Usage

labkey.storage.delete(baseUrl=NULL, folderPath, type, rowld)

Arguments
baseUrl a string specifying the baseUrlfor the LabKey server
folderPath a string specifying the folderPath
type a string specifying the type of storage item to delete
rowId the primary key of the storage item to delete

Value

A list containing a data element with the property values for the deleted storage item.

Author(s)
Cory Nathe

See Also

labkey.storage.create, labkey.storage.update

Examples

Not run:

library(Rlabkey)
delete a freezer and its child locations and terminal storage locations

freezer <- labkey.storage.create(
baseUrl="http://labkey/",
folderPath="home",
type="Freezer"”,
props=list(name="Test Freezer"”, description="My example storage freezer")

100 labkey.storage.update

shelf = labkey.storage.create(

baseUrl="http://labkey/",

folderPath="home",

type="Shelf",

props=list(name="Test Shelf"”, locationld=freezer$data$rowld)
)

plateType = labkey.storage.create(

baseUrl="http://labkey/",

folderPath="home",

type="Storage Unit Type”,

props=list(name="Test 8X12 Well Plate”, unitType="Plate”, rows=8, cols=12)
)

platel = labkey.storage.create(
baseUrl="http://labkey/",
folderPath="home",
type="Terminal Storage Location”,
props=list(name="Plate #1", typeld=plateType$data$rowId, locationId=shelf$data$rowId)
)

plate2 = labkey.storage.create(
baseUrl="http://labkey/",
folderPath="home",
type="Terminal Storage Location”,
props=list(name="Plate #2", typeld=plateType$data$rowId, locationId=shelf$data$rowld)
)

NOTE: this will delete freezer, shelf, platel and plate2 but it will not delete
the plateType as that is not a part of the freezer hierarchy
freezer <- labkey.storage.delete(

baseUrl="http://labkey/",

folderPath="home",

type="Freezer"”,

rowld=freezer$data$rowld

)

End(Not run)

labkey.storage.update Update a LabKey Freezer Manager storage item

Description

Update an existing LabKey Freezer Manager storage item to change its properties or location within
the storage hierarchy. Storage items can be of the following types: Physical Location, Freezer,
Primary Storage, Shelf, Rack, Canister, Storage Unit Type, or Terminal Storage Location.

labkey.storage.update 101

Usage

labkey.storage.update(baseUrl=NULL, folderPath, type, props)

Arguments
baseUrl a string specifying the baseUrlfor the LabKey server
folderPath a string specifying the folderPath
type a string specifying the type of storage item to update
props a list properties for the storage item (i.e. name, description, etc.), must include
the Rowld primary key
Value

A list containing a data element with the property values for the updated storage item.

Author(s)

Cory Nathe

See Also

labkey.storage.create, labkey.storage.delete

Examples

Not run:

library(Rlabkey)
create a storage unit type and then update it to change some properties

plateType = labkey.storage.create(

baseUrl="http://labkey/",

folderPath="home",

type="Storage Unit Type",

props=list(name="Test 8X12 Well Plate”, unitType="Plate"”, rows=8, cols=12)
)

plateType = labkey.storage.update(
baseUrl="http://labkey/",
folderPath="home",
type="Storage Unit Type",
props=list(rowId=plateType$data$rowld, positionFormat="NumAlpha”, positionOrder="ColumnRow")
)

End(Not run)

102 labkey.transform.readRunPropertiesFile

labkey. transform.getRunPropertyValue
Assay transform script helper function to get a run property value from
a data.frame

Description
A function that takes in data.frame of the run properties info for a given assay transform script
execution and returns the value for a given property name.

Usage

labkey. transform.getRunPropertyValue(runProps, propName)

Arguments

runProps the data.frame of the run property key/value pairs

propName the name of the property to get the value of within the runProps data.frame
Details

This helper function will most likely be used within an assay transform script after the labkey.transform.readRunPropertiesFile
function has been called to load the full set of run properties.

Examples

Not run:
library(Rlabkey)

run.props = labkey.transform.readRunPropertiesFile("${runInfo}");
run.data.file = labkey.transform.getRunPropertyValue(run.props, "runDataFile");

End(Not run)

labkey. transform.readRunPropertiesFile
Assay transform script helper function to read a run properties file

Description

A function that takes in the full path to the LabKey generated run properties file and returns a
data.frame of the key value pairs for the lines within that file. This helper function would be used
as part of an assay transform script written in R and associated with an assay design.

labkey.truncateTable 103

Usage

labkey. transform.readRunPropertiesFile(runInfoPath)

Arguments

runInfoPath the full file system path to the generated run properties file

Details

The most common scenario is that the assay transform script will get the run properties file path
added into the running script as a replacement variable.

Examples

Not run:
library(Rlabkey)

labkey. transform.readRunPropertiesFile("${runInfo}")

End(Not run)

labkey.truncateTable Delete all rows from a table

Description

Delete all rows from the specified table.

