
Package ‘ctsem’
January 20, 2026

Type Package

Title Continuous Time Structural Equation Modelling

Version 3.10.5

Date 2026-1-15

Description Hierarchical continuous (and discrete) time state space modelling, for linear
and nonlinear systems measured by continuous variables, with limited support for
binary data. The subject specific dynamic system is modelled as a stochastic
differential equation (SDE) or difference equation, measurement models are typically multivari-
ate normal factor models.
Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default.
Nonlinearities, (state dependent parameters) and random effects on all parameters
are possible, using either max likelihood / max a posteriori optimization
(with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling.
See <https:
//github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf>
for details. See <https://osf.io/preprints/psyarxiv/4q9ex_v2> for a detailed tutorial.
Priors may be used. For the conceptual overview of the hierarchical Bayesian
linear SDE approach,
see <https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_
Continuous_Time_Dynamic_Modeling>.
Exogenous inputs may also be included, for an overview of such possibilities see <https:
//www.researchgate.net/publication/328221807_Understanding_the_Time_Course_
of_Interventions_with_Continuous_Time_Dynamic_Models> .
<https://cdriver.netlify.app/> contains some tutorial blog posts.

License GPL-3

Depends R (>= 4.2.0), Rcpp (>= 0.12.16)

URL https://github.com/cdriveraus/ctsem

Imports cOde, data.table (>= 1.12.8), datasets, Deriv, expm, ggplot2,
graphics, grDevices, MASS, Matrix, methods, mize, mvtnorm,
parallel, plyr, RcppParallel (>= 5.0.1), rstan (>= 2.26.0),
rstantools (>= 2.3.0), stats, tibble, tools, utils, splines,
parallelly, corpcor, png

Encoding UTF-8

1

https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf
https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf
https://osf.io/preprints/psyarxiv/4q9ex_v2
https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling
https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling
https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models
https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models
https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models
https://cdriver.netlify.app/
https://github.com/cdriveraus/ctsem

2 Contents

LazyData true

ByteCompile true

LinkingTo BH (>= 1.66.0-1), Rcpp (>= 0.12.16), RcppEigen (>=
0.3.3.4.0), RcppParallel (>= 5.0.1), rstan (>= 2.26),
StanHeaders (>= 2.26.0), RcppParallel (>= 5.0.1)

Suggests knitr, testthat, devtools, tinytex, lme4, shiny, gridExtra,
arules, collapse, qgam, papaja, future, future.apply, diagis,
pdftools, rstudioapi

VignetteBuilder knitr

RoxygenNote 7.3.3

SystemRequirements GNU make

NeedsCompilation yes

Biarch true

Author Charles Driver [aut, cre, cph],
Manuel Voelkle [aut, cph],
Han Oud [aut, cph],
Trustees of Columbia University [cph]

Maintainer Charles Driver <charles.driver2@uzh.ch>

Repository CRAN

Date/Publication 2026-01-20 06:10:27 UTC

Contents
ctsem-package . 4
AnomAuth . 5
ctACF . 5
ctACFresiduals . 7
ctAddSamples . 8
ctCheckFit . 8
ctChisqTest . 11
ctCollapse . 11
ctDeintervalise . 12
ctDensity . 12
ctDiscretiseData . 13
ctDocs . 14
ctExample1 . 14
ctExample1TIpred . 15
ctExample2 . 15
ctExample2level . 15
ctExample3 . 16
ctExample4 . 16
ctExtract . 16
ctFit . 17
ctFitAuto . 18

