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bfgs BFGS Solver

Description

Creates a solver using the BFGS quasi-Newton method via optim(). BFGS approximates the
Hessian from gradient information, providing second-order-like convergence without computing
the Hessian directly.

Usage

bfgs(max_iter = 100L, tol = 1e-08, report = QL)

Arguments
max_iter Maximum number of iterations
tol Convergence tolerance (passed to optim’s reltol)
report Reporting frequency (0 = no reporting)

Details

BFGS is often a good default choice: it’s more robust than Newton-Raphson (no matrix inversion
issues) and faster than gradient ascent (uses curvature information).

The solver automatically uses the score function from the problem if available, otherwise computes
gradients numerically.

Value

A solver function with signature (problem, theta0, trace) -> mle_result

Examples

set.seed(42)
x <= rnorm(50, 5, 2)
problem <- mle_problem(

loglike = function(theta) sum(dnorm(x, theta[1], theta[2], log = TRUE)),

constraint = mle_constraint(support = function(theta) theta[2] > o,

project = function(theta) c(thetal1], max(thetal[2], 1e-8)))

)
# Basic usage
result <- bfgs()(problem, c(4, 1.5))

# Race BFGS against gradient ascent
strategy <- bfgs() %|% gradient_ascent()
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chain Chain Solvers with Early Stopping

Description

Chains multiple solvers sequentially with optional early stopping. More flexible than %>>% operator.

Usage
chain(..., early_stop = NULL)
Arguments
Solver functions to chain
early_stop Optional function that takes a result and returns TRUE to stop the chain early.
Default is NULL (no early stopping).
Details

The chain runs solvers in order, passing each result’s theta.hat to the next solver. If early_stop
is provided and returns TRUE for any intermediate result, the chain stops early.

Common early stopping conditions:

» Stop when converged: function(r) r$converged
» Stop when gradient is small: function(r) sqrt(sum(score*2)) < 1e-6

* Stop after reaching target: function(r) r$loglike > -100

Value

A new solver function that runs solvers in sequence

Examples

# Chain with early stopping when converged
strategy <- chain(
grid_search(lower = c(-10, 0.1), upper = c(10, 5), n = 5),
gradient_ascent(max_iter = 50),
newton_raphson(max_iter = 20),
early_stop = function(r) isTRUE(r$converged)
)

# Standard chain (no early stopping)
strategy <- chain(gradient_ascent(), newton_raphson())
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clear_cache Clear derivative cache

Description

Clears the cached numerical derivatives (score and Fisher) from an mle_problem. This is useful
when you want to force recomputation, for example after modifying data that the log-likelihood
depends on.

Usage

clear_cache(problem)

Arguments

problem An mle_problem object

Value

The problem object (invisibly), modified in place

Examples

loglike <- function(theta) -sum((theta - c(1, 2))*2)
problem <- mle_problem(loglike, cache_derivatives = TRUE)
# ... run some optimization ...

clear_cache(problem) # Force fresh derivative computation

compose Compose Multiple Solvers Sequentially

Description
Chains any number of solvers sequentially. Each solver’s result becomes the starting point for the
next. Alternative to using %>>% operator.

Usage

compose(...)

Arguments

Solver functions to compose
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Details

Trace data from all solvers is merged into a single trace with stage boundaries preserved.

Value

A new solver function that runs all solvers in sequence

Examples

set.seed(42)
X <= rnorm(50, 5, 2)
problem <- mle_problem(
loglike = function(theta) sum(dnorm(x, theta[1], theta[2], log = TRUE)),
constraint = mle_constraint(support = function(theta) theta[2] > 0,
project = function(theta) c(theta[1], max(theta[2], 1e-8)))
)
# Three-stage strategy
strategy <- compose(
grid_search(lower = c(-10, 0.1), upper = c(10, 5), n = 5),
gradient_ascent(max_iter = 50),
newton_raphson(max_iter = 20)
)
result <- strategy(problem, c(0, 1))

compose_transforms Compose Multiple Function Transformations

Description
Applies transformations right-to-left (like mathematical composition). This allows building com-
plex log-likelihood transformations from simple ones.

Usage

compose_transforms(...)

Arguments

Transformer functions

Details

Note: For composing solvers, use compose instead.

