Package ‘adj’

February 20, 2026

Title Lightweight Adjacency Lists
Version 0.1.0

Description Provides an S3 class to represent graph adjacency lists using 'vctrs'.
Allows for creation, subsetting, combining, and pretty printing of these lists.
Adjacency lists can be easily converted to zero-indexed lists, which allows
for easy passing of objects to low-level languages for processing.

Depends R (>=3.5)

Imports rlang, cli, vetrs (>=0.6.5)

Suggests methods, geos, Matrix, pillar, spelling, testthat (>= 3.0.0)
License MIT + file LICENSE

RoxygenNote 7.3.3

LazyData true

Language en-US

Encoding UTF-8

Config/build/compilation-database true

Config/testthat/edition 3

URL https://alarm-redist.org/adj/, https://github.com/alarm-redist/adj
NeedsCompilation yes

Author Christopher T. Kenny [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9386-6860>),
Cory McCartan [aut] (ORCID: <https://orcid.org/0000-0002-6251-669X>)

Maintainer Christopher T. Kenny <ctkenny@proton.me>
Repository CRAN
Date/Publication 2026-02-20 10:30:15 UTC

Contents

adj . . . e e
adj_color . . . Lo

https://alarm-redist.org/adj/
https://github.com/alarm-redist/adj
https://orcid.org/0000-0002-9386-6860
https://orcid.org/0000-0002-6251-669X

2 adj
adj_edges e e e 4
adj_from_shp 5
adj_indexing e e e e 6
adj_laplacian 7
adj_matriX e e e e e e e 7
adj_quotient 8
adj_zero_index e 9
formatadj 10
konigsberg L. e 11
plotadj 11
tadj . . . 12

Index 13

adj Create an adjacency list

Description

Create an adjacency list from a list of vectors of adjacent node identifiers.

Usage
adj(
ids = NULL,
duplicates = c("warn”, "error”, "allow", "remove"),
self_loops = c("warn”, "error”, "allow"”, "remove")
)
as_adj(x)
is_adj(x)
adj_to_list(x, ids = NULL)
Arguments
Vectors or a single list of vectors. Vectors should be comprised either of (1-
indexed) indices of adjacent nodes, or of unique identifiers, which must match
to the provided ids. NULL can be used in place of a length-zero vector for nodes
without neighbors.
ids A vector of unique node identifiers. Each provided vector in . . . will be matched
to these identifiers. If NULL, the identifiers are taken to be 1-indexed integers.
duplicates Controls handling of duplicate neighbors. The value "warn” warns the user;

"error” throws an error; "allow” allows duplicates, and "remove” removes
duplicates silently and then sets the corresponding attribute to "error”.

adj_color

self_loops Controls handling of self-loops (nodes that are adjacent to themselves). The
value "warn” warns the user; "error” throws an error; "allow” allows self-
loops, and "remove"” removes self-loops silently and then sets the corresponding

attribute to "error”.

X An adj list

Details

Equality:

Equality for adj lists is evaluated elementwise. Two sets of neighbors are considered equal if they

contain the same neighbors, regardless of order.

Number of nodes and edges:

The adj package is not focused on graph operations. The length() function will return the
number of nodes. To compute the number of edges in an adjacency list a, use sum(lengths(a)),

and divide by 2 for undirected graphs.

Value

An adj list

Examples

al = adj(list(c(2, 3), c(1, 3), c(1, 2)))
a2 = adj(list(c(3, 2), c(3, 1), c(2, 1))
al == a2

adj(2:3, NULL, 4:5, integer(@), 1)
adj(1, 2, 3, self_loops = "remove")

adj(konigsberg$bridge_to, ids = konigsberg$area, duplicates
adj(konigsberg$bridge_to, ids = konigsberg$area, duplicates

"allow")
"remove")

adj_color Find a coloring of an adjacency list

Description

Greedily finds a coloring of an adjacency list, optionally grouped by a provided vector.