Contents 3

ctFitAutoGroupModel . 19
ctFitCovCheck . 20
ctFitCovCheckPlot . 21
ctFitMultiModel . 22
ctGenerate . 23
ctIntervalise . 24
ctKalman . 26
ctLongToWide . 28
ctLOO . 29
ctModel . 30
ctModelCoverage_check . 34
ctModelHigherOrder . 35
ctModelLatex . 36
ctPlotArray . 38
ctPoly . 39
ctPostPredData . 40
ctPostPredPlots . 40
ctPredictTIP . 41
ctResiduals . 42
ctStanContinuousPars . 43
ctStanDiscretePars . 44
ctStanDiscreteParsPlot . 45
ctStanFit . 47
ctStanFitUpdate . 54
ctStanGenerate . 55
ctStanGenerateFromFit . 56
ctStanKalman . 57
ctStanModel . 58
ctStanParnames . 59
ctStanPlotPost . 60
ctStanPostPredict . 61
ctStanSubjectPars . 62
ctstantestdat . 63
ctstantestfit . 63
ctStanTIpredeffects . 64
ctStanUpdModel . 65
ctWideNames . 66
ctWideToLong . 67
datastructure . 68
inv_logit . 68
log1p_exp . 69
longexample . 69
Oscillating . 70
plot.ctKalmanDF . 70
plot.ctStanFit . 72
plot.ctStanModel . 73
plotctACF . 74
sdpcor2cov . 75

4 ctsem-package

standatact_specificsubjects . 76
stanoptimis . 76
stanWplot . 78
stan_checkdivergences . 79
stan_reinitsf . 80
stan_unconstrainsamples . 81
summary.ctStanFit . 82
test_isclose . 83

Index 84

ctsem-package ctsem

Description

ctsem is an R package for continuous time structural equation modelling of panel (N > 1) and time
series (N = 1) data, using either a frequentist or Bayesian approach, or middle ground forms like
maximum a posteriori.

The general workflow begins by specifying a model using the ctModel function, in which the type
of model is also specified. Then the model is fit to data using ctStanFit. The ctFit function which
allows for fitting using the OpenMx / SEM form, as described in the original JSS ctsem paper,
can now be found in the ctsemOMX package. The omx forms are no longer in development and
for most purposes, the newer stan based forms are more robust and flexible. For examples, see
ctStanFit. For citation info, please run citation('ctsem') .

Author(s)

Maintainer: Charles Driver <charles.driver2@uzh.ch> [copyright holder]

Authors:

• Manuel Voelkle [copyright holder]

• Han Oud [copyright holder]

Other contributors:

• Trustees of Columbia University [copyright holder]

References

https://www.jstatsoft.org/article/view/v077i05

Driver, C. C., & Voelkle, M. C. (2018). Hierarchical Bayesian continuous time dynamic modeling.
Psychological Methods. Advance online publication.http://dx.doi.org/10.1037/met0000168

Stan Development Team (2018). RStan: the R interface to Stan. R package version 2.17.3.
http://mc-stan.org

#’ @keywords internal

AnomAuth 5

See Also

Useful links:

• https://github.com/cdriveraus/ctsem

AnomAuth AnomAuth

Description

A dataset containing panel data assessments of individuals Anomia and Authoritarianism.

Format

data frame with 2722 rows, 14 columns. Column Y1 represents anomia, Y2 Authoritarianism, dTx
the time interval for measurement occasion x.

Source

See doi:10.1037/a0027543 for details.

ctACF Continuous Time Autocorrelation Function (ctACF)

Description

This function computes an approximate continuous time autocorrelation function (ACF) for data
containing multiple subjects and/or variables.

Usage

ctACF(
dat,
varnames = "auto",
ccfnames = "all",
idcol = "id",
timecol = "time",
plot = TRUE,
timestep = "auto",
time.max = "auto",
nboot = 100,
scale = FALSE,
center = FALSE,
...

)

https://github.com/cdriveraus/ctsem
https://doi.org/10.1037/a0027543

6 ctACF

Arguments

dat The input data in data frame or data table format.

varnames Character vector of variable names in the data to compute the ACF for. ’auto’
uses all columns that are not time / id.

ccfnames Character vector of variable names in the data to compute cross correlation for.
’all’ uses all variables in varnames, NA uses none.

idcol The name of the column containing subject IDs (default is ’id’).

timecol The name of the column containing time values (default is ’time’).

plot A logical value indicating whether to create a plot (default is TRUE).

timestep The time step for discretizing data. ’auto’ to automatically determine the timestep
based on data distribution (default is ’auto’). In this case the timestep is com-
puted as half of the median for time intervals in the data.

time.max The maximum time lag to compute the ACF (default is 10). If ’auto’, is set to
10 times the 90th percentile interval in the data.

nboot The number of bootstrap samples for confidence interva1l estimation (default is
100).

scale if TRUE, scale variables based on within-subject standard deviation.

center if TRUE, center variables based on within-subject mean.