Usage
labkey. truncateTable(baseUrl = NULL, folderPath, schemaName, queryName)

Arguments
baseUrl a string specifying the baseUrl for the labkey server
folderPath a string specifying the folderPath
schemaName a string specifying the name of the schema of the domain
queryName a string specifying the query name

Details

Deletes all rows in the table in a single transaction and will also log a single audit event for the
action. Not all tables support truncation, if a particular table doesn’t support the action, an error
will be returned. The current list of tables supporting truncation include : lists, datasets, issues,
sample sets, data classes.

104 labkey.updateRows

Value

Returns the count of the number of rows deleted.

Author(s)
Karl Lum

See Also

labkey.deleteRows

Examples

Not run:

create a data frame and infer it's fields
library(Rlabkey)

labkey. truncateTable(baseUrl="http://labkey/", folderPath="home",
schemaName="1ists", queryName="people")

End(Not run)

labkey.updateRows Update existing rows of data in a labkey database

Description

Send data from an R session to update existing rows of data in the database.

Usage

labkey.updateRows (baseUrl, folderPath,
schemaName, queryName, toUpdate,
provenanceParams=NULL, options=NULL)

Arguments
baseUrl a string specifying the baseUrlfor the labkey server
folderPath a string specifying the folderPath
schemaName a string specifying the schemaNamefor the query
queryName a string specifying the queryName

toUpdate a data frame containing the row(s) of data to be updated

labkey.updateRows 105

provenanceParams
the provenance parameter object which contains the options to include as part of
a provenance recording. This is a premium feature and requires the Provenance
LabKey module to function correctly, if it is not present this parameter will be
ignored.

options (optional) a list containing options specific to the insert action of the query

Details

A single row or multiple rows of data can be updated. The toUpdate data frame should contain the
rows of data to be updated and must be created with the stringsAsFactors option set to FALSE.
The names of the data in the data frame must be the column names from the labkey database. To
update a row/column to a value of NULL, use an empty string ("") in the data frame (regardless of
the database column type).

The list of valid options for each query will vary, but some common examples include:

* auditBehavior (string) : Can be used to override the audit behavior for the table the query
is acting on. The set of types include: NONE, SUMMARY, and DETAILED.

* auditUserComment (string) : Can be used to provide a comment from the user that will be
attached to certain detailed audit log records.

Value

A list is returned with named categories of command, rowsAffected, rows, queryName, contain-
erPath and schemaName. The schemaName, queryName and containerPath properties contain
the same schema, query and folder path used in the request. The rowsAffected property indicates
the number of rows affected by the API action. This will typically be the same number as passed in
the request. The rows property contains a list of row objects corresponding to the rows updated.

Author(s)

Valerie Obenchain

See Also

labkey.selectRows, labkey.executeSql, makeFilter, labkey.insertRows, labkey. importRows,
labkey.deleteRows, labkey.moveRows,

labkey.query.import, labkey.provenance.createProvenanceParams, labkey.provenance.startRecording,
labkey.provenance.addRecordingStep, labkey.provenance.stopRecording

Examples

Not run:

Insert, update and delete

Note that users must have the necessary permissions in the database
to be able to modify data through the use of these functions

library(Rlabkey)

106 labkey.webdav.delete

newrow <- data.frame(
DisplayFld="Inserted from R"
, TextFld="how its done”

, IntFld= 98

, DoubleFld = 12.345

, DateTimeFld = "03/01/2010"
, BooleanFld= FALSE

, LongTextFld = "Four score and seven years ago”
, AttachmentFld = NA #attachment fields not supported
, RequiredText = "Veni, vidi, vici”

, RequiredInt = @
, Category = "LOOKUP2"
, stringsAsFactors=FALSE)

insertedRow <- labkey.insertRows("http://localhost:8080/1labkey”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes",
toInsert=newrow, options=list(auditBehavior="DETAILED",
auditUserComment="testing audit comment for insert”))

newRowId <- insertedRow$rows[[1]]1$RowId

selectedRow<-labkey.selectRows("http://localhost:8080/labkey”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes",
colFilter=makeFilter(c("RowId"”, "EQUALS", newRowId)))

selectedRow

updaterow=data. frame(
RowId=newRowId

, DisplayFld="Updated from R"
, TextFld="how to update”

, IntFld= 777

, stringsAsFactors=FALSE)

updatedRow <- labkey.updateRows("http://localhost:8080/labkey”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes",
toUpdate=updaterow, options=list(auditBehavior="DETAILED",
auditUserComment="testing audit comment for update”))

selectedRow<-labkey.selectRows("http://localhost:8080/1labkey”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes”,
colFilter=makeFilter(c("RowId"”, "EQUALS", newRowId)))

selectedRow

deleterow <- data.frame(RowId=newRowId, stringsAsFactors=FALSE)

result <- labkey.deleteRows(baseUrl="http://localhost:8080/labkey"”,
folderPath="/apisamples”, schemaName="lists"”, queryName="AllTypes”,
toDelete=deleterow)

str(result)

End(Not run)

labkey.webdav.delete Deletes the provided file/folder on a LabKey Server via WebDAV

labkey.webdav.delete 107

Description

This will delete the supplied file or folder under the specified LabKey Server project using WebDAV.

