
Package ‘bidser’
February 19, 2026

Version 0.2.0

Title Work with 'BIDS' (Brain Imaging Data Structure) Projects

Description Tools for working with 'BIDS' (Brain Imaging Data Structure)
formatted neuroimaging datasets. The package provides functionality for
reading and querying 'BIDS'-compliant projects, creating mock 'BIDS'
datasets for testing, and extracting preprocessed data from 'fMRIPrep'
derivatives. It supports searching and filtering 'BIDS' files by various
entities such as subject, session, task, and run to streamline
neuroimaging data workflows. See Gorgolewski et al. (2016)
<doi:10.1038/sdata.2016.44> for the 'BIDS' specification.

License MIT + file LICENSE

Encoding UTF-8

ByteCompile true

RoxygenNote 7.3.3

Imports stringr, data.tree, neuroim2, tidyselect, dplyr, assertthat,
crayon, fs, jsonlite, magrittr, purrr, readr, rlang,
stringdist, tibble, tidyr, httr, rio

Suggests ggplot2, plotly, patchwork, viridis, scales, knitr,
rmarkdown, testthat, covr, lintr, gluedown, RNifti, future,
future.apply

VignetteBuilder knitr

URL https://github.com/bbuchsbaum/bidser,

https://bbuchsbaum.github.io/bidser/

BugReports https://github.com/bbuchsbaum/bidser/issues

Config/Needs/website albersdown

NeedsCompilation no

Author Bradley Buchsbaum [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1108-4866>)

Maintainer Bradley Buchsbaum <brad.buchsbaum@gmail.com>

Repository CRAN

Date/Publication 2026-02-19 20:20:12 UTC

1

https://doi.org/10.1038/sdata.2016.44
https://github.com/bbuchsbaum/bidser
https://bbuchsbaum.github.io/bidser/
https://github.com/bbuchsbaum/bidser/issues
https://orcid.org/0000-0002-1108-4866

2 Contents

Contents
anat_parser . 3
bids_check_compliance . 4
bids_heatmap . 5
bids_parser . 6
bids_project . 7
bids_subject . 8
bids_summary . 10
bids_transform . 11
brain_mask . 13
build_subject_graph . 14
check_func_scans . 15
clear_example_bids_cache . 16
confound_files . 17
confound_set . 18
confound_strategy . 20
create_mock_bids . 21
create_preproc_mask . 24
create_preproc_mask.bids_project . 25
create_preproc_mask.mock_bids_project . 26
create_smooth_transformer . 27
decode_bids_entities . 28
encode . 28
event_files . 29
file_pairs . 31
flat_list . 32
fmap_parser . 33
fmriprep_anat_parser . 34
fmriprep_func_parser . 34
func_parser . 35
func_scans . 35
func_scans.bids_project . 37
get_example_bids_dataset . 38
get_repetition_time . 39
infer_tr . 40
list_confound_sets . 42
list_confound_strategies . 42
list_pack_bids . 43
load_all_events . 44
mask_files . 45
pack_bids . 47
parse . 49
participants . 50
participants.mock_bids_project . 51
plot.bids_confounds . 52
plot.bids_project . 53
plot_bids . 54

anat_parser 3

preproc_scans . 55
preproc_scans.bids_project . 57
print.mock_bids_project . 59
read_confounds . 60
read_confounds.bids_project . 61
read_confounds.mock_bids_project . 63
read_events . 64
read_events.bids_project . 65
read_events.mock_bids_project . 67
read_func_scans.bids_project . 68
read_preproc_scans.bids_project . 69
read_sidecar . 71
search_files . 72
sessions . 74
sessions.mock_bids_project . 75
surface_files . 76
tasks . 78
tasks.mock_bids_project . 79
transform_files . 79

Index 82

anat_parser Anatomical parser constructor

Description

Anatomical parser constructor

Usage

anat_parser()

Value

An anatomical BIDS parser object for parsing anatomical files

Examples

Create an anatomical parser
parser <- anat_parser()

Parse an anatomical file
result <- parse(parser, "sub-01_T1w.nii.gz")

4 bids_check_compliance

bids_check_compliance Basic BIDS Compliance Checks

Description

This function performs a simple, lightweight check of common BIDS requirements:

• Checks that participants.tsv and dataset_description.json exist at the root.

• Ensures all subject directories begin with sub-.

• If sessions are present, ensures that session directories begin with ses-.

Usage

bids_check_compliance(x)

bids_check_compliance(x)

Arguments

x A bids_project object.

Details

Note: This is not a full BIDS validator. For complete validation, use the official BIDS validator.

Value

A list with compliance check results

A list with:

• passed (logical): TRUE if all checks passed, FALSE otherwise.

• issues (character vector): Descriptions of any issues found.

Examples

tryCatch({
ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
compliance <- bids_check_compliance(proj)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

bids_heatmap 5

bids_heatmap Create a specialized heatmap visualization of BIDS data

Description

This function creates a heatmap visualization of a BIDS project, where the x-axis represents subjects
and the y-axis represents tasks by run. Each cell in the heatmap is colored by file size, providing
an intuitive view of data completeness and size distribution across the project. This is particularly
useful for quality control and identifying missing data.

Usage

bids_heatmap(
x,
interactive = TRUE,
color_scheme = "viridis",
file_type = "func",
highlight_missing = TRUE,
text_size = 2.5,
rotate_labels = TRUE

)

Arguments

x A bids_project object

interactive Logical. Whether to create an interactive plot (default TRUE)

color_scheme Character. Name of the color palette to use (default "viridis")

file_type Character. Type of files to visualize (default "func")
highlight_missing

Logical. Whether to highlight missing data points (default TRUE)

text_size Numeric. Size of text labels (default 2.5)

rotate_labels Logical. Whether to rotate the axis labels (default TRUE)

Value

A plot object (ggplot2 or plotly depending on interactive parameter)

Examples

Create a basic interactive heatmap for a BIDS dataset
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
bids_heatmap(proj)

Create a static heatmap with custom settings

6 bids_parser

bids_heatmap(proj,
interactive = FALSE,
color_scheme = "plasma",
text_size = 3,
rotate_labels = FALSE)

Visualize anatomical data with missing data highlighted
bids_heatmap(proj,

file_type = "anat",
highlight_missing = TRUE,
color_scheme = "magma")

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

bids_parser BIDS filename parsers using regex

Description

These functions create parsers for different types of BIDS files using regex-based pattern matching
instead of parser combinators. Create a parser for a generic BIDS file

Usage

bids_parser()

Details

This parser tries to match against various known parsers (anat, func, fmriprep anat/func).

Value

A BIDS parser object that can parse various types of BIDS files

Examples

Create a generic BIDS parser
parser <- bids_parser()

Parse different types of files
anat_result <- parse(parser, "sub-01_T1w.nii.gz")
func_result <- parse(parser, "sub-01_task-rest_bold.nii.gz")
prep_result <- parse(parser, "sub-01_task-rest_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz")

bids_project 7

bids_project Create a BIDS Project Object

Description

This function creates a BIDS project object from a directory containing BIDS-formatted neuroimag-
ing data. It can optionally load preprocessed derivatives from fMRIPrep. The function validates the
basic BIDS structure and provides methods for accessing raw and preprocessed data, querying sub-
jects, sessions, and tasks, reading event files, and checking BIDS compliance.

Usage

bids_project(path = ".", fmriprep = FALSE, prep_dir = "derivatives/fmriprep")

Arguments

path Character string. The file path to the root of the BIDS project. Defaults to the
current directory (".").

fmriprep Logical. Whether to load the fMRIPrep derivatives folder hierarchy. Defaults to
FALSE.

prep_dir Character string. The location of the fMRIPrep subfolder relative to the deriva-
tives directory. Defaults to "derivatives/fmriprep".

Value

A bids_project object representing the BIDS project structure. The object provides methods for:

• Accessing raw and preprocessed data files

• Querying subjects, sessions, and tasks

• Reading event files and confound regressors

• Checking BIDS compliance

• Extracting metadata from file names Returns NULL if the directory does not contain a valid
BIDS dataset.

Examples

Create a BIDS project
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)

Get all functional scans
all_scans <- func_scans(proj)

Get scans for specific subjects
sub_scans <- func_scans(proj, subid="0[123]")

8 bids_subject

Get scans for a specific task
task_scans <- func_scans(proj, task="rest")

Get scans from specific runs
run_scans <- func_scans(proj, run="0[123]")

Combine multiple filters
filtered_scans <- func_scans(proj,

subid="01",
task="rest",
run="01")

Get relative paths instead of full paths
rel_scans <- func_scans(proj, full_path=FALSE)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

bids_subject Access a single subject from a BIDS project

Description

bids_subject returns a lightweight interface with helper functions for retrieving data associated
with one subject.

bids_subject returns a lightweight facade that exposes convenience functions to work with all
data associated with one subject within a BIDS project.

This function extracts a single subject’s data from a BIDS project, creating a new BIDS project
object containing only that subject’s files and metadata.

Usage

bids_subject(x, subid, ...)

bids_subject.bids_project(x, subid, ...)

bids_subject(x, subid, ...)

Arguments

x A bids_project object.

subid Character string. The subject ID to extract (without the "sub-" prefix).

... Additional arguments (not currently used).

bids_subject 9

Value

A list of helper functions for the subject.

A list containing subject-specific helper functions. Each function automatically filters results for
the specified subject. The returned object contains the following callable functions:

events(...) Returns nested tibble with event data for this subject. Equivalent to read_events(project,
subid = "XX", ...). Additional arguments (task, session, run, nest, etc.) can be passed.

event_files(...) Returns character vector of event file paths for this subject. Equivalent to
event_files(project, subid = "XX", ...). Additional arguments (task, session, run, full_path,
etc.) can be passed.

scans(...) Returns character vector of functional scan file paths for this subject. Equivalent to
func_scans(project, subid = "XX", ...). Additional arguments (task, session, run, kind,
full_path, etc.) can be passed.

confounds(...) Returns confound data for this subject (requires fMRIPrep derivatives). Equiv-
alent to read_confounds(project, subid = "XX", ...). Additional arguments (task, ses-
sion, run, cvars, npcs, etc.) can be passed.

preproc_scans(...) Returns preprocessed scan paths for this subject (requires fMRIPrep deriva-
tives). Equivalent to preproc_scans(project, subid = "XX", ...). Additional arguments
(task, session, run, space, variant, etc.) can be passed.

brain_mask(...) Creates brain mask for this subject (requires fMRIPrep derivatives). Equivalent
to brain_mask(project, subid = "XX", ...). Additional arguments (thresh, etc.) can be
passed.

A new bids_project object containing only the specified subject’s data. Returns NULL if the
subject is not found in the project.

Examples

tryCatch({
ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
subj <- bids_subject(proj, "01")
subj$events()
subj$scans()

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

tryCatch({
ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)

Create subject interface for subject 01
subj <- bids_subject(proj, "01")

10 bids_summary

Get functional scan paths for this subject
scan_paths <- subj$scans()
print(paste("Subject 01 has", length(scan_paths), "functional scans"))

Get event file paths for this subject
event_paths <- subj$event_files()
print(paste("Subject 01 has", length(event_paths), "event files"))

Read event data for this subject
event_data <- subj$events()
print("Event data structure:")
print(event_data)

You can still pass additional filtering arguments
For example, get only specific tasks:
task_scans <- subj$scans(task = "balloonanalogrisktask")

Dataset cache is intentionally retained for performance.
}, error = function(e) {

message("Example requires internet connection: ", e$message)
})

Create a subject interface
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)

Create subject interface for subject 01
subj <- bids_subject(proj, "01")

Use the helper functions
scans <- subj$scans()
events <- subj$event_files()
print(paste("Subject 01:", length(scans), "scans,", length(events), "events"))

Dataset cache is intentionally retained for performance.
}, error = function(e) {

message("Example requires internet connection: ", e$message)
})

bids_summary Summarize a BIDS dataset

Description

Provides a quick summary of dataset statistics, including:

• Number of subjects

bids_transform 11

• Number of sessions (if applicable)

• Available tasks and the number of runs per task

• Total number of runs

Usage

bids_summary(x)

bids_summary(x)

Arguments

x A bids_project object.

Value

A list containing summary statistics about the BIDS dataset

A list with summary information:

• n_subjects: number of participants

• n_sessions: number of sessions (if any), otherwise NULL

• tasks: a data frame with task and n_runs columns

• total_runs: total number of runs across the dataset

Examples

tryCatch({
ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
summary <- bids_summary(proj)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

bids_transform Apply a transformation to BIDS files

Description

This function orchestrates the process of selecting files from a BIDS project, applying a transforma-
tion to each file, and saving the output in a new BIDS derivative directory. It leverages the existing
bidser parsing and search infrastructure.