... additional arguments (such as demean=FALSE) to pass to the stats::acf func-
tion.

Details

This function computes the continuous time ACF by discretizing the data and then performing
bootstrapped ACF calculations to estimate the confidence intervals. It can create ACF plots with
confidence intervals if ’plot’ is set to TRUE.

Value

If ’plot’ is TRUE, the function returns a ggplot object of the ACF plot. If ’plot’ is FALSE, it returns
a data table with ACF estimates and confidence intervals.

See Also

ctDiscretiseData

Examples

data.table::setDTthreads(1) #ignore this line
Example usage:
head(ctstantestdat)
ctACF(ctstantestdat,varnames=c('Y1'),idcol='id',timecol='time',nboot=5)

ctACFresiduals 7

ctACFresiduals Calculate Continuous Time Autocorrelation Function (ACF) for Stan-
dardized Residuals of ctsem fit.

Description

This function takes a fit object from ctsem and computes the continuous time autocorrelation func-
tion (ACF) on the standardized residuals.

Usage

ctACFresiduals(fit, ...)

Arguments

fit A fitted model object generated by the ctsem package.

... Additional arguments to be passed to the ctACF function.

Details

This function first extracts the standardized residuals from the fit object using the ctStanKalman
function. Then, it calculates the continuous time ACF for these residuals and returns the results as
a data table.

Value

A data table containing the continuous time ACF estimates for standardized residuals.

See Also

ctStanKalman

Examples

data.table::setDTthreads(1) #ignore this line
Example usage:
ctACFresiduals(ctstantestfit, varnames='Y1',nboot=5)

8 ctCheckFit

ctAddSamples Sample more values from an optimized ctstanfit object

Description

Sample more values from an optimized ctstanfit object

Usage

ctAddSamples(fit, nsamples, cores = 2)

Arguments

fit fit object

nsamples number of samples desired

cores number of cores to use

Value

fit object with extra samples

Examples

Not run:
newfit <- ctAddSamples(ctstantestfit, 10, 1)

End(Not run)

ctCheckFit Visual model fit diagnostics for ctsem fit objects.

Description

Visual model fit diagnostics for ctsem fit objects.

Usage

ctCheckFit(
fit,
data = TRUE,
postpred = TRUE,
priorpred = FALSE,
statepred = FALSE,
residuals = FALSE,
by = fit$ctstanmodelbase$timeName,

ctCheckFit 9

TIpredNames = fit$ctstanmodelbase$TIpredNames,
nsamples = 30,
covplot = FALSE,
corr = TRUE,
combinevars = NA,
fastcov = FALSE,
lagcovplot = FALSE,
aggfunc = mean,
aggregate = FALSE,
groupbysplit = FALSE,
byNA = TRUE,
lag = 0,
smooth = TRUE,
k = 4,
breaks = 4,
entropy = FALSE,
reg = FALSE,
verbose = 0,
indlines = 30

)

Arguments

fit ctStanFit object.

data Include empirical data in plots?

postpred Include post predictive (conditional on estimated parameters and covariates) dis-
tribution data in plots?

priorpred Include prior predictive (conditional on priors) distribution data in plots?

statepred Include one step ahead (conditional on estimated parameters, covariates, and
earlier data points) distribution data in plots?

residuals Include one step ahead error (conditional on estimated parameters, covariates,
and earlier data points) in plots?

by Variable name to split or plot by. ’time’, ’LogLik’, and ’WhichObs’ are also
possibilities.

TIpredNames Since time independent predictors do not change with time, by default observa-
tions after the first are ignored. For observing attrition it can be helpful to set
this to NULL, or when the combinevars argument is used, specifying different
names may be useful.

nsamples Number of samples (when applicable) to include in plots.

covplot Splits variables in the model by the ’by’ argument, according to the number
of breaks (breaks argument), and shows the covariance (or correlation) for the
different data sources selected, as well as the differences between each pair.

corr Turns the covplot into a correlation plot. Usually easier to make sense of visu-
ally.