Usage

labkey.webdav.delete(
baseUrl1=NULL,

folderPath,
remoteFilePath,
fileSet='@files'
)
Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath

remoteFilePath the path to delete, relative to the LabKey folder root.
fileSet (optional) the name of file server fileSet, which is typically " @files" (the default

value for this argument). In some cases this might be "@pipeline" or " @fileset".
Details
This will delete the supplied file or folder under the specified LabKey Server project using WebDAV.

Note: if a folder is provided, it will delete that folder and contents.

Value

TRUE if the folder was deleted successfully

Author(s)
Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.listDir,
labkey.webdav.pathExists, labkey.webdav.downloadFolder

Examples

Not run:
library(Rlabkey)

#delete an entire directory and contents
labkey.webdav.delete(baseUrl="http://labkey/", folderPath="home", remoteFilePath="folder1")

#tdelete single file
labkey.webdav.delete(baseUrl="http://labkey/", folderPath="home", remoteFilePath="folder/file.txt")

108

End(Not run)

labkey.webdav.downloadFolder

labkey.webdav.downloadFolder

Recursively download a folder via WebDAV

Description

This will recursively download a folder from a LabKey Server using WebDAV.

Usage

labkey.webdav.downloadFolder(
localBaseDir,
baseUrl=NULL,

folderPath,

remoteFilePath,
overwriteFiles=TRUE,
mergeFolders=TRUE,
fileSet="@files"',
showProgressBar=FALSE

)

Arguments

localBaseDir

baseUrl
folderPath
remoteFilePath

overwriteFiles

mergeFolders

fileSet

showProgressBar

the local filepath where this directory will be saved. a subfolder with the remote
directory name will be created.

a string specifying the baseUr1 for the labkey server
a string specifying the folderPath
the path of this folder on the remote server, relative to the folder root.

(optional) if true, any pre-existing file at this location will be overwritten. De-
faults to TRUE

(optional) if false, any pre-existing local folders in the target location will be
deleted if there is an incoming folder of the same name. If true, these existing
folders will be left alone, and remote files downloaded into them. Existing file
conflicts will be handled based on the overwriteFiles parameter. Defaults to
TRUE

(optional) the name of file server fileSet, which is typically " @files" (the default
value for this argument). In some cases this might be "@pipeline" or " @fileset".

(optional) if true, a progress bar will be shown for all file downloads

labkey.webdav.get 109

Details

This will recursively download a folder from a LabKey Server using WebDAV. This is essentially a
wrapper that recursively calls labkey.webdav.get to download all files in the remote folder.

Value

TRUE or FALSE, depending on if this folder was successfully downloaded

Author(s)
Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.pathExis:
labkey.webdav.listDir, labkey.webdav.delete

Examples

Not run:
download folder from a LabKey Server
library(Rlabkey)

labkey.webdav.downloadFolder (baseUrl="http://labkey/",
folderPath="home",
remoteFilePath="folder1",
localBaseDir="destFolder"”,
overwrite=TRUE

End(Not run)

labkey.webdav.get Download a file via WebDAV

Description

This will download a file from a LabKey Server using WebDAV.

Usage

labkey.webdav.get(
baseUrl=NULL,
folderPath,
remoteFilePath,
localFilePath,
overwrite=TRUE,

110 labkey.webdav.get

fileSet='@files"',
showProgressBar=FALSE

)
Arguments
baseUrl a string specifying the baseUrl for the labkey server
folderPath a string specifying the folderPath

remoteFilePath the path of this file on the remote server, relative to the folder root.

localFilePath the local filepath where this file will be saved

overwrite (optional) if true, any pre-existing file at this location will be overwritten. De-
faults to TRUE

fileSet (optional) the name of file server fileSet, which is typically "@files" (the default
value for this argument). In some cases this might be "@pipeline" or " @fileset".

showProgressBar

(optional))if true, a progress bar will be shown for all file downloads

Details

Download a single file from a LabKey Server to the local machine using WebDAV.

Value

TRUE or FALSE, depending on if this file was downloaded and exists locally. Will return FALSE
if the already file exists and overwrite=F.

Author(s)
Ben Bimber, Ph.D.

See Also

labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.pathExists,
labkey.webdav.listDir, labkey.webdav.delete, labkey.webdav.downloadFolder

Examples

Not run:
download a single file from a LabKey Server
library(Rlabkey)

labkey.webdav.get(
baseUrl="http://labkey/",
folderPath="home",
remoteFilePath="folder/myFile.txt",
localFilePath="myDownloadedFile.txt",
overwrite=TRUE

labkey.webdav.listDir 111

End(Not run)

labkey.webdav.listDir List the contents of a LabKey Server folder via WebDAV

Description

This will list the contents of a LabKey Server folder using WebDAV.

Usage

labkey.webdav.listDir(
baseUrl1=NULL,
folderPath,
remoteFilePath,
fileSet='@files"',
haltOnError=TRUE

)
Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath

remoteFilePath path of the folder on the remote server, relative to the folder root.

fileSet (optional) the name of file server fileSet, which is typically "@files" (the default
value for this argument). In some cases this might be "@pipeline" or " @fileset".

haltOnError (optional) Specifies whether this request should fail if the requested path does
not exist. Defaults to TRUE

Details

Lists the contents of a folder on a LabKey Server using WebDAV.