Usage

adj_color(x, groups = NULL, colors = @, method = c("dsatur”, "greedy"))

4 adj_edges
Arguments
X An adj list
groups An optional vector specifying the group membership for each node in x.
colors Number of colors to use. If O (the default), uses as few colors as possible with
this greedy algorithm.
method Coloring method to use. "dsatur” uses the DSatur algorithm to try to minimize
the number of colors. "greedy"” traverses nodes in decreasing order of degree
and may be appropriate when more colors are desired.
Value
An integer vector
References
Brélaz, Daniel (1979-04-01). "New methods to color the vertices of a graph". Communications of
the ACM. 22 (4): 251-256.
Examples
a <- adj(konigsberg$bridge_to, ids = konigsberg$area, duplicates = "allow")
adj_color(a)
adj_color(a, colors = 3)
adj_color(a, groups = c("AD", "BC", "BC", "AD"))
adj_edges Add and subtract edges from an adjacency list
Description
Add and subtract edges from an adjacency list
Usage
adj_add_edges(x, v1, v2, ids = NULL)
adj_subtract_edges(x, v1, v2, ids = NULL)
Arguments
X An adj list or object coercible to an adj list
vi vector of vertex identifiers for the first vertex. Can be an integer index or a value
to look up in ids, if that argument is provided. If more than one identifier is
present, connects each to corresponding entry in v2.
v2 vector of vertex identifiers for the second vertex. Can be an integer index or a

value to look up in ids, if that argument is provided. If more than one identifier
is present, connects each to corresponding entry in v1.

adj_from_shp 5

ids A vector of unique node identifiers. Each provided vector in v1 and v2 will be
matched to these identifiers. If NULL, the identifiers are taken to be 1-indexed
integers.
Value
An adj list
Examples

a <- adj(c(2, 3), 1, 1)
adj_add_edges(a, 2, 3)
adj_subtract_edges(a, 1, 2)

adj_from_shp Create an adj list from a set of spatial polygons

Description

Requires that the geos package be installed.

Usage

adj_from_shp(shp)

Arguments

shp An object convertible to geos geometries representing polygons, such as an sf

object, well-known text strings, or geos geometries.

Value

An adj list
Examples

shp <= ¢(

"POLYGON ((@ @, 10, 11, 01, 0 0))",

"POLYGON ((@ 1, 1 1, 12, @2, @ 1))",

"POLYGON ((1 @, 2@, 21, 11, 10))",

"POLYGON ((1 1, 21, 22, 12, 1 1)"

)

adj_from_shp(shp)

6 adj_indexing

adj_indexing Indexing operations on adjacency lists

Description

adj overrides the default [and c() methods to allow for filtering, reordering, and concatenating
adjacency lists while ensuring that indices remain internally consistent.

Usage

S3 method for class 'adj'

x[i, ...]

S3 method for class 'adj'

c(...)
Arguments

X An adjacency list of class adj

i Indexing vector

For c(), adjacency lists to concatenate. Ignored for [.

Details

When duplicate indices are present in the adjacency list, indexing is performed by slicing the ad-
jacency matrix, which is slower and requires more memory. For large adjacency lists, slicing with
duplicates will error for this reason; set options(adj.max_matrix_slice = Inf) to allow it, but
be aware of the possible memory usage implications.

Value

A reindexed adjacency list for [, and a concatenated adjacency list for c().

Examples

a <- adj(c(2, 3), c(1, 3), c(1, 2))
al1:2]
all(sample(a) == a) # any permutation yields the same graph

a <- adj(konigsberg$bridge_to, ids = konigsberg$area, duplicates = "remove")
c(a, a) # concatenates graphs with no connecting edges

adj_laplacian 7

adj_laplacian Compute the Laplacian matrix of an adjacency list

Description
The Laplacian matrix of a graph is defined as L =D - A, where D is the degree matrix (a diagonal
matrix where D[, i] is the degree of node i) and A is the adjacency matrix.

Usage
adj_laplacian(x, sparse = TRUE)

Arguments
X An adj list
sparse Whether to return a sparse matrix (of class dgCMatrix) or a dense matrix. Re-
quires the Matrix package for sparse output.
Value

A matrix representing the Laplacian of the graph.