Value

Composed transformer function
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Examples

# Create a composition of transformations
transform <- compose_transforms(
function(f) with_penalty(f, penalty_11(), lambda
function(f) with_penalty(f, penalty_12(), lambda
)

0.01),
0.05)

# Apply to log-likelihood

loglike <- function(theta) -sum((theta - c(1, 2))*2)
loglike_transformed <- transform(loglike)
loglike_transformed(c(1, 2))

coordinate_ascent Coordinate Ascent Solver

Description

Creates a solver that optimizes one parameter at a time while holding others fixed. This is useful
when parameters have different scales or when the likelihood decomposes nicely along coordinate
directions.

Usage

coordinate_ascent(
max_cycles = 50L,

tol = 1e-08,
line_search = TRUE,
cycle_order = c("sequential”, "random"),
verbose = FALSE
)
Arguments
max_cycles Maximum number of full cycles through all parameters
tol Convergence tolerance on log-likelihood change
line_search Use line search for each coordinate (slower but more robust)
cycle_order Order of cycling: "sequential” (1,2,...,p) or "random"
verbose Logical; if TRUE and the cli package is installed, display progress during opti-
mization. Default is FALSE.
Details

Each cycle consists of optimizing each coordinate in turn using a simple golden section search. The
algorithm converges when the log-likelihood improvement in a full cycle is less than tol.

Coordinate ascent can be effective when:



* Parameters are on very different scales
* The likelihood has axis-aligned ridges

* Computing the full gradient is expensive

However, it may converge slowly for problems with strong parameter correlations.

Value

A solver function with signature (problem, theta0, trace) -> mle_result

See Also

fisher_scoring

gradient_ascent for gradient-based optimization, nelder_mead for another derivative-free method

Examples

# Basic coordinate ascent
solver <- coordinate_ascent()

# With more cycles for difficult problems
solver <- coordinate_ascent(max_cycles = 100)

# Random cycling to avoid systematic bias
solver <- coordinate_ascent(cycle_order = "random™)

fisher_scoring Fisher Scoring Solver

Description

Variant of Newton-Raphson that uses the expected Fisher information instead of the observed

Fisher. Can be more stable for some problems.

Usage

fisher_scoring(
line_search = TRUE,
max_iter = 50L,
tol = 1e-08,
backtrack_ratio = 0.5,
min_step = le-12,
verbose = FALSE
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Arguments
line_search Use backtracking line search for stability
max_iter Maximum number of iterations
tol Convergence tolerance (on parameter change)

backtrack_ratio
Step size reduction factor for line search

min_step Minimum step size before giving up

verbose Logical; if TRUE and the cli package is installed, display progress during opti-
mization. Default is FALSE.

Details

Fisher scoring is identical to Newton-Raphson when the expected and observed Fisher informa-
tion are equal (e.g., exponential families). For other models, it may have different convergence
properties.

Value

A solver function with signature (problem, theta0, trace) -> mle_result

Examples

set.seed(42)
X <= rnorm(50, 5, 2)
problem <- mle_problem(
loglike = function(theta) sum(dnorm(x, theta[1], theta[2], log = TRUE)),
constraint = mle_constraint(
support = function(theta) thetal[2] > 0,
project = function(theta) c(theta[1], max(theta[2], 1e-8))
)
)
solver <- fisher_scoring()
result <- solver(problem, c(4, 1.5))

get_fisher Get Fisher information function from problem

Description

Returns the Fisher information matrix function, computing numerically if not provided. If cache_derivatives
= TRUE was set in the problem and Fisher is computed numerically, results are cached using a single-
value cache.
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Usage
get_fisher(problem)

Arguments

problem An mle_problem object

Value

Fisher information function that takes a parameter vector and returns the Fisher information matrix
(negative Hessian of log-likelihood).

Examples

problem <- mle_problem(
loglike = function(theta) -sum((theta - c(1, 2))*2)
)
fisher_fn <- get_fisher(problem)
fisher_fn(c(1, 2)) # Fisher information at the optimum

get_score Get score function from problem

Description

Returns the score (gradient) function, computing numerically if not provided. If cache_derivatives
= TRUE was set in the problem and score is computed numerically, results are cached using a single-
value cache.

Usage

get_score(problem)

Arguments

problem An mle_problem object

Value

Score function that takes a parameter vector and returns the gradient of the log-likelihood.

Examples

problem <- mle_problem(
loglike = function(theta) -sum((theta - c(1, 2))*2)
)
score_fn <- get_score(problem)
score_fn(c(@, @)) # Gradient at (0, 0)
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gradient_ascent Gradient Ascent Solver

Description

Creates a solver that uses gradient ascent (steepest ascent) to find the MLE. Optionally uses back-
tracking line search for adaptive step sizes.