Value

A list with each item under this folder. Each item (file or directory) is a list with the following
attributes:

 "files": A list of the files, where each has the following attributes:
— "id": The relative path to this item, not encoded
— "href": The relative URL to this item, HTML encoded
— "text": A dataset in a date based study
— "creationdate": The date this item was created
— "createdby": The user that created this file
"lastmodified": The last modification time

112 labkey.webdav.mkDir

— "contentlength": The content length
— "size": The file size

— "isdirectory": TRUE or FALSE, depending on whether this item is a directory

» "fileCount": If this item is a directory, this property will be present, listing the the total files in
this location
Author(s)
Ben Bimber, Ph.D.

See Also
labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.pathExis:
labkey.webdav.delete, labkey.webdav.downloadFolder

Examples

Not run:

library(Rlabkey)

json <- labkey.webdav.listDir(
baseUrl="http://labkey/",

folderPath="home",
remoteFilePath="myFolder"

End(Not run)

labkey.webdav.mkDir Create a folder via WebDAV

Description

This will create a folder under the specified LabKey Server project using WebDAV.

Usage

labkey.webdav.mkDir(
baseUrl=NULL,
folderPath,
remoteFilePath,
fileSet='@efiles'

)

labkey.webdav.mkDir 113

Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath

remoteFilePath the folder path to create, relative to the LabKey folder root.

fileSet (optional) the name of file server fileSet, which is typically "@files" (the default
value for this argument). In some cases this might be "@pipeline" or " @fileset".

Details

Creates a folder on a LabKey Server using WebDAWV. If the parent directory does not exist, this will
fail (similar to mkdir on linux)

Value

TRUE if the folder was created successfully

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDirs, labkey.webdav.pathExists,
labkey.webdav.listDir, labkey.webdav.delete, labkey.webdav.downloadFolder

Examples
Not run:
library(Rlabkey)
labkey.webdav.mkDir (
baseUrl="http://labkey/",

folderPath="home",
remoteFilePath="toCreate"

End(Not run)

114 labkey.webdav.mkDirs

labkey.webdav.mkDirs Create a folder via WebDAV

Description

This will create folder(s) under the specified LabKey Server project using WebDAV.

Usage

labkey.webdav.mkDirs(
baseUrl=NULL,

folderPath,
remoteFilePath,
fileSet='@files'
)
Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath

remoteFilePath the folder path to create, relative to the LabKey folder root.

fileSet (optional) the name of file server fileSet, which is typically " @files" (the default
value for this argument). In some cases this might be "@pipeline" or " @fileset".
Details
Creates a folder on a LabKey Server using WebDAV. If the parent directory or directories no not
exist, these will also be created (similar to mkdir -p on linux)

Value

TRUE if the folder was created successfully

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.pathExists,
labkey.webdav.listDir, labkey.webdav.delete, labkey.webdav.downloadFolder

labkey.webdav.pathExists 115

Examples
Not run:
library(Rlabkey)
labkey.webdav.mkDirs(
baseUrl="http://labkey/",

folderPath="home",
remoteFilePath="folder1/folder2/toCreate”

End(Not run)

labkey.webdav.pathExists
Tests if a path exists on a LabKey Server via WebDAV

Description
This will test if the supplied file/folder exists folder under the specified LabKey Server project using
WebDAV.

Usage

labkey.webdav.pathExists(
baseUrl=NULL,

folderPath,
remoteFilePath,
fileSet='@files'
)
Arguments
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath

remoteFilePath the path to test, relative to the LabKey folder root.
fileSet (optional) the name of file server fileSet, which is typically " @files" (the default

value for this argument). In some cases this might be "@pipeline" or " @fileset".
Details
This will test if the supplied file/folder exists folder under the specified LabKey Server project using
WebDAV.
Value

TRUE if the folder was created successfully

116 labkey.webdav.put

Author(s)
Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.put, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.listDir,
labkey.webdav.delete, labkey.webdav.downloadFolder

Examples

Not run:
library(Rlabkey)

Test folder

labkey.webdav.pathExists(
baseUrl="http://labkey/",
folderPath="home",
remoteFilePath="pathToTest"

)

Test file

labkey.webdav.pathExists(
baseUrl="http://labkey/",
folderPath="home",
remoteFilePath="folder/fileToTest.txt"

End(Not run)

labkey.webdav.put Upload a file via WebDAV

Description

This will upload a file to a LabKey Server using WebDAV.

Usage
labkey.webdav.put(
localFile,
baseUrl=NULL,
folderPath,
remoteFilePath,

fileSet='@efiles',
description=NULL

labkey.webdav.put 117

Arguments
localFile the local filepath to upload
baseUrl a string specifying the baseUr1 for the labkey server
folderPath a string specifying the folderPath

remoteFilePath the destination path of this file on the remote server, relative to the folder root.

fileSet (optional) the name of file server fileSet, which is typically " @files" (the default
value for this argument). In some cases this might be "@pipeline" or " @fileset".
description (optional) the description to attach to this file on the remote server.
Details

Upload a single file from the local machine to a LabKey Server using WebDAV.