12 bids_transform

Usage

bids_transform(x, transformer, pipeline_name, ...)

Arguments

x A bids_project object.

transformer A function that performs the transformation. It must take the input file path and
return the output file path. The transformer is responsible for creating the output
file.

pipeline_name The name for the new derivative pipeline.

... Additional arguments passed to search_files to select files (e.g., subid =
"01", task = "rest").

Value

A character vector of paths to the newly created files.

Examples

tryCatch({
ds_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds_path)

Create a simple transformer that adds a description
add_desc_transformer <- function(infile) {
entities <- encode(basename(infile))
entities$desc <- if (is.null(entities$desc)) "smooth6mm" else

paste(entities$desc, "smooth6mm", sep="")

Generate new filename
new_name <- decode_bids_entities(entities)
outfile <- file.path(dirname(infile), new_name)

For demo, just copy the file (real transformer would process it)
file.copy(infile, outfile)
return(outfile)

}

Apply transformation to functional files for subject 01
new_files <- bids_transform(proj, add_desc_transformer, "smoothed",

subid = "01", suffix = "bold.nii.gz")
print(length(new_files))

}, error = function(e) {
message("Example failed: ", e$message)

})

brain_mask 13

brain_mask Retrieve a brain mask for a subject

Description

This convenience function wraps create_preproc_mask() and returns a brain mask volume for a
given subject.

Usage

brain_mask(x, subid, ...)

S3 method for class 'bids_project'
brain_mask(x, subid, ...)

Arguments

x A bids_project object

subid A regular expression pattern to match subject IDs

... Additional arguments passed to methods

Value

A logical mask volume

Examples

Download and load a BIDS project with fMRIPrep derivatives
tryCatch({

ds001_deriv_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds001_deriv_path, fmriprep=TRUE)
mask <- brain_mask(proj, subid="01")

Create mask for multiple subjects
multi_mask <- brain_mask(proj, subid=".*")

Clean up
unlink(ds001_deriv_path, recursive=TRUE)

}, error = function(e) {
message("Example requires derivatives dataset: ", e$message)

})

14 build_subject_graph

build_subject_graph Build Subject Graph Structure

Description

Creates a structured list or tibble containing all available data for a single subject, organized by
data type. This provides a comprehensive view of all available files for a subject, useful for batch
processing and pipeline ingestion.

Usage

build_subject_graph(x, subid, session = ".*", flatten = FALSE, ...)

S3 method for class 'bids_project'
build_subject_graph(x, subid, session = ".*", flatten = FALSE, ...)

S3 method for class 'mock_bids_project'
build_subject_graph(x, subid, session = ".*", flatten = FALSE, ...)

Arguments

x A bids_project or mock_bids_project object.

subid Subject identifier (with or without sub- prefix).

session Optional session filter. Default ".*" matches all sessions.

flatten Logical. If FALSE (default), return a nested list structure. If TRUE, return a flat
tibble with columns for file_type and metadata.

... Additional arguments passed to underlying query functions.

Value

If flatten = FALSE (default), a named list with class bids_subject_graph:

subid Subject identifier (without "sub-" prefix)

sessions Character vector of available sessions

epi Named list of preprocessed EPI file paths, keyed by task.run

anat List with t1w and masks sublists

transforms Named list of transform files, keyed by from_to_to format

surfaces Nested list by space, then hemisphere (L/R)

confounds Character vector of confound file paths

If flatten = TRUE, a tibble with columns:

file_type Type of file (epi, anat, transform, surface, confound)

path File path

subid, session, task, run, space, hemi, from, to BIDS metadata

check_func_scans 15

Examples

Build subject graph
tryCatch({

ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep = TRUE)

Get nested structure
graph <- build_subject_graph(proj, "01")
names(graph)

Get flat tibble
flat <- build_subject_graph(proj, "01", flatten = TRUE)
head(flat)

Clean up
unlink(ds_path, recursive = TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

check_func_scans Check Functional Scans in a BIDS Project

Description

This function performs a comprehensive inspection of functional scans within a BIDS project, pro-
viding detailed summaries of scan counts and file sizes per subject and task. It helps identify
potential issues such as missing scans, inconsistent file sizes, or unexpected variations in the data.

Usage

check_func_scans(x)

Arguments

x A bids_project object created by bids_project().

Value

A list containing:

• scans: A tibble with details of all functional scans, including:

– Subject ID
– Task name
– Run number
– File size
– Full file path

16 clear_example_bids_cache

• tasklist: A vector of unique tasks found in the project

• scans_per_subject: A summary tibble showing the number of scans per subject

If multiple tasks are present, also includes:

• scans_per_task: Summary of scan counts by task

• scans_per_task_subject: Summary of scan counts by subject and task

• size_per_task: Tibble with file size statistics by task

If only one task is present:

• size_per_subject: Tibble with file size statistics by subject

Examples

Check functional scans in a BIDS dataset
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
scan_check <- check_func_scans(proj)
print(scan_check)

Filter for specific subjects
sub01_check <- check_func_scans(proj, subid="01")

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

clear_example_bids_cache

Clear Example BIDS Dataset Cache

Description

Clears the session-level cache of downloaded example BIDS datasets. This can be useful to free up
memory or force re-download of datasets.

Usage

clear_example_bids_cache()

Value

Invisible NULL

confound_files 17

Examples

Clear the cache
clear_example_bids_cache()

confound_files Get confound files from a BIDS project

Description

This function retrieves a vector of confound files from a BIDS project that match specified criteria.
Confound files in BIDS derivatives (typically from fMRIPrep) contain nuisance variables that can
be used for denoising fMRI data, such as motion parameters, physiological signals, and other noise
components.

Searches the mock BIDS structure for files matching typical confound file patterns (e.g., *_confounds*.tsv,
_regressors.tsv, *_timeseries*.tsv) within the derivatives directory.

Usage

confound_files(x, ...)

S3 method for class 'bids_project'
confound_files(x, subid = ".*", task = ".*", session = ".*", ...)

S3 method for class 'mock_bids_project'
confound_files(
x,
subid = ".*",
task = ".*",
session = ".*",
run = ".*",
full_path = FALSE,
...

)

Arguments

x A mock_bids_project object.

... Additional arguments passed to search_files.

subid Regex pattern for subject IDs. Default ".*".

task Regex pattern for task names. Default ".*".

session Regex pattern for session IDs. Default ".*".

run Regex pattern for run indices. Default ".*".

full_path If TRUE, return full paths (prefixed with x$path). If FALSE (default), return
relative paths.

18 confound_set

Details

This function assumes confound files reside in the derivatives path specified by x$prep_dir and
were defined in the file_structure passed to create_mock_bids with fmriprep=TRUE.

Value

A character vector of file paths to confound files matching the specified criteria. If no matching files
are found, returns NULL.

A character vector of file paths

A character vector of relative or full paths to potential confound files, or NULL if none are found.

Examples

Get all confound files from a BIDS project with fMRIPrep derivatives
tryCatch({

ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep=TRUE)
conf_files <- confound_files(proj)

Get confound files for specific subjects and tasks
confound_files(proj, subid="sub-01", task="balloonanalogrisktask")

Clean up
unlink(ds_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

Setup mock project with a derivative confound file
participants_df <- tibble::tibble(participant_id = "01")
file_structure_df <- tibble::tribble(

~subid, ~session, ~datatype, ~task, ~run, ~suffix, ~fmriprep, ~desc,
"01", NA, "func", "taskA", "01",
"desc-confounds_timeseries.tsv", TRUE, "confounds"

)
mock_proj <- create_mock_bids("ConfoundMock", participants_df, file_structure_df)

Find confound files
confound_files(mock_proj)

Find for specific subject
confound_files(mock_proj, subid="01")

confound_set Convenience confound sets for fMRIPrep

confound_set 19

Description

Provides predefined, version-robust groups of confound variable names as described in the fM-
RIPrep documentation. These sets abstract over naming changes between fMRIPrep releases via
the internal alias resolver used by read_confounds().

Usage

confound_set(name, n = NULL)

Arguments

name Character. The name of the convenience set (see list above).

n Optional integer used by CompCor sets to limit the number of components (e.g.,
first 5 or 6). Ignored for other sets.

Details

In addition to exact names, wildcard patterns are supported by the confound resolver:

• prefix* selects all columns that start with prefix (e.g., cosine_*, motion_outlier_*,
a_comp_cor_*).

• prefix*[N] selects the first N matches (e.g., a_comp_cor_*[6]).

• Suffix combinations such as _derivative1, _power2, and _derivative1_power2 are re-
solved across both old and new base names (e.g., trans_x_derivative1 also finds X_derivative1
if present).

Available sets (case-insensitive):

• "motion6": 6 rigid-body motion parameters: trans_x, trans_y, trans_z, rot_x, rot_y,
rot_z.

• "motion12": motion6 + first temporal derivatives (adds *_derivative1).

• "motion24": motion12 + quadratic terms of base and derivatives (adds *_power2 and *_derivative1_power2).

• "global3": global signals: csf, white_matter, global_signal.

• "9p": motion6 + global3 (9 parameters total).

• "36p": motion24 + global3 plus their derivatives and quadratics (i.e., the canonical 36-
parameter set).

• "acompcor": anatomical CompCor components (a_comp_cor_*). Use n to cap the number of
components retained, e.g., n = 6 -> a_comp_cor_*[6].

• "tcompcor": temporal CompCor components (t_comp_cor_*). Supports n as above.

• "compcor": both anatomical and temporal CompCor (applies n to each family if provided).

• "cosine": discrete cosine-basis regressors (matches both cosine_* and cosine*).

• "outliers": outlier/censoring covariates including framewise_displacement, rmsd (if present),
motion_outlier_*, and non_steady_state_outlier*.

• "dvars": DVARS family: dvars, std_dvars, non_std_dvars, vx_wisestd_dvars (resolved
to whichever names exist in your dataset).

• "fd": framewise displacement only (framewise_displacement).

20 confound_strategy

Value

A character vector of confound variable names and/or wildcard tokens that can be passed to read_confounds(...,
cvars = confound_set(...)).

Examples

Common usage: 24-parameter motion set
confound_set("motion24")

36-parameter model (Satterthwaite/Friston-style)
confound_set("36p")

First 6 anatomical CompCor components
confound_set("acompcor", n = 6)

All cosine regressors and outlier indicators
confound_set("cosine")
confound_set("outliers")

confound_strategy Confound denoising strategies

Description

Creates a structured confound strategy object that specifies which variables to reduce via PCA and
which to keep as-is. Pass the result directly to read_confounds(..., cvars = confound_strategy(...)).

Usage

confound_strategy(
name = NULL,
pca_vars = NULL,
raw_vars = NULL,
perc_var = -1,
npcs = -1

)

Arguments

name Character. Name of a predefined strategy (see above), or NULL for a custom
strategy.

pca_vars Character vector of confound names/wildcards to include in PCA reduction. Ig-
nored when name is specified.

raw_vars Character vector of confound names/wildcards to keep without reduction. Ig-
nored when name is specified.

perc_var Numeric. Percentage of variance to retain from PCA (default -1, meaning use
npcs instead).

npcs Integer. Number of PCs to retain (default -1, meaning use perc_var instead).

create_mock_bids 21

Details

When a strategy is passed to read_confounds, the function:

1. Selects the pca_vars columns and reduces them via PCA (retaining perc_var\

2. Selects the raw_vars columns and keeps them unchanged.

3. Column-binds the PCA scores with the raw columns.

Available named strategies:

"pcabasic80" PCA over motion24 + aCompCor + tCompCor + CSF + white matter, retaining 80\
Discrete cosine regressors are appended un-reduced.

Value

A confound_strategy object (S3 class) that can be passed as the cvars argument to read_confounds().

Examples

Named strategy
confound_strategy("pcabasic80")

Custom strategy: PCA motion + compcor to 5 PCs, keep cosine regressors
confound_strategy(

pca_vars = c(confound_set("motion24"), confound_set("compcor")),
raw_vars = confound_set("cosine"),
npcs = 5

)

create_mock_bids Create a Mock BIDS Project Object

Description

Generates an in-memory representation of a BIDS project, suitable for testing and demonstration
without requiring actual data files. Can optionally create a "stub" directory structure on disk.