Usage

gradient_ascent(
learning_rate = 1,
line_search = TRUE,
max_iter = 100L,
tol = 1e-08,
backtrack_ratio = 0.5,
min_step = le-12,
verbose = FALSE

Arguments

learning_rate Base learning rate / maximum step size

line_search Use backtracking line search for adaptive step sizes
max_iter Maximum number of iterations
tol Convergence tolerance (on parameter change)

backtrack_ratio
Step size reduction factor for line search (0 <r < 1)

min_step Minimum step size before giving up

verbose Logical; if TRUE and the cli package is installed, display progress during opti-
mization. Default is FALSE.

Details

Gradient ascent iteratively moves in the direction of the score (gradient of log-likelihood). With
line search enabled, the step size is adaptively chosen to ensure the log-likelihood increases.

The solver respects constraints defined in the problem via projection.

Value

A solver function with signature (problem, theta0, trace) -> mle_result

See Also

newton_raphson for second-order optimization, bfgs for quasi-Newton, %>>% and %|% for solver
composition
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Examples

# Create a solver with default parameters
solver <- gradient_ascent()

# Create a solver with custom parameters
solver <- gradient_ascent(

learning_rate = 0.5,

max_iter = 500,

tol = 1e-10
)

# Without line search (fixed step size)
solver <- gradient_ascent(learning_rate = .01, line_search = FALSE)

grid_search Grid Search Solver

Description

Creates a solver that evaluates the log-likelihood on a grid of points and returns the best. Useful for
finding good starting points or for low-dimensional problems.

Usage

grid_search(lower, upper, n = 10L)

Arguments

lower Lower bounds for the grid

upper Upper bounds for the grid

n Number of points per dimension (scalar or vector)
Details

Grid search is deterministic and exhaustive within its bounds. It’s most useful for 1-3 dimensional
problems or as the first stage of a multi-stage strategy (e.g., grid_search

The theta0 argument is ignored; the grid is determined by lower/upper/n. Points outside the prob-
lem’s constraint support are skipped.

Value

A solver function with signature (problem, theta0, trace) -> mle_result
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Examples

set.seed(42)
x <= rnorm(50@, 5, 2)
problem <- mle_problem(

loglike = function(theta) sum(dnorm(x, thetal[1], theta[2], log = TRUE)),

constraint = mle_constraint(support = function(theta) theta[2] > 0,

project = function(theta) c(thetal1], max(theta[2], 1e-8)))

)
# Simple grid search
solver <- grid_search(lower = c(-10, 0.1), upper = c(10, 5), n = 20)
result <- solver(problem, c(0, 1))

# Coarse-to-fine: grid then gradient

strategy <- grid_search(c(-1@, 0.1), c(10, 5), n = 5) %>>% gradient_ascent()

is_converged Check if solver converged

Description

Check if solver converged

Usage
is_converged(x, ...)
Arguments
X An mle result object
Additional arguments (unused)
Value

Logical indicating convergence

Examples

problem <- mle_problem(
loglike = function(theta) -sum((theta - c(1, 2))*2)
)
result <- gradient_ascent(max_iter = 50)(problem, c(@, 0))
is_converged(result)
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is_mle_numerical

is_mle_constraint Check if object is an mle_constraint

Description

Check if object is an mle_constraint

Usage

is_mle_constraint(x)

Arguments

X Object to test

Value

Logical indicating whether x is an mle_constraint.

Examples

constraint <- mle_constraint(support
is_mle_constraint(constraint) # TRUE

function(theta) all(theta > 0))

is_mle_constraint(list()) # FALSE
is_mle_numerical Check if object is an mle_numerical
Description

Check if object is an mle_numerical

Usage

is_mle_numerical(x)

Arguments

X Object to test

Value

Logical indicating whether x inherits from mle_numerical.
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Examples

problem <- mle_problem(
loglike = function(theta) -sum((theta - c(1, 2))*2)
)
result <- gradient_ascent(max_iter = 20)(problem, c(0, 0))
is_mle_numerical(result) # TRUE
is_mle_numerical(list()) # FALSE

15

is_mle_problem Check if object is an mle_problem

Description

Check if object is an mle_problem

Usage

is_mle_problem(x)

Arguments

X Object to test

Value

Logical indicating whether x is an mle_problem.