Value

TRUE if the file was uploaded successfully

Author(s)

Ben Bimber, Ph.D.

See Also

labkey.webdav.get, labkey.webdav.mkDir, labkey.webdav.mkDirs, labkey.webdav.pathExists,
labkey.webdav.listDir, labkey.webdav.delete, labkey.webdav.downloadFolder

Examples

Not run:
upload a single file to a LabKey Server
library(Rlabkey)

labkey.webdav.put(
localFile="myFileToUpload. txt",
baseUrl="http://labkey/",
folderPath="home",
remoteFilePath="myFileToUpload. txt"

End(Not run)

118 labkey.whoAml

labkey.whoAmI Call the whoami API

Description

Call the whoami API to get information about the current LabKey user.

Usage

labkey.whoAmI (baseUr1=NULL)

Arguments

baseUrl A string specifying the baseUr1 for the LabKey server.

Value

Returns information about the logged in user including: displayName, id, email, and whether or not
the user is impersonated.

Author(s)

Cory Nathe

See Also

labkey.security.impersonateUser, labkey.security.stopImpersonating

Examples

Not run:
library(Rlabkey)

labkey.whoAmI (baseUrl="http://labkey/")

End(Not run)

IsFolders 119

1sFolders List the available folder paths

Description

Lists the available folder paths relative to the current folder path for a LabKey session

Usage

1sFolders(session)
Arguments

session the session key returned from getSession
Details

Lists the available folder paths relative to the current folder path for a LabKey session

Value

A character array containing the available folder paths, relative to the project root. These values can
be set on a session using curFolder<-

Author(s)

Peter Hussey

References

https://www.labkey.org/Documentation/wiki-page.view name=projects

See Also

getSession, 1sProjects, 1sSchemas

Examples

Not run:

##get a list if projects and folders
library(Rlabkey)

lks<- getSession("https://www.labkey.org”, "/home")

#returns values "/home"” , "/home/_menus” ,
1sFolders(1ks)

End(Not run)

120 IsProjects

1sProjects List the projects available at a given LabKey Server address

Description

Lists the projects available. Takes a string URL instead of a session, as it is intended for use before
creating a session.

Usage
1sProjects(baseUrl)
Arguments
baseUrl a string specifying the baseUr1for the LabKey Server, of the form http://<server
dns name>/<contextroot>
Details

List the projects available at a given LabKey Server address.

Value

A character array containing the available projects, relative to the root. These values can be set on
a session using curFolder<-

Author(s)

Peter Hussey

References

https://www.labkey.org/home/project-begin.view

See Also
getSession, 1sFolders, 1sSchemas
Examples
Not run:
get list of projects on server, connect a session in one project,
then list the folders in that project
library(Rlabkey)

1sProjects("https://www.labkey.org")

lkorg <- getSession("https://www.labkey.org”, "/home")

IsSchemas 121

1sFolders(lkorg)

lkorg <- getSession("https://www.labkey.org”, "/home/Study/ListDemo")
1sSchemas (lkorg)

End(Not run)

1sSchemas List the available schemas

Description

Lists the available schemas given the current folder path for a LabKey session

Usage

1sSchemas(session)
Arguments

session the session key returned from getSession
Details

Lists the available schemas given the current folder path for a LabKey session

Value

A character array containing the available schema names

Author(s)

Peter Hussey

See Also

getSession, 1sFolders, 1sProjects
Examples
Not run:

get a list of schemas available in the current session context
library(Rlabkey)

lks<- getSession(baseUrl="http://localhost:8080/labkey",
folderPath="/apisamples”)

#returns several schema names, e.g. "lists”, "core”, "MS1", etc.

122 makeFilter

1sSchemas (1ks)

End(Not run)

makeFilter Builds filters to be used in labkey.selectRows and getRows

Description

This function takes inputs of column name, filter value and filter operator and returns an array of
filters to be used in labkey.selectRows and getRows.

Usage
makeFilter(..., asList=FALSE)
Arguments
Arguments in c("colname","operator","value") form, used to create a filter.
aslList Boolean flag when set to TRUE will format the return value as a list with named
elements.
Details

These filters are applied to the data prior to import into R. The user can specify as many filters
as desired. The format for specifying a filter is a vector of characters including the column name,
operator and value.

colname a string specifying the name of the column to be filtered
operator a string specifying what operator should be used in the filter (see options below)

value an integer or string specifying the value the columns should be filtered on

Operator values:

EQUAL

DATE_EQUAL

NOT_EQUAL
DATE_NOT_EQUAL
NOT_EQUAL_OR_MISSING
GREATER_THAN
DATE_GREATER_THAN
LESS_THAN
DATE_LESS_THAN
GREATER_THAN_OR_EQUAL
DATE_GREATER_THAN_OR_EQUAL
LESS_THAN_OR_EQUAL
DATE_LESS_THAN_OR_EQUAL

makeFilter 123

STARTS_WITH
DOES_NOT_START_WITH
CONTAINS
DOES_NOT_CONTAIN
CONTAINS_ONE_OF
CONTAINS_NONE_OF

IN

NOT_IN

BETWEEN
NOT_BETWEEN
MEMBER_OF

MISSING

NOT_MISSING
MV_INDICATOR
NO_MV_INDICATOR

Q
ONTOLOGY_IN_SUBTREE
ONTOLOGY_NOT_IN_SUBTREE
EXP_CHILD_OF
EXP_PARENT_OF
EXP_LINEAGE_OF

When using the MISSING, NOT_MISSING, MV_INDICATOR, or NO_MV_INDICATOR opera-
tors, an empty string should be supplied as the value. See example below.