Usage

create_mock_bids(
project_name,
participants,
file_structure,
dataset_description = NULL,
event_data = list(),
confound_data = list(),
create_stub = FALSE,
stub_path = NULL,
prep_dir = "derivatives/fmriprep"

)

22 create_mock_bids

Arguments

project_name A character string for the project name.

participants Either a data.frame mirroring participants.tsv content (must include ’par-
ticipant_id’) or a character vector of participant IDs (e.g., c("01", "02")). If
IDs are given, a minimal part_df is created.

file_structure A data.frame or tibble defining the files in the mock structure. Each row
represents a file. Required columns: subid, datatype, suffix. Optional BIDS
entity columns: session, task, run, acq, rec, dir, space, desc, etc. Must also
include a logical column fmriprep indicating if the file belongs in the deriva-
tives directory specified by prep_dir.

dataset_description

A list representing the dataset_description.json content. Defaults to a min-
imal valid description.

event_data A named list where names are the relative paths of events.tsv files (e.g.,
"sub-01/func/sub-01_task-A_run-1_events.tsv") and values are the correspond-
ing tibble or data.frame content for those files. These paths must correspond
to files defined in file_structure with a suffix like "events.tsv".

confound_data A named list where names are relative paths of confound TSV files within the
derivatives directory and values are their tibble or data.frame content. Paths
must match files defined in file_structure.

create_stub Logical (default FALSE). If TRUE, write a stub BIDS directory structure to disk at
stub_path. Zero-byte files are created except for participants.tsv, dataset_description.json,
and events.tsv files specified in event_data.

stub_path Character string, the path where the stub directory will be created. Required if
create_stub = TRUE.

prep_dir Character string, the path relative to the root for derivatives (default "deriva-
tives/fmriprep"). This path structure will be used both in the internal data.tree
and for stub creation.

Value

An object of class mock_bids_project.

Examples

--- Example Setup ---
participants_df <- tibble::tibble(participant_id = c("01", "02"), age = c(25, 30))

file_structure_df <- tibble::tribble(
~subid, ~session, ~datatype, ~task, ~run, ~suffix, ~fmriprep, ~desc,
"01", NA, "anat", NA, NA, "T1w.nii.gz", FALSE, NA,
"01", NA, "func", "taskA", "01", "bold.nii.gz", FALSE, NA,
"01", NA, "func", "taskA", "01", "events.tsv", FALSE, NA,
"02", "test", "anat", NA, NA, "T1w.nii.gz", FALSE, NA,
"02", "test", "func", "taskA", "01", "bold.nii.gz", FALSE, NA,
"02", "test", "func", "taskA", "01", "events.tsv", FALSE, NA,
Example derivative

create_mock_bids 23

"01", NA, "func", "taskA", "01", "preproc_bold.nii.gz", TRUE, "preproc"
)

Define event data (paths must match generated structure)
event_data_list <- list()
event_data_list[["sub-01/func/sub-01_task-taskA_run-01_events.tsv"]] <- tibble::tibble(

onset = c(1.0, 5.0), duration = c(0.5, 0.5), trial_type = c("condA", "condB")
)
event_data_list[["sub-02/ses-test/func/sub-02_ses-test_task-taskA_run-01_events.tsv"]] <-

tibble::tibble(
onset = c(1.5, 5.5), duration = c(0.5, 0.5), trial_type = c("condC", "condD")

)

Create the mock project (in memory only)
mock_proj <- create_mock_bids(

project_name = "MockTaskA",
participants = participants_df,
file_structure = file_structure_df,
event_data = event_data_list

)

Create the mock project and write stubs
mock_proj_stub <- create_mock_bids(

project_name = "MockTaskA_stub",
participants = c("01", "02"), # Example using just IDs
file_structure = file_structure_df,
event_data = event_data_list,
create_stub = TRUE,
stub_path = tempdir() # Use a temporary directory for example

)

--- Using the Mock Project ---
print(mock_proj)
print(participants(mock_proj))
print(tasks(mock_proj))
print(sessions(mock_proj)) # Should return "test"

print(func_scans(mock_proj, subid = "01"))
print(event_files(mock_proj, subid = "02", session = "test"))

Read the injected event data
events_sub1 <- read_events(mock_proj, subid = "01")
print(events_sub1)
if (nrow(events_sub1) > 0) print(tidyr::unnest(events_sub1, cols = data))

Search for derivatives
print(search_files(mock_proj, suffix = "preproc_bold.nii.gz"))

Check stub directory (if created)
stub_files <- list.files(mock_proj_stub$path, recursive = TRUE)
print(head(stub_files))

Read one injected stub event file if present

24 create_preproc_mask

stub_event_path <- file.path(mock_proj_stub$path, names(event_data_list)[1])
if (file.exists(stub_event_path)) {

print(readLines(stub_event_path, n = 1))
}

Cleanup is intentionally omitted in this example.

create_preproc_mask Create a preprocessing mask from BIDS data

Description

Create a preprocessing mask from BIDS data

Usage

create_preproc_mask(x, subid, thresh = 0.99, ...)

Arguments

x A bids_project object

subid A regular expression pattern to match subject IDs

thresh Threshold value for mask creation (default: 0.99)

... Additional arguments passed to methods

Value

A logical mask volume

Examples

Download and load a BIDS project with fMRIPrep derivatives
tryCatch({

ds001_deriv_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds001_deriv_path, fmriprep=TRUE)
mask <- create_preproc_mask(proj, subid=".*")

Create mask for single subject
sub01_mask <- create_preproc_mask(proj, subid="01")

Clean up
unlink(ds001_deriv_path, recursive=TRUE)

}, error = function(e) {
message("Example requires derivatives dataset: ", e$message)

})

create_preproc_mask.bids_project 25

create_preproc_mask.bids_project

Create a binary brain mask from preprocessed scans

Description

This function creates a binary brain mask from preprocessed functional scans in a BIDS project. It
searches for BOLD brain mask files in the fMRIPrep derivatives directory (i.e., files in the func/
folder matching the pattern *_desc-brain_mask.nii.gz or the older *_brainmask.nii.gz), reads
them with neuroim2, averages them, and thresholds the result to produce a consensus binary mask.

Usage

S3 method for class 'bids_project'
create_preproc_mask(
x,
subid,
thresh = 0.99,
task = ".*",
space = ".*",
mask_kinds = c("brainmask", "mask"),
...

)

Arguments

x A bids_project object with fMRIPrep derivatives.
subid Regular expression to match subject IDs (e.g., "01" for subject 01, ".*" for all

subjects).
thresh Threshold value between 0 and 1 (default 0.99). Voxels below this value in the

averaged mask are excluded. Higher values produce more conservative masks.
task Regular expression for task filtering. Defaults to ".*" (any task). Because func-

tional masks always carry a task entity, this also implicitly excludes anatomical
masks which lack it.

space Regular expression for output-space filtering (e.g., "MNI152NLin2009cAsym").
Defaults to ".*" (all spaces). When masks from multiple spaces are found the
function stops with an error because their dimensions are incompatible.

mask_kinds Character vector of BIDS suffixes to search. Defaults to both "brainmask"
(older fMRIPrep) and "mask" with desc="brain" (fMRIPrep >= 21).

... Additional arguments passed to search_files for finding mask files (e.g., session,
run).

Details

The search is restricted to functional brain masks by requiring the task BIDS entity (anatomical
masks do not carry task). When masks from multiple output spaces are discovered the function
raises an error; pass a specific space value to disambiguate.

26 create_preproc_mask.mock_bids_project

Value

A logical mask volume (LogicalNeuroVol) suitable for use with preprocessed functional data.

Examples

tryCatch({
ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep=TRUE)

Mask for one subject in a specific space
mask <- create_preproc_mask(proj, subid="01",

space="MNI152NLin2009cAsym")

Consensus mask across all subjects / runs
all_mask <- create_preproc_mask(proj, subid=".*",

space="MNI152NLin2009cAsym")

Restrict to a single task
task_mask <- create_preproc_mask(proj, subid=".*",

task="balloonanalogrisktask",
space="MNI152NLin2009cAsym")

unlink(ds_path, recursive=TRUE)
}, error = function(e) {

message("Example requires derivatives dataset: ", e$message)
})

create_preproc_mask.mock_bids_project

Create Preprocessing Mask (Mock Implementation)

Description

This function is not implemented for mock_bids_project objects as they do not contain actual
image data required to create a mask.

Usage

S3 method for class 'mock_bids_project'
create_preproc_mask(x, ...)

Arguments

x A mock_bids_project object.

... Arguments (ignored).

create_smooth_transformer 27

Value

Throws an error indicating the function is not applicable to mock objects.

Examples

mock <- create_mock_bids("Test", c("01"), tibble::tibble(
subid = "01", datatype = "func",
suffix = "bold.nii.gz", fmriprep = FALSE

))
try(create_preproc_mask(mock))

create_smooth_transformer

Create a simple smoothing transformer

Description

This creates a transformer function that adds a smoothing description to BIDS filenames. This is a
lightweight example - real implementations would perform actual image processing.

Usage

create_smooth_transformer(fwhm, suffix_pattern = "bold\\.nii")

Arguments

fwhm The smoothing FWHM to add to the description.

suffix_pattern Optional regex pattern to match specific file types.

Value

A transformer function for use with bids_transform.

Examples

Create a smoothing transformer
smooth_6mm <- create_smooth_transformer(6)

Apply it to a toy BIDS-like file path
in_dir <- tempdir()
out_dir <- tempdir()
infile <- file.path(in_dir, "sub-01_task-rest_bold.nii.gz")
file.create(infile)
new_file <- smooth_6mm(infile, out_dir)
basename(new_file)
unlink(infile)
unlink(new_file)

28 encode

decode_bids_entities Decode BIDS entities back into a filename

Description

This function reconstructs a BIDS filename from parsed entities, using the standard BIDS entity
ordering.

Usage

decode_bids_entities(entities)

Arguments

entities A named list of BIDS entities (from encode).

Value

A character string representing the BIDS filename.

Examples

Parse a filename and reconstruct it
entities <- encode("sub-01_task-rest_run-01_bold.nii.gz")
filename <- decode_bids_entities(entities)
print(filename)

Modify entities and create new filename
entities$desc <- "smooth6mm"
new_filename <- decode_bids_entities(entities)
print(new_filename)

encode Encode a string into a BIDS key-value list

Description

This function parses a BIDS filename and extracts its components into a key-value list. It under-
stands standard BIDS entities like subject, session, task, run, etc.

Usage

encode(x, ...)

S3 method for class 'character'
encode(x, ...)

event_files 29

Arguments

x The filename string to encode

... Additional arguments passed to methods

Value

A list of key-value pairs extracted from the filename

Examples

Encode an anatomical file
encode("sub-01_T1w.nii.gz")

Encode a functional file
encode("sub-01_task-rest_run-01_bold.nii.gz")

Encode a file with session information
encode("sub-01_ses-pre_task-rest_run-01_bold.nii.gz")

event_files Get event files from a BIDS project

Description

This function retrieves a vector of event files (events.tsv) from a BIDS project that match specified
criteria. Event files in BIDS contain trial information for task-based functional MRI data, including
onset times, durations, and trial types.

Finds event files matching the given subject, task, run, and session criteria.

Usage

event_files(x, ...)

S3 method for class 'bids_project'
event_files(
x,
subid = ".*",
task = ".*",
run = ".*",
session = ".*",
full_path = TRUE,
...

)

S3 method for class 'mock_bids_project'
event_files(
x,

30 event_files

subid = ".*",
task = ".*",
run = ".*",
session = ".*",
full_path = TRUE,
...

)

Arguments

x A mock_bids_project object

... Additional arguments passed to internal functions

subid Regex to match subject IDs (default: ".*")

task Regex to match tasks (default: ".*")

run Regex to match runs (default: ".*")

session Regex to match sessions (default: ".*")

full_path If TRUE, return full paths of files (default: TRUE)

Value

A character vector of file paths to event files matching the specified criteria. If no matching files are
found, returns NULL.

A character vector of file paths to event files. If no matching files are found, returns an empty
character vector.

Examples

Get all event files from a BIDS project
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
event_files(proj)

Get event files for specific subjects and tasks
if (length(participants(proj)) > 0) {

event_files(proj, subid=participants(proj)[1], task="balloonanalogrisktask")
}

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

Get event files for a specific subject and task
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
x <- bids_project(ds001_path)

file_pairs 31

files <- event_files(x, subid="01", task="balloonanalogrisktask")

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

file_pairs Find File Pairs in a BIDS Project

Description

This function matches pairs of related files (e.g., BOLD and event files) in a BIDS project, returning
a tibble with matched filenames. It’s useful for verifying that corresponding files exist for each
subject and task, such as ensuring every BOLD file has an associated events file.