Examples

problem <- mle_problem(

loglike = function(theta) -sum((theta - c(1, 2))*2)
)
is_mle_problem(problem) # TRUE
is_mle_problem(list()) # FALSE

is_tracing Check if tracing is enabled

Description

Check if tracing is enabled

Usage

is_tracing(trace)



16 Ibfgsb

Arguments

trace An mle_trace object

Value

Logical indicating if any tracing is enabled

Examples

# Tracing disabled (default)
trace <- mle_trace()
is_tracing(trace) # FALSE

# Tracing enabled
trace <- mle_trace(values = TRUE)
is_tracing(trace) # TRUE

1bfgsb L-BFGS-B Solver (Box Constrained)

Description
Creates a solver using L-BFGS-B, a limited-memory BFGS variant that supports box constraints
(lower and upper bounds on parameters).

Usage

lbfgsb(lower = -Inf, upper = Inf, max_iter = 100L, tol = 1e-08)

Arguments
lower Lower bounds on parameters (can be -Inf)
upper Upper bounds on parameters (can be Inf)
max_iter Maximum number of iterations
tol Convergence tolerance

Details

Unlike the constraint system in mle_problem (which uses projection), L-BFGS-B handles box con-
straints natively within the algorithm. Use this when you have simple bound constraints.

Value

A solver function
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Examples

set.seed(42)
x <= rnorm(50, 5, 2)
problem <- mle_problem(
loglike = function(theta) sum(dnorm(x, thetal[1], theta[2], log = TRUE))
)
# Positive sigma via box constraint
solver <- lbfgsb(lower = c(-Inf, 0.01), upper = c(Inf, Inf))
result <- solver(problem, c(4, 1.5))

17

mle_constraint Create domain constraint specification

Description

Specifies domain constraints for optimization. The support function checks if parameters are valid,

and the project function maps invalid parameters back to valid ones.

Usage

mle_constraint(support = function(theta) TRUE, project = function(theta) theta)

Arguments
support Function testing if theta is in support (returns TRUE/FALSE)
project Function projecting theta onto support

Value

An mle_constraint object

Examples

# Positive parameters only
constraint <- mle_constraint(
support = function(theta) all(theta > 0),
project = function(theta) pmax(theta, 1e-8)
)

# Parameters in [0, 1]

constraint <- mle_constraint(
support = function(theta) all(theta >= @ & theta <= 1),
project = function(theta) pmax(@, pmin(1, theta))

)

# No constraints (default)
constraint <- mle_constraint()
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mle_problem Create an MLE Problem Specification

Description

Encapsulates a maximum likelihood estimation problem, separating the statistical specification
from the optimization strategy.

Usage

mle_problem(
loglike,
score = NULL,
fisher = NULL,
constraint = NULL,
theta_names = NULL,

n_obs = NULL,
cache_derivatives = FALSE
)
## S3 method for class 'mle_problem'
print(x, ...)
Arguments
loglike Log-likelihood function taking parameter vector theta
score Score function (gradient of log-likelihood). If NULL, computed numerically via
numDeriv::grad when needed.
fisher Fisher information matrix function. If NULL, computed numerically via numDeriv::hessian
when needed.
constraint Domain constraints as mle_constraint object
theta_names Character vector of parameter names for nice output
n_obs Number of observations (for AIC/BIC computation)

cache_derivatives

Logical; if TRUE and score/fisher are computed numerically, cache the most
recent result to avoid redundant computation. This is particularly useful during
line search where the same point may be evaluated multiple times. Default is
FALSE.

X An mle_problem object.

Additional arguments (unused).
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Details

The problem object provides lazy evaluation of derivatives. If you don’t provide analytic score or
fisher functions, they will be computed numerically when requested.

When cache_derivatives = TRUE, numerical derivatives are cached using a single-value cache
(stores the most recent theta and result). This is efficient for optimization where consecutive calls of-
ten evaluate at the same point (e.g., during line search or convergence checking). Use clear_cache
to manually clear the cache if needed.

Value

An mle_problem object

The input object, invisibly (for method chaining).

Examples

# With analytic derivatives
problem <- mle_problem(
loglike = function(theta) sum(dnorm(data, theta[1], theta[2], log = TRUE)),
score = function(theta) {
c(sum(data - theta[1]) / theta[2]*2,
-length(data)/thetal2] + sum((data - thetal[1])*2) / theta[2]"3)
1
constraint = mle_constraint(
support = function(theta) theta[2] > 0,
project = function(theta) c(theta[1], max(theta[2], 1e-8))
),
theta_names = c("mu”, "sigma")

)

# Without analytic derivatives (computed numerically)
problem <- mle_problem(
loglike = function(theta) sum(dnorm(data, thetal[1], theta[2], log = TRUE)),
constraint = mle_constraint(
support = function(theta) thetal[2] > @
)
)

mle_trace Create a Trace Configuration

Description

Specifies what information to track during optimization.
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Usage

mle_trace(
values = FALSE,
path = FALSE,
gradients = FALSE,
timing = FALSE,

every = 1L
)
## S3 method for class 'mle_trace'
print(x, ...)
Arguments
values Track log-likelihood values at each iteration
path Track parameter values at each iteration
gradients Track gradient norms at each iteration
timing Track wall-clock time
every Record every nth iteration (1 = all iterations)
X An mle_trace object.
Additional arguments (unused).
Value

An mle_trace configuration object

The input object, invisibly (for method chaining).