Value

The function returns either a single string or an array of strings to be use in the colFilter argument
of the labkey . selectRows function. By default, this function will return an array of LabKey filter
parameters/values that are URL encoded and can be directly applied to a request URL. If the asList
argument is set to TRUE, the function will return a list with named elements where the name is the
parameter name and the element value is the filter value. This format can be useful when needing to
build URLSs that need to be combined with other parameters or can be converted directly to JSON
posted parameters.

Author(s)

Valerie Obenchain

References
http://www.omegahat.net/RCurl/,
https://www.labkey.org/home/project-begin.view
See Also

labkey.selectRows

124 saveResults

Examples

library(Rlabkey)
Two filters, ANDed together

makeFilter(c("TextF1ld”,"CONTAINS”,"h"),
c("BooleanFld”, "EQUAL”, "TRUE"))

Using "in" operator:
makeFilter(c("RowId"”,"”IN","2;3;6"))

Using "missing” operator:
makeFilter(c("IntFld”,"MISSING",""))

saveResults Returns an object representing a LabKey schema

Description

A wrapper function to labkey.saveBatch which uses a session object and provides defaults for the
Batch/Run names.

Usage

saveResults(session, assayName, resultDataFrame,
batchPropertylList= list(name=paste(”Batch ", as.character(date()))),
runPropertylList= list(name=paste("Assay Run ", as.character(date()))))

Arguments
session the session key returned from getSession
assayName a string specifying the name of the assay instance
resultDataFrame
a data frame containing rows of data to be inserted
batchPropertylList
a list of batch Properties
runPropertylList
a list of run Properties
Details

saveResults is a wrapper function to labkey.saveBatch with two changes: First, it uses a session
object in place of the separate baseUrl and folderPath arguments. Second, it provides defaults for
generating Batch and Run names based on a current timestamp.

To see the save result on LabKey server, click on the "SimpleMeans" assay in the Assay List web
part.

saveResults

Value

an object representing the assay.

Author(s)

Peter Hussey

References

https://www.labkey.org/home/project-begin.view

See Also

getSession, getSchema, getLookups, getRows

Examples

Not run:

Very simple example of an analysis flow: query some data,
calculate some stats, then save the calculations as an assay
result set in LabKey Server

library(Rlabkey)

s<- getSession(baseUrl="http://localhost:8080/1labkey",
folderPath="/apisamples”)

scobj <- getSchema(s, "lists")

simpledf <- getRows(s, scobj$AllTypes)

some dummy calculations to produce and example analysis result
testtable <- simpledf[,3:4]

colnames(testtable) <- c("IntFld”, "DoubleFld")

row <- c(list("Measure”="colMeans"), colMeans(testtable, na.rm=TRUE))
results <- data.frame(row, row.names=NULL, stringsAsFactors=FALSE)
row <- c(list("Measure”="colSums"), colSums(testtable, na.rm=TRUE))
results <- rbind(results, as.vector(row))

bprops <- list(LabNotes="this is a simple demo")

bpl<- list(name=paste("Batch ", as.character(date())),properties=bprops)
rpl<- list(name=paste(”"Assay Run ", as.character(date())))

assayInfo<- saveResults(s, "SimpleMeans”, results,

batchPropertylList=bpl, runPropertyList=rpl)

End(Not run)

125

Index

* 10 labkey.pipeline.getProtocols, 64
labkey.deleteRows, 12 labkey.pipeline.startAnalysis, 65
labkey.domain.create, 15 labkey.provenance.addRecordingStep
labkey.domain.createAndLoad, 17 67
labkey.domain.createConditionalFormat, labkey.provenance.createProvenanceParams,

20 68
labkey.domain.createConditionalFormatQueryFiltealbkey.provenance.startRecording,

21 70
labkey.domain.createDesign, 22 labkey.provenance. stopRecording,
labkey.domain.createlndices, 24 72
labkey.domain.drop, 25 labkey.query.import, 73
labkey.domain.FILTER_TYPES, 26 labkey.saveBatch, 78
labkey.domain.get, 27 labkey.security.createContainer,
labkey.domain.inferFields, 28 80
labkey.domain.save, 29 labkey.security.deleteContainer,
labkey.executeSql, 30 81
labkey.experiment.createData, 32 labkey.security.getContainers, 82
labkey.experiment.createMaterial, labkey.security.impersonateUser,