Usage

file_pairs(
x,
pair = c("bold-events", "preproc-events"),
task = ".*",
matchon = c("run", "task"),
...

)

Arguments

x A bids_project object.

pair A character string specifying which pair of files to match. Currently supported:

• "bold-events": matches BOLD files with event files
• "preproc-events": matches preprocessed BOLD files with event files

task A regex pattern to filter tasks. Default is ".*" (no filter).

matchon A character vector of keys to match on, usually c("run", "task").

... Additional arguments passed to internal functions.

Value

A tibble with columns:

• subid: The subject ID

• task: The task name
• [type1]: The name of the first file type (e.g., "bold" or "preproc")
• [type2]: The matched file of the second type (e.g., "events"), or NA if no match found

• Additional columns for matched metadata (e.g., run, session)

32 flat_list

Examples

Create a BIDS project object
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)

Match BOLD files with their corresponding event files
bold_pairs <- file_pairs(proj, pair="bold-events")

Check pairs for a specific task
task_pairs <- file_pairs(proj,

pair="bold-events",
task="balloonanalogrisktask")

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

flat_list Get "flat" representation of BIDS Project

Description

This function returns a flattened (non-hierarchical) representation of a BIDS project formatted as a
data frame. It extracts file paths or file names from the BIDS tree structure, filtering for entries that
start with "sub-" to focus on subject-level data.

Usage

flat_list(x, ...)

S3 method for class 'bids_project'
flat_list(x, full_path = TRUE, ...)

Arguments

x the bids_project object
... extra args passed to methods
full_path If TRUE, return full paths to files; if FALSE, return just file names (default:

TRUE)

Value

A data frame containing either full paths to files (if full_path=TRUE) or just the file names (if
full_path=FALSE). Each row represents one file in the BIDS project.

fmap_parser 33

Examples

Get flat representation with full paths
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
flat_list(proj)

Get flat representation with just file names
flat_list(proj, full_path=FALSE)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

fmap_parser Fieldmap parser constructor

Description

Fieldmap parser constructor

Usage

fmap_parser()

Value

A fieldmap BIDS parser object for parsing fieldmap files

Examples

Create a fieldmap parser
parser <- fmap_parser()

Parse a fieldmap file
result <- parse(parser, "sub-01_magnitude1.nii.gz")

34 fmriprep_func_parser

fmriprep_anat_parser fMRIPrep anatomical parser constructor

Description

fMRIPrep anatomical parser constructor

Usage

fmriprep_anat_parser()

Value

An fMRIPrep anatomical parser object for parsing preprocessed anatomical files

Examples

Create an fMRIPrep anatomical parser
parser <- fmriprep_anat_parser()

Parse a preprocessed anatomical file
result <- parse(parser, "sub-01_space-MNI152NLin2009cAsym_desc-preproc_T1w.nii.gz")

fmriprep_func_parser fMRIPrep functional parser constructor

Description

fMRIPrep functional parser constructor

Usage

fmriprep_func_parser()

Value

An fMRIPrep functional parser object for parsing preprocessed functional files

Examples

Create an fMRIPrep functional parser
parser <- fmriprep_func_parser()

Parse a preprocessed functional file
result <- parse(parser, "sub-01_task-rest_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz")

func_parser 35

func_parser Functional parser constructor

Description

Functional parser constructor

Usage

func_parser()

Value

A functional BIDS parser object for parsing functional MRI files

Examples

Create a functional parser
parser <- func_parser()

Parse a functional file
result <- parse(parser, "sub-01_task-rest_run-01_bold.nii.gz")

func_scans Get functional scans from a BIDS project

Description

This function extracts functional scan files from a BIDS project that match specified criteria such
as subject ID, task name, run number, and session. It can return either full paths or relative paths to
the files.

Usage

func_scans(x, ...)

S3 method for class 'mock_bids_project'
func_scans(
x,
subid = ".*",
task = ".*",
run = ".*",
session = ".*",
kind = "bold",
suffix = "nii(\\.gz)?$",
full_path = TRUE,
...

)

36 func_scans

Arguments

x A mock_bids_project object

... Additional arguments passed to search_files

subid Regex to match subject IDs (default: ".*")

task Regex to match tasks (default: ".*")

run Regex to match runs (default: ".*")

session Regex to match sessions (default: ".*")

kind Type of functional data (default: "bold")

suffix Regex pattern for file suffix (default: "nii(\.gz)?$")

full_path If TRUE, return full file paths (default: TRUE)

Value

A character vector of file paths to functional scans matching the criteria. Returns NULL if no
matching files are found.

Examples

Create a BIDS project object
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)

Get all functional scans
all_scans <- func_scans(proj)

Get scans for specific subjects
if (length(participants(proj)) > 0) {

sub_scans <- func_scans(proj, subid=participants(proj)[1])
}

Get scans for a specific task and run
if (length(tasks(proj)) > 0) {

task_scans <- func_scans(proj, task=tasks(proj)[1], run="01")
}

Get scans with relative paths
rel_scans <- func_scans(proj, full_path=FALSE)

Also try with a dataset that has sessions
ds007_path <- get_example_bids_dataset("ds007")
ds007_proj <- bids_project(ds007_path)
if (length(sessions(ds007_proj)) > 0) {

session_scans <- func_scans(ds007_proj, session=sessions(ds007_proj)[1])
}

Clean up
unlink(ds001_path, recursive=TRUE)
unlink(ds007_path, recursive=TRUE)

func_scans.bids_project 37

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

func_scans.bids_project

Get Functional Scans from a BIDS Project

Description

This method extracts functional scan files from a BIDS project based on specified criteria such as
subject ID, task name, run number, and session. It can return either full or relative file paths to the
functional scans.

Usage

S3 method for class 'bids_project'
func_scans(
x,
subid = ".*",
task = ".*",
run = ".*",
session = ".*",
kind = "bold",
full_path = TRUE,
...

)

Arguments

x A bids_project object.
subid Regular expression for matching subject IDs. Default is ".*".
task Regular expression for matching task names. Default is ".*".
run Regular expression for matching run numbers. Default is ".*".
session Regular expression for matching session IDs. Default is ".*".
kind Regular expression for matching scan type. Default is "bold".
full_path Logical. If TRUE, return full file paths. If FALSE, return relative paths. Default

is TRUE.
... Additional arguments (not currently used).

Value

A character vector of file paths to functional scans matching the criteria. Returns NULL if:

• No matching files are found
• The project doesn’t contain functional data
• The specified criteria don’t match any files

38 get_example_bids_dataset

Examples

Create a BIDS project
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)

Get all functional scans
all_scans <- func_scans(proj)

Get scans for specific subjects
sub_scans <- func_scans(proj, subid="0[123]")

Get scans for a specific task
task_scans <- func_scans(proj, task="rest")

Get scans from specific runs
run_scans <- func_scans(proj, run="0[123]")

Combine multiple filters
filtered_scans <- func_scans(proj,

subid="01",
task="rest",
run="01")

Get relative paths instead of full paths
rel_scans <- func_scans(proj, full_path=FALSE)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

get_example_bids_dataset

Download Example BIDS Dataset

Description

Downloads and extracts an example BIDS dataset for testing and demonstration purposes. The
datasets are sourced from the official BIDS examples repository on GitHub.

Usage

get_example_bids_dataset(dataset_name = "ds001")

get_repetition_time 39

Arguments

dataset_name Character string specifying which dataset to download. Common options in-
clude "ds001", "ds002", "ds007", "phoneme_stripped", etc.

Details

This function requires an internet connection to download data from GitHub. The datasets are
cached in the temporary directory AND in memory for the session, so repeated calls with the same
dataset_name will reuse the already downloaded data. Note: Don’t call unlink() on the returned
path in examples, as this defeats the caching mechanism and forces re-downloads.

Value

Character string containing the path to the downloaded dataset directory.

Examples

tryCatch({
ds_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds_path)
print(participants(proj))

Dataset cache is intentionally retained for performance.
}, error = function(e) {

message("Example requires internet connection: ", e$message)
})

get_repetition_time Get Repetition Time (TR) from a sidecar JSON

Description

This function attempts to find and return the repetition time (TR) for a given subject, task, and
run (and optionally session) by locating the associated BOLD sidecar JSON file and extracting the
’RepetitionTime’ field. If not found, returns NA.

Usage

get_repetition_time(x, subid, task, run = ".*", session = ".*", ...)

Arguments

x A bids_project object.
subid Subject ID (exact or regex).
task Task name (exact or regex).
run Run number (exact or regex). Default is ".*" to allow flexible matching.
session Session ID (exact or regex). Default is ".*".
... Additional arguments passed to read_sidecar().

40 infer_tr

Value

A numeric value representing the RepetitionTime in seconds, or NA if not found.

Examples

Download and get TR for a specific subject and task
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)

if (length(participants(proj)) > 0 && length(tasks(proj)) > 0) {
tr <- get_repetition_time(proj,

subid=participants(proj)[1],
task=tasks(proj)[1])

cat("TR:", tr, "seconds\n")
}

Try with a dataset that has sessions
ds007_path <- get_example_bids_dataset("ds007")
ds007_proj <- bids_project(ds007_path)
if (length(participants(ds007_proj)) > 0 && length(sessions(ds007_proj)) > 0) {

tr_session <- get_repetition_time(ds007_proj,
subid=participants(ds007_proj)[1],
session=sessions(ds007_proj)[1])

cat("TR with session:", tr_session, "seconds\n")
}

Clean up
unlink(ds001_path, recursive=TRUE)
unlink(ds007_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

infer_tr Infer TR (Repetition Time) from a BOLD file or sidecar

Description

Given a path to a BOLD NIfTI file (*.nii or *.nii.gz) or its JSON sidecar (*.json), this func-
tion locates the appropriate sidecar JSON and returns the TR (in seconds). It prefers the JSON
RepetitionTime field (BIDS-compliant). If that is not available, it falls back to computing TR as
the median difference of VolumeTiming (if present). Optionally, when the sidecar cannot be found
or is missing both fields, the function attempts to read TR from the NIfTI header (pixdim[4]) if an
appropriate reader is installed.

infer_tr 41

Usage

infer_tr(x, ...)

S3 method for class 'character'
infer_tr(
x,
prefer = c("json", "nifti"),
fallback = TRUE,
coerce_units = c("strict", "auto"),
verbose = FALSE,
...

)

Arguments

x A character path to a BOLD .nii[.gz] file or its .json sidecar, or a bids_project
object.

... Additional arguments passed to methods.

prefer Preferred source of TR: "json" (default) or "nifti".

fallback If TRUE (default), attempt NIfTI header fallback when JSON is not available or
incomplete.

coerce_units Unit handling for non-compliant values. "strict" (default) assumes seconds
as per BIDS and returns values as-is. "auto" will convert clearly millisecond-
like values to seconds (divide by 1000) and annotate the conversion in the return
value’s attributes.

verbose If TRUE, print informative messages when falling back or when encountering
special cases (e.g., SBRef files).

Details

For NIfTI inputs, the JSON sidecar is resolved by replacing the *.nii/*.nii.gz suffix with .json
in the same directory. If that file is not found, the function searches the directory for a .json file
with the same stem (filename without the NIfTI extension).

Value

Numeric TR in seconds, or NA_real_ if it cannot be determined. The return value includes at-
tributes: source (e.g., json:RepetitionTime, json:VolumeTiming, nifti:pixdim4), path (the
file used), and optionally variable = TRUE if VolumeTiming indicates non-constant TR; a unit =
"ms->s" attribute is added if units were auto-converted.

Examples

tmp_json <- tempfile(fileext = ".json")
writeLines('{"RepetitionTime": 2}', tmp_json)
infer_tr(tmp_json)
unlink(tmp_json)

42 list_confound_strategies

tmp_json2 <- tempfile(fileext = ".json")
writeLines('{"VolumeTiming": [0, 2, 4, 6]}', tmp_json2)
infer_tr(tmp_json2)
unlink(tmp_json2)

list_confound_sets List available confound sets

Description

Returns the names and short descriptions of the predefined confound sets usable with confound_set().

Usage

list_confound_sets()

Value

A data.frame with columns set and description.

Examples

list_confound_sets()

list_confound_strategies

List available confound strategies

Description

Returns the names and short descriptions of the predefined confound strategies usable with confound_strategy().

Usage

list_confound_strategies()

Value

A data.frame with columns strategy and description.