Examples

a <- adj(konigsberg$bridge_to, ids = konigsberg$area, duplicates = "allow")
L <- adj_laplacian(a, sparse = FALSE)
L

count spanning trees (any minor of the Laplacian)
det(L[-1, -11)

adj_matrix Convert adjacency lists to and from adjacency matrices

Description

Adjacency lists can be converted to adjacency matrices and vice versa without loss.

Usage
adj_from_matrix(
X ’
duplicates = c("warn”, "error"”, "allow", "remove"),
self_loops = c("warn”, "error"”, "allow", "remove")

)

S3 method for class 'adj'
as.matrix(x, sparse = FALSE, ...)

8 adj_quotient

Arguments
X An adjacency list or matrix
duplicates Controls handling of duplicate neighbors. The value "warn” warns the user;
"error” throws an error; "allow” allows duplicates, and "remove” removes
duplicates silently and then sets the corresponding attribute to "error”.
self_loops Controls handling of self-loops (nodes that are adjacent to themselves). The
value "warn” warns the user; "error” throws an error; "allow” allows self-
loops, and "remove"” removes self-loops silently and then sets the corresponding
attribute to "error”.
sparse If TRUE, return a sparse matrix, which is often preferable for computation. See
Matrix::sparseMatrix for details on this class.
Ignored.
Value

adj_from_matrix() returns an adj list; as.matrix() returns a matrix.

Examples
adj_from_matrix(1 - diag(3))
a = adj(konigsberg$bridge_to, ids = konigsberg$area, duplicates = "allow")

mat = as.matrix(a)
all(a == adj_from_matrix(mat, duplicates = "allow”)) # TRUE

adj_quotient Quotient an adjacency list by a vector

Description

Computes the quotient graph of a given adjacency list by a provided grouping vector. Nodes in
the same groups are merged into single nodes in the quotient graph. The resulting multi-edges and
self-loops are handled according to the specified parameters.

Usage
adj_quotient(
X’
groups,
duplicates = c("remove”, "allow”, "error”, "warn"),
self_loops = c("remove”, "allow", "error”, "warn")

)

adj_quotient_int(
X’
groups,

adj_zero_index 9

n_groups,
duplicates = c("remove”, "allow”, "error”, "warn"),
self_loops = c("remove”, "allow", "error"”, "warn”
)
Arguments
X An adj list
groups A vector specifying the group membership for each node in x. adj_quotient()
will process this vector with vctrs: :vec_group_id(); adj_quotient_int()
expects an (1-indexed) integer vector.
duplicates Controls handling of duplicate neighbors. The value "warn” warns the user;
"error"” throws an error; "allow"” allows duplicates, and "remove” removes
duplicates silently and then sets the corresponding attribute to "error”.
self_loops Controls handling of self-loops (nodes that are adjacent to themselves). The
value "warn” warns the user; "error” throws an error; "allow” allows self-
loops, and "remove"” removes self-loops silently and then sets the corresponding
attribute to "error”.
n_groups Number of unique groups.
Value

A new adj list.

Examples

a <- adj(konigsberg$bridge_to, ids = konigsberg$area, duplicates = "allow")
merge two islands (A and D)

adj_quotient(a, c("AD", "B", "C", "AD"))

adj_quotient_int(a, c(1L, 2L, 3L, 1L), n_groups = 3L, self_loops = "allow")

adj_zero_index Convert adjacency list to use zero-based indices

Description

Subtracts 1 from each index in the adjacency list and returns a bare list of integer vectors, suitable
for providing to C/C++ code that uses zero-based indexing.

Usage

adj_zero_index(x)

Arguments

X An adjacency list.

10

format.adj
Value
A list of integer vectors with zero-based indices.
Examples
a <- adj(konigsberg$bridge_to, ids = konigsberg$area, duplicates = "allow")
adj_zero_index(a)
format.adj Format and print methods for adjacency lists
Description
Adjacency lists are printed as sets of indices for each node.
Usage
S3 method for class 'adj'
format(x, n =3, ...)
S3 method for class 'adj'
print(x, n =3, ...)
Arguments
X An adj list.
n Maximum number of neighbors to show before truncating with an ellipsis.
Ignored.
Value

A character vector representing each entry in the adjacency list.