33 84
labkey.experiment.createRun, 34 labkey.security.moveContainer, 85
labkey.experiment.lineage, 36 labkey.security.renameContainer,
labkey.experiment.SAMPLE_DERIVATION_PROTOCOL, 86

37 labkey.security.stopImpersonating,
labkey.experiment.saveBatch, 38 88
labkey.experiment.saveRuns, 39 labkey. selectRows, 89
labkey.getDefaultViewDetails, 41 labkey. setDebugMode, 93
labkey.getFolders, 43 labkey.setWafEncoding, 96
labkey.getLookupDetails, 44 labkey.storage.create, 97
labkey.getQueries, 47 labkey.storage.delete, 99
labkey.getQueryDetails, 48 labkey.storage.update, 100
labkey.getQueryViews, 51 labkey. truncateTable, 103
labkey.getRequestOptions, 52 labkey.updateRows, 104
labkey.getSchemas, 53 labkey.webdav.delete, 107
labkey. importRows, 54 labkey.webdav.downloadFolder, 108
labkey. insertRows, 56 labkey.webdav.get, 109
labkey.moveRows, 60 labkey.webdav.listDir, 111
labkey.pipeline.getFileStatus, 62 labkey.webdav.mkDir, 112
labkey.pipeline.getPipelineContainer, labkey.webdav.mkDirs, 114

63 labkey.webdav.pathExists, 115

126

INDEX

labkey.webdav.put, 116
labkey.whoAmI, 118

x file
getFolderPath, 5
getLookups, 6
getRows, 7
getSchema, 9
getSession, 10
labkey.makeRemotePath, 59
1sFolders, 119
1sProjects, 120
1sSchemas, 121
makeFilter, 122
saveResults, 124

x package
Rlabkey-package, 3

getFolderPath, 5
getLookups, 6,8, 11, 125
getRows, 7,7, 11, 31,90, 125
getSchema, 7, 8,9, 11, 125
getSession, 5, 7-9, 10, 119-121, 125

labkey.acceptSelfSignedCerts, 12
labkey.curlOptions, 12
labkey.deleteRows, 5, 12, 31, 42, 45, 48, 50,
52,54, 55,57,61,79,91, 104, 105
labkey.domain.create, 15, 21-29
labkey.domain.createAndLoad, 17
labkey.domain.createConditionalFormat,
17,20, 22, 23, 26, 29

17,21,21, 23, 26, 29
labkey.domain.createDesign, 17, 19, 21,
22,22,24-29
labkey.domain.createlndices, 17, 19, 23,
24,25,27-29
labkey.domain.drop, 17, 19, 21-24, 25,
26-29
labkey.domain.FILTER_TYPES, 17, 21-23,
26, 29
labkey.domain.get, 17, 19, 21-26, 27, 28, 29
labkey.domain.inferFields, 17, 19, 21-27,
28,29
labkey.domain.save, 17, 19, 21-28, 29
labkey.executeSql, 5, 14, 30, 42, 45, 48, 50,
52,54, 55,57,79,91, 105
labkey.experiment.createData, 32, 34, 35,
39, 40

labkey.
labkey.

labkey.
labkey.

labkey.
labkey.
labkey.
labkey.

labkey.
labkey.

labkey.
labkey.

labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.domain.createConditionalFormatQueryFilkabkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.

labkey.

labkey.

127

experiment.createMaterial, 33,
33, 35, 39, 40
experiment.createRun, 33, 34, 34,
39, 40
experiment.lineage, 36
experiment.SAMPLE_DERIVATION_PROTOCOL,
37
experiment.saveBatch, 33-35, 37,
38,79
experiment.saveRuns, 39
getBaseUrl, 41
getDefaultViewDetails, 41, 44, 45,
48, 50, 52, 54, 91
getFolders, 43, 81-83, 86, 87
getlLookupDetails, 42, 44, 44, 48,
50, 52, 54, 91
getModuleProperty, 46
getQueries, 42,44, 45, 47, 50, 52,
54,91
getQueryDetails, 42, 44, 45, 48, 48,
52, 54,91
getQueryViews, 42, 44, 45, 48, 50,
51, 54,91
getRequestOptions, 52
getSchemas, 42, 45, 48, 50, 52, 53, 91
importRows, 5, 14, 31, 42,45, 48, 50,
52,54,54,57,61,74,91, 105
insertRows, 5, 14, 31,42, 45, 48, 50,
52, 54, 55,56, 74, 91, 105
makeRemotePath, 59
moveRows, /4, 57, 60, 105
pipeline.getFileStatus, 62, 63,
65, 66
pipeline.getPipelineContainer,
62,63, 65, 66
pipeline.getProtocols, 62, 63, 64,
66
pipeline.startAnalysis, 62, 63,
65, 65
provenance.addRecordingStep, /4,
57,67,69,71, 72,105
provenance.createProvenanceParams,
14,57,67,68,71, 72, 105
provenance.startRecording, /4,
57,67,69,70, 72, 105
provenance.stopRecording, 14, 57,
67,69,71,72, 105
query.import, 55, 57,73, 105

128

labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.
labkey.

labkey.
labkey.

labkey.
labkey.
labkey.
labkey.
labkey.