Examples

list_confound_strategies()

list_pack_bids 43

list_pack_bids List Contents of Packed BIDS Archive

Description

This function lists the contents of a BIDS archive created by pack_bids, showing file sizes and
identifying which files are stubs.

Usage

list_pack_bids(archive_path, verbose = TRUE)

Arguments

archive_path Character string specifying the path to the archive file.

verbose Logical. Whether to print summary statistics. Default is TRUE.

Value

A data frame with columns:

file Relative file path within the archive

size File size in bytes

is_stub Logical indicating if the file is a 0-byte stub

is_downsampled Logical indicating if the file is a downsampled image

type File type based on extension (imaging, imaging_stub, imaging_downsampled,
json, tsv, etc.)

Examples

Create and inspect a packed BIDS archive
tryCatch({

ds_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds_path)
archive_path <- pack_bids(proj, verbose = FALSE)

List contents
contents <- list_pack_bids(archive_path)

Show stub files
stub_files <- contents[contents$is_stub,]
print(head(stub_files))

Clean up
unlink(archive_path)
unlink(ds_path, recursive = TRUE)

}, error = function(e) {
message("Example failed: ", e$message)

44 load_all_events

})

load_all_events Load All Event Files

Description

Searches for and reads event files (events.tsv) from a BIDS project, combining them into a single
(potentially nested) tibble.

This function searches for all events.tsv files that match the provided filters (subid, task, run, ses-
sion) and loads them into a single tibble. If full_path=TRUE, full file paths are returned; otherwise
relative paths.

Usage

load_all_events(x, ...)

S3 method for class 'bids_project'
load_all_events(
x,
subid = ".*",
task = ".*",
run = ".*",
session = ".*",
full_path = TRUE,
...

)

Arguments

x A bids_project object.

... Additional arguments passed on to search_files.

subid A regex for matching participant IDs. Default is ".*".

task A regex for matching tasks. Default is ".*".

run A regex for matching runs. Default is ".*".

session A regex for matching sessions. Default is ".*".

full_path If TRUE, return full file paths before reading. Default is TRUE.

Value

A tibble containing the combined event data.

A tibble combining all matched event files, with columns .subid, .task, .run, .session and all
event columns. If no events are found, returns an empty tibble.

mask_files 45

Examples

Example with a bids_project (assuming events exist)
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
all_events <- load_all_events(proj)
print(all_events)

Load specific subject/task
if (length(participants(proj)) > 0) {
sub01_events <- load_all_events(proj, subid=participants(proj)[1], task="balloonanalogrisktask")
print(sub01_events)

}

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

mask_files Query Mask Files from a BIDS Project

Description

Retrieves paths to brain mask files from a BIDS project, optionally filtered by subject, session, and
coordinate space. Mask files are typically found in fMRIPrep derivatives and include brain masks
and tissue segmentation masks.

Usage

mask_files(
x,
subid = ".*",
session = ".*",
space = ".*",
full_path = TRUE,
...

)

S3 method for class 'bids_project'
mask_files(
x,
subid = ".*",
session = ".*",
space = ".*",
full_path = TRUE,

46 mask_files

...
)

S3 method for class 'mock_bids_project'
mask_files(
x,
subid = ".*",
session = ".*",
space = ".*",
full_path = TRUE,
...

)

Arguments

x A bids_project or mock_bids_project object.

subid Regex pattern to match subject IDs (without "sub-" prefix). Default ".*" matches
all subjects.

session Regex pattern to match session IDs (without "ses-" prefix). Default ".*" matches
all sessions.

space Regex pattern to match coordinate space (e.g., "MNI152NLin2009cAsym", "T1w").
Default ".*" matches all spaces.

full_path Logical. If TRUE (default), return absolute file paths. If FALSE, return paths
relative to project root.

... Additional arguments passed to search_files.

Value

Character vector of file paths matching the criteria, or NULL if no matching files are found.

Examples

Get all mask files
tryCatch({

ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep = TRUE)

All masks
all_masks <- mask_files(proj)

Masks in MNI space
mni_masks <- mask_files(proj, space = "MNI152")

Masks for specific subject
sub01_masks <- mask_files(proj, subid = "01")

Clean up
unlink(ds_path, recursive = TRUE)

}, error = function(e) {

pack_bids 47

message("Example requires internet connection: ", e$message)
})

pack_bids Pack BIDS Project with Stub or Downsampled Imaging Files

Description

This function creates a compressed archive (tar.gz or zip) of a BIDS project, either replacing large
imaging files (.nii, .nii.gz) with 0-byte stub files or downsampling them to lower resolution while
preserving all metadata files (JSON, TSV, etc.) with their full content. This is useful for sharing
BIDS project structure and metadata without the large imaging data.

Usage

pack_bids(
x,
output_file = NULL,
format = NULL,
include_derivatives = TRUE,
downsample_factor = NULL,
downsample_method = "box",
ncores = 1,
max_file_size = "10MB",
exclude = NULL,
strict_bids = FALSE,
verbose = TRUE,
temp_dir = NULL,
cleanup = TRUE

)

Arguments

x A bids_project object created by bids_project.

output_file Character string specifying the output archive filename. Should end with ".tar.gz"
or ".zip". If not specified, defaults to "{project_name}_metadata.tar.gz" in
the current directory.

format Character string specifying the archive format. Can be "tar.gz" (default) or "zip".
If not specified, inferred from output_file extension.

include_derivatives

Logical. Whether to include fMRIPrep derivatives if available. Default is TRUE.
downsample_factor

Numeric value between 0 and 1 specifying the downsampling factor for imaging
files. If NULL (default), creates stub files. A value of 0.25 reduces dimensions
by 4x (e.g., 64x64x64 becomes 16x16x16). Time dimension is preserved for 4D
files.

48 pack_bids

downsample_method

Character string specifying the downsampling method. Currently only "box"
(box averaging) is supported. Default is "box".

ncores Integer specifying the number of cores for parallel processing during downsam-
pling. Default is 1 (sequential). Values > 1 enable parallel processing if the
’future’ package is available.

max_file_size Character string or numeric value specifying the maximum file size for non-
imaging files to include. Files larger than this will be replaced with stub files.
Can be specified as "1MB", "500KB", "1.5GB" or as numeric bytes. Default is
"10MB".

exclude Character string with a regular expression pattern to exclude files. Files match-
ing this pattern will be replaced with stub files. For example, "\.h5$" to exclude
HDF5 files. Default is NULL (no exclusion).

strict_bids Logical. If TRUE, only include files that match BIDS naming conventions and
standard BIDS metadata files. Non-BIDS files like .DS_Store, temporary files,
or other non-standard files will be excluded. Default is FALSE (include all files).

verbose Logical. Whether to print progress messages. Default is TRUE.

temp_dir Character string specifying the temporary directory for creating the archive. If
NULL (default), uses tempdir().

cleanup Logical. Whether to clean up the temporary directory after creating the archive.
Default is TRUE.

Details

The function works by:

1. Creating a temporary copy of the BIDS project structure

2. Replacing all .nii and .nii.gz files with 0-byte stub files

3. Preserving all other files (JSON, TSV, TXT, etc.) with full content

4. Creating a compressed archive of the modified structure

This allows researchers to share BIDS dataset structure and metadata without the large imaging
files, which is useful for:

• Sharing dataset organization and metadata for review

• Creating lightweight references for dataset structure

• Testing BIDS tools without full datasets

Value

Character string containing the path to the created archive file. Returns NULL if the operation fails.

parse 49

Examples

Create a BIDS project and pack it
tryCatch({

ds_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds_path)

Pack with default settings (tar.gz with stub files)
archive_path <- pack_bids(proj)

Pack with size limit and exclusion pattern
archive_filtered <- pack_bids(proj,

max_file_size = "1MB",
exclude = "\\.h5$",
output_file = "ds001_filtered.tar.gz")

Pack with downsampling (4x reduction)
archive_downsampled <- pack_bids(proj,

downsample_factor = 0.25,
output_file = "ds001_low4x.tar.gz")

Pack with downsampling using parallel processing
if (requireNamespace("future", quietly = TRUE)) {

archive_parallel <- pack_bids(proj,
downsample_factor = 0.5,
ncores = 2,
output_file = "ds001_low2x.tar.gz")

}

Pack as zip file
zip_path <- pack_bids(proj, output_file = "ds001_metadata.zip")

Pack without derivatives
archive_no_deriv <- pack_bids(proj, include_derivatives = FALSE)

Pack with strict BIDS mode (exclude non-BIDS files)
archive_strict <- pack_bids(proj, strict_bids = TRUE,

output_file = "ds001_strict.tar.gz")

Clean up
unlink(c(archive_path, archive_filtered, archive_downsampled, zip_path,

archive_no_deriv, archive_strict))
if (exists("archive_parallel")) unlink(archive_parallel)
unlink(ds_path, recursive = TRUE)

}, error = function(e) {
message("Example failed: ", e$message)

})

parse Parse a file-name into BIDS components

50 participants

Description

This generic function parses a BIDS filename into its component parts. It uses a parser combinator
approach to match the filename against known BIDS patterns and extract relevant metadata such as
subject ID, session, task, run, and modality.

Usage

parse(x, fname, ...)

Arguments

x the parser object to use for parsing

fname the string (filename) to parse

... extra args passed to methods

Value

A parsed representation of the BIDS filename, typically a list with extracted components

Examples

Parse an anatomical file
parser <- anat_parser()
parse(parser, "sub-01_T1w.nii.gz")

Parse a functional file
parser <- func_parser()
parse(parser, "sub-01_task-rest_run-01_bold.nii.gz")

Use the generic BIDS parser
parser <- bids_parser()
parse(parser, "sub-01_ses-pre_task-rest_run-01_bold.nii.gz")

participants Get participants from a BIDS project

Description

This function retrieves a vector of unique participant IDs from a BIDS project. It extracts the
subject identifiers from the project’s data table, filtering out any NA values. Participant IDs in
BIDS typically follow the format ’sub-XX’.

Usage

participants(x, ...)

S3 method for class 'bids_project'
participants(x, ...)

participants.mock_bids_project 51

Arguments

x the bids_project object

... extra args passed to methods

Value

A character vector of unique participant IDs found in the BIDS project. If no participants are found
or the ’subid’ column doesn’t exist in the project’s data table, returns an empty character vector.

Examples

Get participants from a BIDS project
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
participants(proj)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

participants.mock_bids_project

Get Participants from Mock BIDS Project

Description

Extracts the unique participant IDs from the mock project definition. Note: Returns IDs without the
"sub-" prefix for consistency with bids_project methods.

Usage

S3 method for class 'mock_bids_project'
participants(x, ...)

Arguments

x A mock_bids_project object.

... Extra arguments (ignored).

Value

Character vector of unique participant IDs (e.g., c("01", "02")), sorted.

52 plot.bids_confounds

Examples

Create a mock project
parts <- data.frame(participant_id = c("sub-01", "sub-02"))
fs <- data.frame(subid=c("01", "02"), datatype="func", suffix="bold.nii.gz", fmriprep=FALSE)
mock_proj <- create_mock_bids("SimpleMock", parts, fs)

Get participant IDs
participants(mock_proj)

plot.bids_confounds Plot PCA confounds

Description

Visualize principal component scores and loadings returned by read_confounds(..., npcs = ...).
When multiple runs are present, the default view facets per run for scores (up to max_panels) and
aggregates loadings across runs.

Usage

S3 method for class 'bids_confounds'
plot(
x,
view = c("auto", "run", "aggregate"),
pcs = NULL,
top_n = 8,
max_panels = 6,
...

)

Arguments

x A bids_confounds object returned by read_confounds().

view Character. One of "auto", "run", or "aggregate".

pcs Integer or character vector of PCs to plot (e.g., 1:5 or c("PC1", "PC2")).

top_n Integer. Keep the top top_n variables per PC based on absolute loading. Set to
NULL to keep all variables.

max_panels Integer. In view = "auto", facet score plots only when the number of runs is at
most max_panels.

... Unused.