Examples

# Track everything
trace <- mle_trace(values = TRUE, path = TRUE, gradients = TRUE)

# Minimal tracing (just convergence path)
trace <- mle_trace(values = TRUE)

# Sample every 10th iteration for long runs
trace <- mle_trace(values = TRUE, path = TRUE, every = 10)
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nelder_mead Nelder-Mead Solver (Derivative-Free)

Description

Creates a solver using the Nelder-Mead simplex method via optim(). This is a derivative-free
method useful when gradients are unavailable or unreliable.

Usage

nelder_mead(max_iter = 500L, tol = 1e-08)

Arguments
max_iter Maximum number of iterations
tol Convergence tolerance

Details

Nelder-Mead doesn’t use gradient information, making it robust but potentially slower. It’s useful
as a fallback when gradient-based methods fail, or for problems with non-smooth likelihoods.

Value

A solver function

Examples

set.seed(42)
x <= rnorm(50@, 5, 2)
problem <- mle_problem(

loglike = function(theta) sum(dnorm(x, theta[1], theta[2], log = TRUE)),

constraint = mle_constraint(support = function(theta) theta[2] > 0,

project = function(theta) c(thetal1], max(theta[2], 1e-8)))

)
# Use when gradients are problematic
result <- nelder_mead() (problem, c(4, 1.5))

# Race against gradient methods
strategy <- gradient_ascent() %|% nelder_mead()
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newton_raphson Newton-Raphson Solver

Description

Creates a solver that uses Newton-Raphson (second-order) optimization. Uses the Fisher informa-
tion matrix to scale the gradient for faster convergence near the optimum.

Usage

newton_raphson(
line_search = TRUE,
max_iter = 50L,
tol = 1e-08,
backtrack_ratio = 0.5,
min_step = le-12,
verbose = FALSE

)
Arguments
line_search Use backtracking line search for stability
max_iter Maximum number of iterations
tol Convergence tolerance (on parameter change)

backtrack_ratio
Step size reduction factor for line search

min_step Minimum step size before giving up

verbose Logical; if TRUE and the cli package is installed, display progress during opti-
mization. Default is FALSE.

Details

Newton-Raphson computes the search direction as 1(6)~'s(f) where I is the Fisher information
and s is the score. This accounts for parameter scaling and typically converges faster than gradient
ascent when near the optimum.

Requires the problem to have a Fisher information function (either analytic or computed numeri-
cally).

Value

A solver function with signature (problem, theta0, trace) -> mle_result

See Also

gradient_ascent for first-order optimization, fisher_scoring (alias), %>>% for chaining
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Examples

set.seed(42)
X <= rnorm(50, 5, 2)
problem <- mle_problem(

loglike = function(theta) sum(dnorm(x, theta[1], theta[2], log = TRUE)),

constraint = mle_constraint(support = function(theta) theta[2] > 0,

project = function(theta) c(theta[1], max(thetal[2], 1e-8)))

)
# Basic usage
solver <- newton_raphson()
result <- solver(problem, c(4, 1.5))

# Often used after gradient ascent for refinement
strategy <- gradient_ascent(max_iter = 50) %>>% newton_raphson(max_iter = 20)

normal_sampler Normal Sampler Factory

Description

Creates a sampler function for use with with_restarts that generates normally distributed starting
points around a center.

Usage

normal_sampler(center, sd = 1)

Arguments

center Mean of the normal distribution

sd Standard deviation (scalar or vector)
Value

A sampler function

Examples

sampler <- normal_sampler(c(@, 1), sd = c(5, 0.5))
strategy <- with_restarts(gradient_ascent(), n = 20, sampler = sampler)
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optimization_path

num_iterations Get number of iterations

Description

Get number of iterations

Usage
num_iterations(x, ...)
Arguments
X An mle result object
Additional arguments (unused)
Value

Number of iterations, or NA_integer_ if not available.