labkey.

rstudio.initReport, 75
rstudio.initRStudio, 76
rstudio.initSession, 76
rstudio.isInitialized, 77
rstudio.saveReport, 78
saveBatch, 78
security.createContainer, 44, 80,
82, 83, 86, 87
security.deleteContainer, 44, 81,
81, 83, 86, 87
security.getContainers, 44, 81,
82, 82, 86, 87
security.impersonateUser, 84, 88,
118
security.moveContainer, 44,
81-83, 85, 87
security.renameContainer, 44,
81-83, 86, 86
security.stopImpersonating, 84
85,88,118
selectRows, 5, 8, 14, 31,42, 45, 48,
50, 52, 54, 55,57,79, 89, 105, 123
setCurlOptions, 92
setDebugMode, 93
setDefaults, 94
setModuleProperty, 96
setWafEncoding, 96
storage.create, 97, 99, 101
storage.delete, 98, 99, 101
storage.update, 98, 99, 100
transform.getRunPropertyValue
102
transform.readRunPropertiesFile,
102
truncateTable, 103
updateRows, 5, 14, 31,42, 45, 48, 50,
52,54, 55,57,61,74,79,91, 104
webdav.delete, 106, 109, 110,
112-114,116, 117
webdav.downloadFolder, /107, 108
110,112-114, 116, 117
webdav.get, 107, 109, 109, 112114,
116, 117
webdav.listDir, 107, 109, 110, 111,
113,114,116, 117
webdav.mkDir, 107, 109, 110, 112,
112,114,116, 117
webdav.mkDirs, 107, 109, 110, 112,

INDEX

113,114,116, 117
labkey.webdav.pathExists, 107, 109, 110,

112-114,115,117
labkey.webdav.put, 107, 109, 110, 112-114,

116,116
labkey.whoAmI, 84, 85, 88, 118
1sFolders, 5, 119, 120, 121
1sProjects, 119, 120, 121
1sSchemas, 119, 120, 121

makeFilter, 5, 14, 31, 42,45, 48, 50, 52, 54
55,57,79,91, 105, 122

Rlabkey (Rlabkey-package), 3
Rlabkey-package, 3

saveResults, 8, 11, 124

	Rlabkey-package
	getFolderPath
	getLookups
	getRows
	getSchema
	getSession
	labkey.acceptSelfSignedCerts
	labkey.curlOptions
	labkey.deleteRows
	labkey.domain.create
	labkey.domain.createAndLoad
	labkey.domain.createConditionalFormat
	labkey.domain.createConditionalFormatQueryFilter
	labkey.domain.createDesign
	labkey.domain.createIndices
	labkey.domain.drop
	labkey.domain.FILTER_TYPES
	labkey.domain.get
	labkey.domain.inferFields
	labkey.domain.save
	labkey.executeSql
	labkey.experiment.createData
	labkey.experiment.createMaterial
	labkey.experiment.createRun
	labkey.experiment.lineage
	labkey.experiment.SAMPLE_DERIVATION_PROTOCOL
	labkey.experiment.saveBatch
	labkey.experiment.saveRuns
	labkey.getBaseUrl
	labkey.getDefaultViewDetails
	labkey.getFolders
	labkey.getLookupDetails
	labkey.getModuleProperty
	labkey.getQueries
	labkey.getQueryDetails
	labkey.getQueryViews
	labkey.getRequestOptions
	labkey.getSchemas
	labkey.importRows
	labkey.insertRows
	labkey.makeRemotePath
	labkey.moveRows
	labkey.pipeline.getFileStatus
	labkey.pipeline.getPipelineContainer
	labkey.pipeline.getProtocols
	labkey.pipeline.startAnalysis
	labkey.provenance.addRecordingStep
	labkey.provenance.createProvenanceParams
	labkey.provenance.startRecording
	labkey.provenance.stopRecording
	labkey.query.import
	labkey.rstudio.initReport
	labkey.rstudio.initRStudio
	labkey.rstudio.initSession
	labkey.rstudio.isInitialized
	labkey.rstudio.saveReport
	labkey.saveBatch
	labkey.security.createContainer
	labkey.security.deleteContainer
	labkey.security.getContainers
	labkey.security.impersonateUser
	labkey.security.moveContainer
	labkey.security.renameContainer
	labkey.security.stopImpersonating
	labkey.selectRows
	labkey.setCurlOptions
	labkey.setDebugMode
	labkey.setDefaults
	labkey.setModuleProperty
	labkey.setWafEncoding
	labkey.storage.create
	labkey.storage.delete
	labkey.storage.update
	labkey.transform.getRunPropertyValue
	labkey.transform.readRunPropertiesFile
	labkey.truncateTable
	labkey.updateRows
	labkey.webdav.delete
	labkey.webdav.downloadFolder
	labkey.webdav.get
	labkey.webdav.listDir
	labkey.webdav.mkDir
	labkey.webdav.mkDirs
	labkey.webdav.pathExists
	labkey.webdav.put
	labkey.whoAmI
	lsFolders
	lsProjects
	lsSchemas
	makeFilter
	saveResults
	Index