Value

A ggplot object, or a list of ggplot objects when patchwork is not available.

plot.bids_project 53

Examples

parts <- c("01", "02")
fs <- tibble::tibble(

subid = rep(c("01", "02"), each = 2),
datatype = "func",
suffix = rep(c("bold.nii.gz", "desc-confounds_timeseries.tsv"), 2),
task = "rest", fmriprep = TRUE

)
conf_data <- list()
for (p in parts) {

key <- paste0("derivatives/fmriprep/sub-", p,
"/func/sub-", p, "_task-rest_desc-confounds_timeseries.tsv")

conf_data[[key]] <- data.frame(
csf = rnorm(100), white_matter = rnorm(100),
global_signal = rnorm(100), framewise_displacement = abs(rnorm(100)),
trans_x = rnorm(100), trans_y = rnorm(100), trans_z = rnorm(100),
rot_x = rnorm(100), rot_y = rnorm(100), rot_z = rnorm(100)

)
}
mock <- create_mock_bids("ConfPlot", parts, fs, confound_data = conf_data)
conf <- read_confounds(mock, npcs = 3)
if (requireNamespace("ggplot2", quietly = TRUE)) {

plot(conf)
}

plot.bids_project Plot a BIDS project as a dendrogram

Description

This method visualises the hierarchical file structure of a BIDS project. The tree is converted to a
dendrogram and drawn using base graphics. Large projects can be trimmed by setting a maximum
depth.

Usage

S3 method for class 'bids_project'
plot(x, max_depth = Inf, ...)

S3 method for class 'mock_bids_project'
plot(x, max_depth = Inf, ...)

Arguments

x A bids_project object.

max_depth Maximum depth of the tree to display. Defaults to Inf so the full hierarchy is
shown.

... Additional arguments passed to graphics::plot.

54 plot_bids

Value

The input object x is returned invisibly.

Examples

tryCatch({
ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
plot(proj)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

plot_bids Plot a comprehensive visual overview of a BIDS project

Description

This function creates a multi-panel visualization of a BIDS project structure, showing file distribu-
tions, completeness, and data characteristics.

Usage

plot_bids(
x,
interactive = TRUE,
color_scheme = "viridis",
include_derivatives = TRUE,
file_size_scale = "log",
highlight_missing = TRUE,
visualization_mode = "standard",
debug = FALSE

)

Arguments

x A bids_project object

interactive Logical. Whether to create an interactive plot (default TRUE)

color_scheme Character. Name of the color palette to use (default "viridis")
include_derivatives

Logical. Whether to include derivatives data in the visualization (default TRUE)
file_size_scale

Character. Whether to scale file sizes ("log", "sqrt", or "linear", default "log")

preproc_scans 55

highlight_missing

Logical. Whether to highlight missing data points (default TRUE)
visualization_mode

Character. The mode of visualization to use ("standard", "heatmap", or "com-
plete")

debug Logical. Whether to print debugging information (default FALSE)

Value

A plot object (ggplot2, plotly, or other depending on settings)

Examples

Create a basic BIDS project and plot it
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
plot_bids(proj)

Create an interactive plot
plot_bids(proj, interactive=TRUE)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

preproc_scans Get preprocessed functional MRI scans

Description

This function retrieves paths to preprocessed functional MRI scans from a BIDS project. It searches
for files in the fMRIPrep derivatives directory that match specified criteria, such as subject ID, task,
run, and other BIDS metadata. Preprocessed scans are identified by having either ’desc-preproc’ or
’kind-preproc’ in their filename.

Usage

preproc_scans(
x,
subid = ".*",
task = ".*",
run = ".*",
session = ".*",
variant = NULL,

56 preproc_scans

space = ".*",
modality = "bold",
kind = ".*",
full_path = FALSE,
...

)

Arguments

x A bids_project object

subid Subject ID regex to match specific subjects (default: ".*" for all subjects)

task Task regex to match specific tasks (default: ".*" for all tasks)

run Run regex to match specific runs (default: ".*" for all runs)

session Session regex to match specific sessions (default: ".*" for all sessions)

variant Preprocessing variant to match (default: NULL, which matches files without a
variant)

space Space regex to match specific spaces (default: ".*" for all spaces)

modality Image modality to match (default: "bold" for functional MRI)

kind Kind regex to match specific kinds (default: ".*" for all kinds)

full_path If TRUE, return full file paths; if FALSE, return paths relative to the project root
(default: FALSE)

... Additional arguments passed to internal functions

Value

A character vector of file paths to preprocessed functional scans matching the criteria. If no match-
ing files are found, returns NULL.

Examples

Get all preprocessed scans from a BIDS project with fMRIPrep derivatives

Download and load a BIDS project with fMRIPrep derivatives
tryCatch({

ds001_deriv_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds001_deriv_path, fmriprep=TRUE)

Get all preprocessed scans
scans <- preproc_scans(proj)

Get preprocessed scans for a specific subject
if (!is.null(scans) && length(scans) > 0) {

sub01_scans <- preproc_scans(proj, subid="01")
}

Clean up
unlink(ds001_deriv_path, recursive=TRUE)

preproc_scans.bids_project 57

}, error = function(e) {
message("Example requires derivatives dataset: ", e$message)

})

preproc_scans.bids_project

Get preprocessed scans from a BIDS project

Description

This function retrieves paths to preprocessed functional MRI scans from a BIDS project’s fMRIPrep
derivatives. It allows filtering by various BIDS entities such as subject, task, run, session, and space.
The function is particularly useful for accessing preprocessed data for analysis pipelines.

Usage

S3 method for class 'bids_project'
preproc_scans(
x,
subid = ".*",
task = ".*",
run = ".*",
session = ".*",
variant = NULL,
space = ".*",
modality = "bold",
kind = ".*",
full_path = FALSE,
...

)

Arguments

x A bids_project object.

subid A regex pattern for matching subjects. Default is ".*".

task A regex pattern for matching tasks. Default is ".*".

run A regex pattern for matching runs. Default is ".*".

session A regex pattern for matching sessions. Default is ".*".

variant A regex pattern for matching preprocessing variants. Default is NULL (no vari-
ant filtering).

space A regex pattern for matching spaces (e.g., "MNI152NLin2009cAsym"). Default
is ".*".

modality A regex pattern for matching modality. Default is "bold". Set this to something
else if you need a different modality.

58 preproc_scans.bids_project

kind The kind of preprocessed data to return. Default is ".*" to match any kind.

full_path If TRUE, return full file paths. Otherwise return relative paths. Default is
FALSE.

... Additional key-value filters for BIDS entities. These are matched against parsed
file entities in the derivatives tree. Common examples: space = "MNI152NLin2009cAsym",
res = "2", acq = "ap", echo = "1". Values are treated as regex. Keys already
covered by explicit arguments (subid, task, run, session, space, variant,
modality, kind) are ignored in

Value

A character vector of file paths to preprocessed scans matching the criteria. Returns NULL if:

• No matching files are found

• The project doesn’t have fMRIPrep derivatives

• The specified criteria don’t match any files

Examples

Create a BIDS project with fMRIPrep derivatives
tryCatch({

ds_path <- get_example_bids_dataset("phoneme_stripped")
proj <- bids_project(ds_path, fmriprep=TRUE)

Get all preprocessed BOLD scans
all_scans <- preproc_scans(proj)

Get preprocessed scans for specific subjects
sub_scans <- preproc_scans(proj, subid="0[12]")

Get scans in MNI space
mni_scans <- preproc_scans(proj, space="MNI152NLin2009cAsym")

Get scans for a specific task with full paths
task_scans <- preproc_scans(proj,

task="phoneme",
full_path=TRUE)

Get scans from a specific session
session_scans <- preproc_scans(proj, session="test")

Combine multiple filters
filtered_scans <- preproc_scans(proj,

subid="01",
task="phoneme",
run="01",
space="MNI152NLin2009cAsym")

Filter by resolution (BIDS entity 'res')
res2_scans <- preproc_scans(proj, res = "2")

print.mock_bids_project 59

Clean up
unlink(ds_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

print.mock_bids_project

Print Mock BIDS Project Summary

Description

Provides a console summary of the mock BIDS project, displaying key information like participant
count, tasks, sessions, derivatives status, and discovered BIDS entities.

Usage

S3 method for class 'mock_bids_project'
print(x, ...)

Arguments

x A mock_bids_project object.

... Extra arguments (ignored).

Value

The mock_bids_project object x invisibly.

Examples

Create a simple mock project
parts <- data.frame(participant_id = "01")
fs <- data.frame(subid = "01", datatype="func", suffix="bold.nii.gz", fmriprep=FALSE)
mock_proj <- create_mock_bids("SimpleMock", parts, fs)

Print the summary
print(mock_proj)

60 read_confounds

read_confounds Read Confound Files from a BIDS Project

Description

This function reads in fMRIPrep confound tables for one or more subjects from a BIDS project.
Confound files contain nuisance variables that can be used for denoising fMRI data, such as motion
parameters, physiological signals, and other noise components. The function can optionally perform
PCA reduction on the confounds and return either nested or flat tibbles.

Usage

read_confounds(x, ...)

Arguments

x The object to read confounds from (typically a bids_project).

... Additional arguments passed to methods, including:

• subid: Regex to match subject IDs (default: ".*")
• task: Regex to match tasks (default: ".*")
• session: Regex to match sessions (default: ".*")
• run: Regex to match runs (default: ".*")
• cvars: Character vector of confound variable names to select
• npcs: Integer. Perform PCA reduction and return this many PCs
• perc_var: Numeric. Perform PCA reduction to retain this percentage of

variance
• nest: Logical. If TRUE, nests confound tables by subject/task/session/run

(default: TRUE)

Value

A bids_confounds tibble containing confound data. If nest=TRUE (default), returns a nested tibble
with columns for subject, task, session, run, and a nested data column containing the confound
variables. If nest=FALSE, returns a flat tibble with all confound variables. When PCA is requested,
the object includes a pca attribute with loadings/variance for plotting. Returns NULL if no matching
files are found.

Examples

Create a BIDS project with fMRIPrep derivatives
tryCatch({
ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep=TRUE)

Read all confound files
all_conf <- read_confounds(proj)

read_confounds.bids_project 61

Read confounds for specific subjects and tasks
sub_conf <- read_confounds(proj,

subid="01",
task="balloonanalogrisktask")

Select specific confound variables
motion_conf <- read_confounds(proj,

cvars=c("framewise_displacement",
"trans_x", "trans_y", "trans_z",
"rot_x", "rot_y", "rot_z"))

Perform PCA reduction
pca_conf <- read_confounds(proj, npcs=5)

Get confounds as a flat tibble
flat_conf <- read_confounds(proj, nest=FALSE)

Combine multiple options
custom_conf <- read_confounds(proj,

subid="01",
task="balloonanalogrisktask",
cvars=c("framewise_displacement",

"trans_x", "trans_y", "trans_z"),
npcs=3,
nest=FALSE)

Clean up
unlink(ds_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

read_confounds.bids_project

Read confound files

Description

Reads in fmriprep confound tables for one or more subjects.

Usage

S3 method for class 'bids_project'
read_confounds(
x,
subid = ".*",
task = ".*",
session = ".*",

62 read_confounds.bids_project

run = ".*",
cvars = DEFAULT_CVARS,
npcs = -1,
perc_var = -1,
nest = TRUE,
...

)

Arguments

x A bids_project object

subid Subject ID regex

task Task regex

session Session regex

run Run regex. If the run identifier cannot be extracted from the filename, the run
value defaults to "1".

cvars The names of the confound variables to select. Defaults to DEFAULT_CVARS.
Canonical names such as "csf" are automatically mapped to any matching col-
umn names found in the dataset using CVARS_ALIASES. You can also pass conve-
nience sets from confound_set(), e.g., confound_set("motion24"), or wild-
card patterns like "cosine_*", "motion_outlier_*", or "a_comp_cor_*[6]".

npcs Perform PCA reduction on confounds and return npcs PCs.

perc_var Perform PCA reduction to retain perc_var% variance.

nest If TRUE, nests confound tables by subject/task/session/run.

... Additional arguments (not currently used)

Value

A bids_confounds tibble (nested if nest=TRUE) with identifier columns for participant_id, task,
session, and run. When PCA is requested, the object includes a pca attribute with per-run loadings
and variance used by plot().

Examples

Try to load a BIDS project with fMRIPrep derivatives
tryCatch({

ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep=TRUE)

Read confounds with canonical names (automatically resolve to actual columns)
conf <- read_confounds(proj, cvars = c("csf", "framewise_displacement"))

Use convenience sets
conf_36p <- read_confounds(proj, cvars = confound_set("36p"))
conf_compcor6 <- read_confounds(proj, cvars = confound_set("acompcor", n = 6))

Read confounds for specific subjects and tasks
conf_sub <- read_confounds(proj, subid="01", task="balloonanalogrisktask")

read_confounds.mock_bids_project 63

Get confounds as flat tibble
conf_flat <- read_confounds(proj, nest=FALSE)

Clean up
unlink(ds_path, recursive=TRUE)

}, error = function(e) {
message("Example requires derivatives dataset with confounds: ", e$message)

})

read_confounds.mock_bids_project

Read Confound Files (Mock Implementation)

Description

Read Confound Files (Mock Implementation)

Usage

S3 method for class 'mock_bids_project'
read_confounds(
x,
subid = ".*",
task = ".*",
session = ".*",
run = ".*",
cvars = NULL,
npcs = -1,
perc_var = -1,
nest = TRUE,
...