Examples

problem <- mle_problem(
loglike = function(theta) -sum((theta - c(1, 2))*2)
)
result <- gradient_ascent(max_iter = 50)(problem, c(0, 0))
num_iterations(result)

optimization_path Extract Optimization Path as Data Frame

Description

Converts the trace data from an MLE result into a tidy data frame for custom analysis and plotting

(e.g., with ggplot2).

Usage
optimization_path(x, ...)
Arguments
X An mle_numerical result with trace_data, or an mle_trace_data object

Additional arguments (unused)
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Value

A data frame with columns:

* iteration: Iteration number

* loglike: Log-likelihood value (if traced)
e grad_norm: Gradient norm (if traced)

* time: Elapsed time in seconds (if traced)

* theta_1, theta_2, ...: Parameter values (if path traced)

Examples

# Get optimization path as data frame
problem <- mle_problem(
loglike = function(theta) -sum((theta - c(3, 2))*2),
constraint = mle_constraint(support = function(theta) TRUE)
)
trace_cfg <- mle_trace(values = TRUE, path = TRUE)
result <- gradient_ascent(max_iter = 30)(problem, c(@, @), trace = trace_cfg)

path_df <- optimization_path(result)
head(path_df)

penalty_elastic_net Elastic net penalty (combination of L1 and L2)

Description
Creates a penalty combining L1 and L2 norms. The parameter alpha controls the balance: alpha=1
is pure LASSO, alpha=0 is pure Ridge.

Usage

penalty_elastic_net(alpha = 0.5, weights = NULL)

Arguments
alpha Balance between L1 and L2 (numeric in [0,1], default: 0.5)
weights Optional parameter weights (default: all 1)

Value

Penalty function
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Examples

# Equal mix of L1 and L2
penalty <- penalty_elastic_net(alpha

0.5)

# More L1 (more sparsity)
penalty <- penalty_elastic_net(alpha = 0.9)

# More L2 (more shrinkage)
penalty <- penalty_elastic_net(alpha = 0.1)

penalty_11 LI penalty function (LASSO)

Description

Creates a penalty function that computes the L1 norm (sum of absolute values). Used for sparsity-
inducing regularization.

Usage

penalty_11(weights = NULL)

Arguments

weights Optional parameter weights (default: all 1)

Value

Penalty function

Examples

penalty <- penalty_11()
penalty(c(1, -2, 3)) # Returns 6

# Weighted L1
penalty <- penalty_l1(weights = c(1, 2, 1))
penalty(c(1, -2, 3)) # Returns 1x1 + 2%2 + 1x3 = 8
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penalty_12 L2 penalty function (Ridge)

Description

Creates a penalty function that computes the L2 norm squared (sum of squares). Used for parameter
shrinkage.

Usage

penalty_l2(weights = NULL)

Arguments

weights Optional parameter weights (default: all 1)

Value

Penalty function

Examples

penalty <- penalty_12()
penalty(c(1, -2, 3)) # Returns 14

# Weighted L2
penalty <- penalty_l2(weights = c(1, 2, 1))
penalty(c(1, -2, 3)) # Returns 172 + (2%2)"2 + 3%2 = 26

plot.mle_numerical Plot Optimization Convergence

Description

Visualizes the optimization trajectory from an MLE result with tracing enabled. Shows log-likelihood
progression, gradient norm decay, and optionally the parameter path (for 2D problems).

Usage

## S3 method for class 'mle_numerical'
plot(x, which = c("loglike", "gradient"”), main = NULL, ...)
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Arguments

X

which

main

Details

plot.mle_trace_data

An mle_numerical result object with trace_data

Character vector specifying which plots to show: "loglike" (log-likelihood),
"gradient" (gradient norm), "path" (2D parameter path)

Optional title
Additional arguments passed to plot

This function requires that the solver was run with tracing enabled via mle_trace(). Without trace
data, the function will warn and return invisibly.

The "path" plot is only shown for 2D parameter problems.

Value

Invisibly returns the trace data

Examples

# Enable tracing when solving
problem <- mle_problem(
loglike = function(theta) -sum((theta - c(3, 2))*2),

constraint =

)

mle_constraint(support = function(theta) TRUE)

trace_cfg <- mle_trace(values = TRUE, gradients = TRUE, path = TRUE)
result <- gradient_ascent(max_iter = 50)(problem, c(@, @), trace = trace_cfg)

# Plot convergence diagnostics

plot(result)

plot.mle_trace_data Plot Trace Data Directly

Description

Plot Trace Data Directly

Usage

## S3 method for class 'mle_trace_data'

plot(x, ...)