Examples
a = adj(konigsberg$bridge_to, ids = konigsberg$area, duplicates = "allow")
format(a)
print(a, n = 5)

konigsberg 11

konigsberg The Seven Bridges of Konigsberg

Description

A dataset encoding the adjacency structure of seven bridges in Konigsberg, Prussia, as described by
Leonhard Euler in 1736.

Usage

konigsberg

Format

konigsberg:

A data frame with 4 rows and 4 columns:

area The four land areas, A-D, as described by Euler. Area ’A’ corresponds to the central island
of Kneiphof.

bridge_to A list column, where each entry is a character vector listing the areas directly con-
nected by bridges to the area in that row.

x The longitude of the area center, for plotting.
y The latitude of the area center, for plotting.

References

Euler, Leonhard (1741). "Solutio problematis ad geometriam situs pertinentis". Commentarii
Academiae Scientiarum Petropolitanae: 128-140.

plot.adj Basic plotting for adjacency lists

Description

Plots an adjacency list as a set of nodes and edges, with optional coordinate values for each node.
Edge thickness is proportional to the number of edges between each pair of nodes. Self loops are
represented with larger points.

Usage

S3 method for class 'adj'
plot(x, y = NULL, edges = NULL, nodes = TRUE, xlab = NA, ylab = NA, ...)

12 t.adj

Arguments
X An adj list
y Optional matrix of coordinates for each node. If NULL, nodes are plotted along
the diagonal. Other types are accepted as long as they are convertible to a 2-
column matrix with as.matrix(y)[, 1:2], which is run internally.
edges Type of line to use when drawing edges. Passed to graphics: :1lines(). When
y is NULL, defaults to "s" (step function); otherwise defaults to "1" for a straight
line.
nodes If TRUE, nodes are plotted as points; if FALSE, only edges are plotted.
xlab, ylab Labels for the x- and y-axes.
Additional arguments passed on to the initial plot() of the nodes.
Value

NULL, invisibly.

Examples
plot(adj(2, c(1, 3), 2))
plot(adj(2, c(1, 2, 3), c(2, 2, 2), self_loops="allow”, duplicates="allow"))

a <- adj(konigsberg$bridge_to, ids = konigsberg$area, duplicates = "allow")
plot(a, konigsberglc(”"x", "y")1)

t.adj Transpose an adjacency list

Description

Reverse the direction of edges in an adjacency list. For undirected graphs, this is a no-op.

Usage
S3 method for class 'adj'
t(x)

Arguments

X An adj list

Value

An adj list with edges reversed.

Examples

a <- adj(2, 3, 1)
all(t(a) == adj(3, 1, 2))

Index

* datasets
konigsberg, 11
[.adj (adj_indexing), 6

adj, 2

adj_add_edges (adj_edges), 4
adj_color, 3

adj_edges, 4

adj_from_matrix (adj_matrix), 7
adj_from_shp, 5

adj_indexing, 6

adj_laplacian, 7

adj_matrix, 7

adj_quotient, 8

adj_quotient_int (adj_quotient), 8
adj_subtract_edges (adj_edges), 4
adj_to_list (adj), 2
adj_zero_index, 9

as.matrix.adj (adj_matrix), 7
as_adj (adj), 2

c.adj (adj_indexing), 6
format.adj, 10
graphics::1lines(), 12
is_adj (adj), 2
konigsberg, 11
Matrix::sparseMatrix, 8

plot.adj, 11
print.adj (format.adj), 10

t.adj, 12

vctrs: :vec_group_id(), 9

13

	adj
	adj_color
	adj_edges
	adj_from_shp
	adj_indexing
	adj_laplacian
	adj_matrix
	adj_quotient
	adj_zero_index
	format.adj
	konigsberg
	plot.adj
	t.adj
	Index