)

Arguments

x A mock_bids_project object.
subid Regex pattern for subject IDs. Default ".*".
task Regex pattern for task names. Default ".*".
session Regex pattern for session IDs. Default ".*".
run Regex pattern for run indices. Default ".*".
cvars Variables to select (ignored in mock).
npcs PCA components (applied when requested).
perc_var PCA variance (applied when requested).
nest If TRUE, returns a nested tibble keyed by subject, task, session and run.
... Additional BIDS entities (passed to search_files).

64 read_events

Value

A bids_confounds tibble of confound data (nested if nest = TRUE).

Examples

parts <- c("01")
fs <- tibble::tibble(

subid = "01", datatype = "func",
suffix = c("bold.nii.gz", "desc-confounds_timeseries.tsv"),
task = "rest", fmriprep = c(TRUE, TRUE)

)
conf_data <- list()
key <- "derivatives/fmriprep/sub-01/func/sub-01_task-rest_desc-confounds_timeseries.tsv"
conf_data[[key]] <- data.frame(

csf = rnorm(50), white_matter = rnorm(50),
trans_x = rnorm(50), trans_y = rnorm(50)

)
mock <- create_mock_bids("ConfTest", parts, fs, confound_data = conf_data)
conf <- read_confounds(mock)
print(conf)

read_events Read Event Files from a BIDS Project

Description

This generic function reads and nests event files from a BIDS project. Event files contain timing
information about task events, conditions, and responses during functional MRI scans. The function
can filter events by subject and task, and returns a nested tibble for easy data manipulation.

Usage

read_events(x, ...)

Arguments

x The object to read events from (typically a bids_project).

... Additional arguments passed to methods.

Value

A nested tibble with columns:

• .task: Task name

• .run: Run number

• .subid: Subject ID

• data: Nested column containing the event data If no matching data is found, returns an empty
tibble with appropriate columns.

read_events.bids_project 65

Examples

Create a BIDS project
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)

Read all event files
all_events <- read_events(proj)

Read events for specific subjects
sub_events <- read_events(proj, subid="0[123]")

Read events for a specific task
task_events <- read_events(proj, task="balloonanalogrisktask")

Combine multiple filters
filtered_events <- read_events(proj,

subid="01",
task="balloonanalogrisktask")

Access nested data
if (nrow(filtered_events) > 0) {

first_run <- filtered_events$data[[1]]
print(head(first_run))

}

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

read_events.bids_project

Read event files from a BIDS project

Description

Reads and nests event files for given subjects and tasks from a bids_project object. Returns
a nested tibble with event data grouped by task, session, run, and subject. Event files typically
contain trial-by-trial information for task-based fMRI data, including onset times, durations, trial
types, and other task-specific variables.

Usage

S3 method for class 'bids_project'
read_events(x, subid = ".*", task = ".*", run = ".*", session = ".*", ...)

66 read_events.bids_project

Arguments

x A bids_project object.

subid Regex pattern to match subject IDs. Default is ".*" (all subjects).

task Regex pattern to match tasks. Default is ".*" (all tasks).

run Regex pattern to match runs. Default is ".*" (all runs).

session Regex pattern to match sessions. Default is ".*" (all sessions).

... Additional arguments passed to event_files.

Value

A nested tibble with columns:

• .task: Task name

• .session: Session ID (if present)

• .run: Run number

• .subid: Subject ID

• data: A nested tibble containing the event data with columns:

– onset: Event onset time in seconds
– duration: Event duration in seconds
– Additional task-specific columns (e.g., trial type, response, accuracy) If no matching data

is found, returns an empty tibble with appropriate columns. Run and session identifiers
are parsed from filenames using func_parser().

Examples

Create a BIDS project object
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)

Read all event files
all_events <- read_events(proj)

Read events for a specific subject and task
sub01_events <- read_events(proj,

subid="01",
task="balloonanalogrisktask")

Read events for multiple subjects and a specific run
multi_sub_events <- read_events(proj,

subid="0[1-3]",
run="01")

Access nested data for analysis
if (nrow(sub01_events) > 0) {

Get first subject's data
first_sub_data <- sub01_events$data[[1]]

read_events.mock_bids_project 67

Calculate mean trial duration
mean_duration <- mean(first_sub_data$duration)

}

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

read_events.mock_bids_project

Read Event Files from Mock BIDS Project

Description

Retrieves and formats event data stored within the mock project object.

Usage

S3 method for class 'mock_bids_project'
read_events(x, subid = ".*", task = ".*", run = ".*", session = ".*", ...)

Arguments

x A mock_bids_project object.

subid Regex pattern for subject IDs. Default ".*".

task Regex pattern for task names. Default ".*".

run Regex pattern for run indices. Default ".*".

session Regex pattern for session IDs. Default ".*".

... Additional arguments passed to event_files.

Value

A nested tibble with columns .subid, .task, .run, .session (if applicable), and data (containing
the event tibbles), or an empty tibble if no matching data.

Examples

parts <- c("01")
fs <- tibble::tibble(

subid = "01", datatype = "func",
suffix = c("bold.nii.gz", "events.tsv"),
task = "rest", run = "01", fmriprep = FALSE

)

68 read_func_scans.bids_project

evt_data <- list()
evt_data[["sub-01/func/sub-01_task-rest_run-01_events.tsv"]] <-

tibble::tibble(onset = c(1, 5, 10), duration = c(0.5, 0.5, 0.5),
trial_type = c("go", "stop", "go"))

mock <- create_mock_bids("EventTest", parts, fs, event_data = evt_data)
events <- read_events(mock)
print(events)

read_func_scans.bids_project

Read in a set of four-dimensional functional scans

Description

Read in a set of four-dimensional functional scans

Usage

read_func_scans.bids_project(
x,
mask,
mode = c("normal", "bigvec"),
subid = "^sub-.*",
task = ".*",
run = ".*",
modality = "bold",
...

)

Arguments

x A bids_project object

mask A brain mask of type LogicalNeuroVol

mode The file mode: ’normal’ for in-memory files or ’bigvec’ for on-disk files

subid One or more subject IDs (regex)

task An optional task regex

run An optional run regex

modality The image modality (usually "bold")

... Extra arguments passed to neuroim2::read_vec

Value

An instance of type NeuroVec

read_preproc_scans.bids_project 69

Examples

tryCatch({
ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep=TRUE)
mask <- brain_mask(proj, subid="01")
vec <- read_func_scans.bids_project(proj, mask,

subid="01",
task="balloonanalogrisktask",
run="01")

unlink(ds_path, recursive=TRUE)
}, error = function(e) {

message("Example requires derivatives dataset: ", e$message)
})

read_preproc_scans.bids_project

Read preprocessed functional MRI scans from a BIDS project

Description

This function reads preprocessed functional MRI scans from a BIDS project’s fMRIPrep deriva-
tives directory. It uses the preproc_scans function to locate the files and then reads them into a
NeuroVec object using the neuroim2 package. If a mask is not provided, one will be automatically
created from available brainmask files.

Usage

read_preproc_scans.bids_project(
x,
mask = NULL,
mode = c("normal", "bigvec"),
subid = "^sub-.*",
task = ".*",
run = ".*",
modality = "bold",
...

)

Arguments

x A bids_project object with fMRIPrep derivatives

mask A brain mask of type LogicalNeuroVol, or NULL (if NULL, a mask will be
created automatically)

mode The file mode: ’normal’ for in-memory files or ’bigvec’ for on-disk files

subid Regular expression to match subject IDs (default: "^sub-.*" to match all sub-
jects)

70 read_preproc_scans.bids_project

task Regular expression to match tasks (default: ".*" to match all tasks)

run Regular expression to match runs (default: ".*" to match all runs)

modality Image modality to match (default: "bold" for functional MRI)

... Extra arguments passed to neuroim2::read_vec

Details

This function requires the neuroim2 package to be installed. It will throw an error if the package is
not available or if fMRIPrep derivatives are not found in the BIDS project. If no mask is provided,
it will create one using the create_preproc_mask function.

Value

An instance of type NeuroVec containing the preprocessed functional data.

Examples

Load a BIDS project with fMRIPrep derivatives
tryCatch({

ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep=TRUE)

Read preprocessed scans for all subjects
(mask will be created automatically)
all_scans <- read_preproc_scans(proj)

Read preprocessed scans for a specific subject
sub01_scans <- read_preproc_scans(proj, subid="01")

Read preprocessed scans for a specific task and run
task_scans <- read_preproc_scans(proj,

task="balloonanalogrisktask",
run="01")

Specify mode for large datasets
bigvec_scans <- read_preproc_scans(proj, mode="bigvec")

Provide a custom mask
mask <- create_preproc_mask(proj, thresh=0.95)
masked_scans <- read_preproc_scans(proj, mask=mask)

Clean up
unlink(ds_path, recursive=TRUE)

}, error = function(e) {
message("Example requires derivatives dataset: ", e$message)

})

read_sidecar 71

read_sidecar Read sidecar JSON files and return metadata as a tidy tibble

Description

This function searches for JSON sidecar files matching the given criteria (subject, task, run, ses-
sion), reads the JSON content, and converts all top-level fields into columns of a tibble. Each file’s
metadata becomes one row in the returned tibble. This is particularly useful for extracting meta-
data about BIDS imaging files, such as acquisition parameters, task descriptions, and other relevant
information.

Usage

read_sidecar(
x,
subid = ".*",
task = ".*",
run = ".*",
session = ".*",
modality = "bold",
full_path = TRUE,
...

)

Arguments

x A bids_project object.

subid A regex for matching subject IDs. Default is ".*".

task A regex for matching tasks. Default is ".*".

run A regex for matching runs. Default is ".*".

session A regex for matching sessions. Default is ".*".

modality A regex for matching modality/kind (e.g. "bold"). Default is "bold". This is
matched against the ’kind’ field in parsed BIDS filenames.

full_path If TRUE, return full file paths in the file column. Default is TRUE.

... Additional arguments passed to search_files().

Value

A tibble with one row per JSON file. Columns include:

• file: the JSON file path

• .subid: subject ID extracted from filename

• .session: session ID extracted from filename (if present)

• .task: task name extracted from filename (if present)

72 search_files

• .run: run number extracted from filename (if present)

• Additional columns for each top-level key in the JSON files If no files are found, returns an
empty tibble.

Examples

Read all BOLD sidecar files from a BIDS dataset
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
metadata <- read_sidecar(proj)

Read sidecar files for a specific subject and task
sub01_meta <- read_sidecar(proj,

subid="01",
task="balloonanalogrisktask")

Read sidecar files for anatomical data
anat_meta <- read_sidecar(proj,

modality="T1w",
full_path=FALSE)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

search_files Search files in BIDS structure

Description

This function searches for files in a BIDS project that match a specified pattern and optional key-
value criteria. It can be used to find files in both raw data and preprocessed derivatives based on
filename patterns and BIDS metadata.

This function searches for files in a BIDS project that match a specified pattern and optional key-
value criteria. It can search in both raw data and preprocessed derivatives (if available).

Finds files in the mock BIDS tree by matching file names and BIDS entities.

Usage

search_files(x, ...)

S3 method for class 'bids_project'
search_files(x, regex = ".*", full_path = FALSE, strict = TRUE, ...)

search_files 73

S3 method for class 'mock_bids_project'
search_files(x, regex = ".*", full_path = FALSE, strict = TRUE, ...)

Arguments

x A mock_bids_project object.

... Additional BIDS entities to match (e.g., subid = "01", task = "rest"). Val-
ues are treated as regex patterns unless they are simple strings without regex
characters.

regex A regular expression to match filenames (node names). Default ".*".

full_path If TRUE, return full paths (prefixed with x$path). If FALSE, return relative paths
within the BIDS structure. Default FALSE.

strict If TRUE (default), queries for a BIDS entity (e.g., task="X") require the entity to
exist on the file node and match the pattern. If FALSE, files lacking the queried
entity are not automatically excluded (though they won’t match if the pattern
isn’t .*).

Value

A character vector of file paths matching the criteria, or NULL if no matches found.