Arguments

X

An mle_trace_data object

Arguments passed to plotting functions
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Value

Called for side effects (generates a plot). Returns the input object invisibly.

print.mle_trace_data Print MLE Trace Data

Description
Print MLE Trace Data
Usage
## S3 method for class 'mle_trace_data’
print(x, ...)
Arguments
X An mle_trace_data object.
Additional arguments (unused).
Value

The input object, invisibly (for method chaining).

race Race Multiple Solvers

Description

Runs multiple solvers (optionally in parallel) and returns the best result (highest log-likelihood).
More flexible than %|% operator.

Usage
race(..., parallel = FALSE)
Arguments
Solver functions to race
parallel Logical; if TRUE and the future package is installed, solvers are run in parallel

using the current future plan. Default is FALSE.
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Details

When parallel = TRUE, solvers are executed using future: : future() and results collected with
future: :value(). The current future plan determines how parallelization happens (e.g., plan(multisession)
for multi-process execution).

Failed solvers (those that throw errors) are ignored. If all solvers fail, an error is thrown.

Value

A new solver function that races all solvers and picks the best

Examples

# Race three methods sequentially
strategy <- race(gradient_ascent(), bfgs(), nelder_mead())

# Race with parallel execution (requires future package)

## Not run:

future: :plan(future::multisession)

strategy <- race(gradient_ascent(), bfgs(), nelder_mead(), parallel = TRUE)

## End(Not run)

race_operator Parallel Solver Racing (Operator)

Description
Runs multiple solvers and returns the best result (highest log-likelihood). Useful when unsure which
method will work best for a given problem.

Usage

s1 %|% s2

Arguments
s1 First solver function
s2 Second solver function
Details

For parallel execution or more than 2 solvers, use race.

Value

A new solver function that runs both and picks the best



random_search 31

See Also

race for parallel execution

Examples

# Race gradient-based vs derivative-free
strategy <- gradient_ascent() %|% nelder_mead()

# Race multiple methods
strategy <- gradient_ascent() %|% bfgs() %|% nelder_mead()

random_search Random Search Solver

Description
Creates a solver that evaluates the log-likelihood at random points and returns the best. Useful for
high-dimensional problems where grid search is infeasible.

Usage

random_search(sampler, n = 100L)

Arguments
sampler Function generating random parameter vectors
n Number of random points to evaluate

Details

Unlike grid search, random search scales better to high dimensions. The sampler should generate
points in a reasonable region; points outside the problem’s constraint support are skipped.

Value

A solver function

Examples

# Create a random search solver with uniform sampling
solver <- random_search(
sampler = uniform_sampler(c(-10, 0.1), c(10, 5)),
n =100
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sim_anneal Simulated Annealing Solver

Description

Creates a solver using simulated annealing for global optimization. Simulated annealing can es-
cape local optima by probabilistically accepting worse solutions, with the acceptance probability
decreasing over time (controlled by a "temperature” parameter).

Usage

sim_anneal(
temp_init = 10,
cooling_rate = 0.95,
max_iter = 1000L,
neighbor_sd = 1,
min_temp = le-10,
verbose = FALSE

Arguments

temp_init Initial temperature (higher = more exploration)

cooling_rate Temperature reduction factor per iteration (0 <r < 1)

max_iter Maximum number of iterations

neighbor_sd Standard deviation for generating neighbor proposals

min_temp Minimum temperature before stopping

verbose Logical; if TRUE and the cli package is installed, display progress during opti-

mization. Default is FALSE.

Details

At each iteration: 1. Generate a neighbor by adding Gaussian noise to current parameters 2. If
the neighbor improves the objective, accept it 3. If the neighbor is worse, accept with probability
exp(delta / temp) 4. Reduce temperature: temp = temp * cooling_rate

The algorithm is stochastic and may find different solutions on different runs. For best results, use
with with_restarts() or combine with a local optimizer via %>>%.

Value

A solver function with signature (problem, theta0, trace) -> mle_result

See Also

with_restarts for multi-start optimization, gradient_ascent for local refinement
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Examples

# Basic simulated annealing
solver <- sim_anneal()

# More exploration (higher initial temp, slower cooling)
solver <- sim_anneal(temp_init = 100, cooling_rate = 0.999)

# Coarse global search, then local refinement
strategy <- sim_anneal(max_iter = 500) %>>% gradient_ascent()

uniform_sampler Uniform Sampler Factory

Description
Creates a sampler function for use with with_restarts that generates uniformly distributed start-
ing points.