A character vector of file paths matching the criteria, or NULL if no matches found.

A character vector of matching file paths, or NULL if no matches.

Examples

Search for event files in a BIDS dataset
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path, fmriprep=FALSE)
event_files <- search_files(proj, regex="events\\.tsv$")

Search with additional criteria
sub01_files <- search_files(proj, regex="bold\\.nii\\.gz$", subid="01",

task="balloonanalogrisktask")

Get full paths
full_paths <- search_files(proj, regex="events\\.tsv$", full_path=TRUE)

Search with strict matching
strict_matches <- search_files(proj, regex="\\.tsv$", strict=TRUE,

task="balloonanalogrisktask")

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

74 sessions

Search for event files in a BIDS dataset
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path, fmriprep=FALSE)
event_files <- search_files(proj, regex="events\\.tsv$")

Search with additional criteria (note: ds001 only has one subject '01')
sub01_files <- search_files(proj, regex="bold\\.nii\\.gz$", subid="01",

task="balloonanalogrisktask")

Get full paths
full_paths <- search_files(proj, regex="events\\.tsv$", full_path=TRUE)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

sessions Get sessions from a BIDS project

Description

This function retrieves a vector of session IDs from a BIDS project. Sessions in BIDS are typically
represented as directories named ’ses-XX’ within subject directories. This function extracts and
returns the unique session identifiers.

Usage

sessions(x, ...)

S3 method for class 'bids_project'
sessions(x, ...)

Arguments

x the object to extract sessions from

... extra args passed to methods

Value

A character vector of unique session IDs if the project has sessions, or NULL if the project does not
have sessions

sessions.mock_bids_project 75

Examples

Get sessions from a BIDS project
tryCatch({

ds007_path <- get_example_bids_dataset("ds007")
proj <- bids_project(ds007_path)
sessions(proj)

Dataset cache is intentionally retained for performance.
}, error = function(e) {

message("Example requires internet connection: ", e$message)
})

sessions.mock_bids_project

Get Sessions from Mock BIDS Project

Description

Extracts the unique session IDs found in the mock project’s file structure. Note: Returns IDs without
the "ses-" prefix.

Usage

S3 method for class 'mock_bids_project'
sessions(x, ...)

Arguments

x A mock_bids_project object.

... Extra arguments (ignored).

Value

Character vector of unique session IDs (e.g., c("pre", "post")), sorted, or NULL if the project does
not have sessions.

Examples

Create a mock project with sessions
parts <- data.frame(participant_id = "01")
fs <- data.frame(subid="01", session="test", datatype="func", suffix="bold.nii.gz", fmriprep=FALSE)
mock_proj <- create_mock_bids("SessionMock", parts, fs)

Get session IDs
sessions(mock_proj)

Project without sessions

76 surface_files

fs_no_session <- data.frame(subid="01", datatype="func", suffix="bold.nii.gz", fmriprep=FALSE)
mock_proj_no_sess <- create_mock_bids("NoSessionMock", parts, fs_no_session)
sessions(mock_proj_no_sess) # Returns NULL

surface_files Query Surface Files from a BIDS Project

Description

Retrieves paths to surface mesh files (GIFTI format, .gii) from a BIDS project, optionally filtered
by hemisphere and surface type. Surface files are typically found in fMRIPrep derivatives and
represent cortical surface reconstructions in various coordinate spaces.

Usage

surface_files(
x,
subid = ".*",
session = ".*",
hemi = ".*",
surf_type = ".*",
space = ".*",
full_path = TRUE,
...

)

S3 method for class 'bids_project'
surface_files(
x,
subid = ".*",
session = ".*",
hemi = ".*",
surf_type = ".*",
space = ".*",
full_path = TRUE,
...

)

S3 method for class 'mock_bids_project'
surface_files(
x,
subid = ".*",
session = ".*",
hemi = ".*",
surf_type = ".*",
space = ".*",
full_path = TRUE,

surface_files 77

...
)

Arguments

x A bids_project or mock_bids_project object.

subid Regex pattern to match subject IDs (without "sub-" prefix). Default ".*" matches
all subjects.

session Regex pattern to match session IDs (without "ses-" prefix). Default ".*" matches
all sessions.

hemi Hemisphere filter: "L" for left, "R" for right, or ".*" for both. Default ".*"
matches both hemispheres.

surf_type Surface type filter: "pial", "inflated", "midthickness", "smoothwm", "white",
"sphere", "spherereg", or ".*" for all types. Default ".*" matches all surface
types.

space Regex pattern to match coordinate space (e.g., "fsnative", "fsaverage"). De-
fault ".*" matches all spaces.

full_path Logical. If TRUE (default), return absolute file paths. If FALSE, return paths
relative to project root.

... Additional arguments passed to search_files.

Value

Character vector of file paths matching the criteria, or NULL if no matching files are found.

Examples

Get all surface files
tryCatch({

ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep = TRUE)

All surfaces
all_surfs <- surface_files(proj)

Left hemisphere pial surfaces only
left_pial <- surface_files(proj, hemi = "L", surf_type = "pial")

All surfaces in fsnative space
fsnative_surfs <- surface_files(proj, space = "fsnative")

Clean up
unlink(ds_path, recursive = TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

78 tasks

tasks Get tasks from a BIDS project

Description

This function retrieves a sorted vector of unique task names from a BIDS project. Tasks in BIDS
are typically represented in filenames with the pattern ’task-XX’. This function extracts and returns
the unique task identifiers, filtering out any NULL or NA values.

Usage

tasks(x, ...)

S3 method for class 'bids_project'
tasks(x, ...)

Arguments

x the object to extract tasks from

... extra args passed to methods

Value

A character vector of unique, sorted task names found in the BIDS project

Examples

Get tasks from a BIDS project
tryCatch({

ds001_path <- get_example_bids_dataset("ds001")
proj <- bids_project(ds001_path)
tasks(proj)

Clean up
unlink(ds001_path, recursive=TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

tasks.mock_bids_project 79

tasks.mock_bids_project

Get Tasks from Mock BIDS Project

Description

Extracts the unique task names found in the mock project’s file structure. Note: Returns names
without the "task-" prefix.

Usage

S3 method for class 'mock_bids_project'
tasks(x, ...)

Arguments

x A mock_bids_project object.

... Extra arguments (ignored).

Value

Character vector of unique task names (e.g., c("rest", "nback")), sorted.

Examples

Create a mock project with tasks
parts <- data.frame(participant_id = "01")
fs <- data.frame(subid="01", task="taskA", run="01", datatype="func",

suffix="bold.nii.gz", fmriprep=FALSE)
fs <- rbind(fs, data.frame(subid="01", task="taskB", run="01", datatype="func",

suffix="bold.nii.gz", fmriprep=FALSE))
mock_proj <- create_mock_bids("TaskMock", parts, fs)

Get task names
tasks(mock_proj)

transform_files Query Transform Files from a BIDS Project

Description

Retrieves paths to transformation files (xfm, warp, affine) from a BIDS project, optionally filtered
by source and target coordinate space. Transform files are typically found in fMRIPrep derivatives
and encode spatial transformations between different coordinate spaces (e.g., T1w to MNI, boldref
to T1w).

80 transform_files

Usage

transform_files(
x,
subid = ".*",
session = ".*",
from = ".*",
to = ".*",
mode = ".*",
kind = ".*",
full_path = TRUE,
...

)

S3 method for class 'bids_project'
transform_files(
x,
subid = ".*",
session = ".*",
from = ".*",
to = ".*",
mode = ".*",
kind = ".*",
full_path = TRUE,
...

)

S3 method for class 'mock_bids_project'
transform_files(
x,
subid = ".*",
session = ".*",
from = ".*",
to = ".*",
mode = ".*",
kind = ".*",
full_path = TRUE,
...

)

Arguments

x A bids_project or mock_bids_project object.
subid Regex pattern to match subject IDs (without "sub-" prefix). Default ".*" matches

all subjects.
session Regex pattern to match session IDs (without "ses-" prefix). Default ".*" matches

all sessions.
from Regex pattern to match source space (the "from" BIDS entity). Common values:

"T1w", "boldref", "fsnative". Default ".*" matches all.

transform_files 81

to Regex pattern to match target space (the "to" BIDS entity). Common values:
"MNI152NLin2009cAsym", "T1w", "fsnative". Default ".*" matches all.

mode Regex pattern to match transform mode entity. Default ".*".

kind Transform type: "xfm", "warp", "affine", or ".*" for all types. Default ".*"
matches all transform types.

full_path Logical. If TRUE (default), return absolute file paths. If FALSE, return paths
relative to project root.

... Additional arguments passed to search_files.

Value

Character vector of file paths matching the criteria, or NULL if no matching files are found.

Examples

Get all transform files
tryCatch({

ds_path <- get_example_bids_dataset("ds000001-fmriprep")
proj <- bids_project(ds_path, fmriprep = TRUE)

All transforms
all_xfms <- transform_files(proj)

Transforms from T1w to MNI space
t1_to_mni <- transform_files(proj, from = "T1w", to = "MNI152")

All transforms for a specific subject
sub01_xfms <- transform_files(proj, subid = "01")

Clean up
unlink(ds_path, recursive = TRUE)

}, error = function(e) {
message("Example requires internet connection: ", e$message)

})

Index

anat_parser, 3

bids_check_compliance, 4
bids_heatmap, 5
bids_parser, 6
bids_project, 7, 47
bids_subject, 8
bids_summary, 10
bids_transform, 11, 27
brain_mask, 13
build_subject_graph, 14

check_func_scans, 15
clear_example_bids_cache, 16
confound_files, 17
confound_set, 18
confound_strategy, 20
create_mock_bids, 21
create_preproc_mask, 24
create_preproc_mask(), 13
create_preproc_mask.bids_project, 25
create_preproc_mask.mock_bids_project,

26
create_smooth_transformer, 27

decode_bids_entities, 28

encode, 28, 28
event_files, 29

file_pairs, 31
flat_list, 32
fmap_parser, 33
fmriprep_anat_parser, 34
fmriprep_func_parser, 34
func_parser, 35
func_scans, 35
func_scans.bids_project, 37

get_example_bids_dataset, 38
get_repetition_time, 39

infer_tr, 40

list_confound_sets, 42
list_confound_strategies, 42
list_pack_bids, 43
load_all_events, 44

mask_files, 45

pack_bids, 43, 47
parse, 49
participants, 50
participants.mock_bids_project, 51
plot.bids_confounds, 52
plot.bids_project, 53
plot.mock_bids_project

(plot.bids_project), 53
plot_bids, 54
preproc_scans, 55
preproc_scans.bids_project, 57
print.mock_bids_project, 59

read_confounds, 60
read_confounds.bids_project, 61
read_confounds.mock_bids_project, 63
read_events, 64
read_events.bids_project, 65
read_events.mock_bids_project, 67
read_func_scans.bids_project, 68
read_preproc_scans.bids_project, 69
read_sidecar, 71

search_files, 12, 72
sessions, 74
sessions.mock_bids_project, 75
surface_files, 76

tasks, 78
tasks.mock_bids_project, 79
transform_files, 79

82

	anat_parser
	bids_check_compliance
	bids_heatmap
	bids_parser
	bids_project
	bids_subject
	bids_summary
	bids_transform
	brain_mask
	build_subject_graph
	check_func_scans
	clear_example_bids_cache
	confound_files
	confound_set
	confound_strategy
	create_mock_bids
	create_preproc_mask
	create_preproc_mask.bids_project
	create_preproc_mask.mock_bids_project
	create_smooth_transformer
	decode_bids_entities
	encode
	event_files
	file_pairs
	flat_list
	fmap_parser
	fmriprep_anat_parser
	fmriprep_func_parser
	func_parser
	func_scans
	func_scans.bids_project
	get_example_bids_dataset
	get_repetition_time
	infer_tr
	list_confound_sets
	list_confound_strategies
	list_pack_bids
	load_all_events
	mask_files
	pack_bids
	parse
	participants
	participants.mock_bids_project
	plot.bids_confounds
	plot.bids_project
	plot_bids
	preproc_scans
	preproc_scans.bids_project
	print.mock_bids_project
	read_confounds
	read_confounds.bids_project
	read_confounds.mock_bids_project
	read_events
	read_events.bids_project
	read_events.mock_bids_project
	read_func_scans.bids_project
	read_preproc_scans.bids_project
	read_sidecar
	search_files
	sessions
	sessions.mock_bids_project
	surface_files
	tasks
	tasks.mock_bids_project
	transform_files
	Index