Usage

uniform_sampler(lower, upper)

Arguments
lower Lower bounds for each parameter
upper Upper bounds for each parameter
Value

A sampler function

Examples

sampler <- uniform_sampler(c(-10, 0.1), c(10, 5))
strategy <- with_restarts(gradient_ascent(), n = 20, sampler = sampler)
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unless_converged Conditional Refinement

Description
Applies a refinement solver only if the first solver did not converge. If refinement is applied, trace
data from both solvers is merged.

Usage

unless_converged(solver, refinement)

Arguments

solver Primary solver function

refinement Solver to use if primary doesn’t converge
Value

A new solver function with conditional refinement

Examples

# Use Newton-Raphson to refine if gradient ascent doesn't converge
strategy <- unless_converged(gradient_ascent(max_iter = 50), newton_raphson())

update.mle_problem Update an mle_problem

Description

Create a new problem with some fields updated.

Usage
## S3 method for class 'mle_problem'
update(object, ...)

Arguments
object An mle_problem

Named arguments to update

Value

New mle_problem
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with_penalty Add penalty term to log-likelihood

Description
Transforms a log-likelihood by subtracting a penalty term. Useful for regularized estimation (e.g.,
LASSO, Ridge regression).

Usage
with_penalty(loglike, penalty, lambda = 1)

Arguments
loglike Base log-likelihood function
penalty Penalty function taking theta and returning numeric
lambda Penalty weight (non-negative numeric, default: 1.0)
Value

Transformed log-likelihood function

Examples

# Regression with L2 penalty (Ridge)
loglike <- function(theta) -sum((theta - c(1, 2))*2)

# Add L2 penalty
loglike_penalized <- with_penalty(

loglike,
penalty = penalty_12(),
lambda = 0.1

)
loglike_penalized(c(1, 2)) # Evaluate penalized likelihood

with_restarts Multiple Random Restarts

Description
Runs a solver from multiple starting points and returns the best result. Essential for problems with
multiple local optima.

Usage

with_restarts(solver, n, sampler, max_reject = 100L)
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Arguments
solver A solver function
n Number of restarts (including the provided theta0)
sampler Function that generates random starting points. Called with no arguments, should
return a parameter vector. Samples are automatically constrained using prob-
lem$constraint.
max_reject Maximum rejection attempts per sample before projection
Details

The sampler generates candidate starting points, which are automatically filtered/projected using the
problem’s constraint. This means samplers can be simple distributions without constraint aware-
ness.

Value

A new solver function with restart capability

Examples

# 20 random restarts - constraint applied automatically from problem
sampler <- uniform_sampler(c(-10, @), c(10, 5))
strategy <- with_restarts(gradient_ascent(), n = 20, sampler = sampler)

# Can also compose with other operators
strategy <- with_restarts(gradient_ascent(), n = 10, sampler = sampler) %>>%
newton_raphson()

with_subsampling Create stochastic log-likelihood with subsampling

Description
Transforms a log-likelihood function to use only a random subsample of observations. Useful for
stochastic gradient ascent on large datasets.

Usage

with_subsampling(loglike, data, subsample_size, replace = FALSE)

Arguments
loglike Base log-likelihood function. Should accept theta and data.
data Observations (vector, matrix, or data.frame)

subsample_size Number of observations to sample per evaluation

replace Sample with replacement (logical, default: FALSE)
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Value

Transformed log-likelihood function

Examples

# Original likelihood uses all data
data <- rnorm(10000, mean = 5, sd = 2)

loglike <- function(theta, obs = data) {
sum(dnorm(obs, mean = theta[1], sd = theta[2], log = TRUE))
3

# Stochastic version uses random subsample
loglike_stoch <- with_subsampling(
loglike,
data = data,
subsample_size = 100

)

# Each call uses different random subsample
loglike_stoch(c(5, 2))
loglike_stoch(c(5, 2)) # Different value

%>>% Sequential Solver Composition

Description
Chains two solvers sequentially. The result of the first solver becomes the starting point for the
second. This enables coarse-to-fine strategies.

Usage

s1 %>>% s2

Arguments
s1 First solver function
s2 Second solver function
Details

Trace data from all solvers in the chain is merged into a single trace with stage boundaries preserved.

Value

A new solver function that runs s1 then s2
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Examples

# Coarse-to-fine: grid search to find good region, then gradient ascent
strategy <- grid_search(lower = c(-10, 0.1), upper = c(10, 5), n = 5) %>>%
gradient_ascent()

# Three-stage refinement

strategy <- grid_search(lower = c(-10, ©0.1), upper = c(10, 5), n = 3) %>>%
gradient_ascent() %>>%
newton_raphson()
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