10 ctCheckFit

combinevars Can be a list of (possibly new) variable names, where each named element of the
list contains a character vector of one or more variable names in the fit object,
to combine into the one variable. By default, the mean is used, but see the
aggfunc argument. The combinevars argument can also be used to ensure that
only certain variables are plotted.

fastcov Uses base R cov function for computing covariances. Not recommended with
missing data.

lagcovplot Logical. Output lagged covariance type plots?

aggfunc Function to use for aggregation, if needed.

aggregate If TRUE, duplicate observation types are aggregated over using aggfunc. For
example, if by = ’time’ and there are 8 time points per subject, but breaks = 2,
there will be 4 duplicate observation types per ’row’ that will be collapsed. In
most cases it is helpful to not collapse.

groupbysplit Logical. Affects variable ordering in covariance plots. Defaults to FALSE,
grouping by variable, and within variable by split.

byNA Logical. Create an extra break for when the split variable is missing?

lag Integer vector. lag = 1 creates additional variables for plotting, prefixed by
’lag1_’, containing the prior row of observations for that subject.

smooth For bivariate plots, use a smoother for estimation?

k Integer denoting number of knots to use in the smoothing spline.

breaks Integer denoting number of discrete breaks to split variables by (when covari-
ance plotting).

entropy Still in development.

reg Logical. Use regularisation when estimating covariance matrices? Can be nec-
essary / faster for some problems.

verbose Logical. If TRUE, shows optimization output when estimating covariances.

indlines Integer number of individual subject lines to draw per data type.

Value

Nothing. Just plots.

Examples

ctCheckFit(ctstantestfit)

ctChisqTest 11

ctChisqTest Chi Square test wrapper for ctStanFit objects.

Description

Chi Square test wrapper for ctStanFit objects.

Usage

ctChisqTest(fit1, fit2)

Arguments

fit1 One of the fits to be compared (better fit is assumed as base for comparison)

fit2 Second fit to be compared

Value

Numeric probability

Examples

df <- data.frame(id=1, time=1:length(sunspot.year), Y1=sunspot.year)

m1 <- ctModel(type='dt', LAMBDA=diag(1),MANIFESTVAR=0)
m2 <- ctModel(type='dt', LAMBDA=diag(1),MANIFESTVAR=0,DRIFT = .9)

f1 <- ctStanFit(df,m1,cores=1)
f2 <- ctStanFit(df,m2,cores=1)

ctChisqTest(f1,f2)

ctCollapse ctCollapse Easily collapse an array margin using a specified function.

Description

ctCollapse Easily collapse an array margin using a specified function.

Usage

ctCollapse(inarray, collapsemargin, collapsefunc, plyr = TRUE, ...)

12 ctDensity

Arguments

inarray Input array of more than one dimension.

collapsemargin Integers denoting which margins to collapse.

collapsefunc function to use over the collapsing margin.

plyr Whether to use plyr.

... additional parameters to pass to collapsefunc.

Examples

testarray <- array(rnorm(900,2,1),dim=c(100,3,3))
ctCollapse(testarray,1,mean)

ctDeintervalise ctDeintervalise

Description

Converts intervals in ctsem long format data to absolute time

Usage

ctDeintervalise(datalong, id = "id", dT = "dT", startoffset = 0)

Arguments

datalong data to use, in ctsem long format (attained via function ctWideToLong)

id character string denoting column of data containing numeric identifier for each
subject.

dT character string denoting column of data containing time interval preceding ob-
servations in that row.

startoffset Number of units of time to offset by when converting.

ctDensity ctDensity

Description

Wrapper for base R density function that removes outliers and computes ’reasonable’ bandwidth
and x and y limits. Used for ctsem density plots.

Usage

ctDensity(x, bw = "auto", plot = FALSE, ...)

ctDiscretiseData 13

Arguments

x numeric vector on which to compute density.
bw either ’auto’ or a numeric indicating bandwidth.
plot logical to indicate whether or not to plot the output.
... Further args to density.

Examples

y <- ctDensity(exp(rnorm(80)))
plot(y$density,xlim=y$xlim,ylim=y$ylim)

Compare to base defaults:
par(mfrow=c(1,2))
y=exp(rnorm(10000))
ctdens<-ctDensity(y)
plot(ctdens$density, ylim=ctdens$ylim,xlim=ctdens$xlim)
plot(density(y))

ctDiscretiseData Discretise long format continuous time (ctsem) data to specific
timestep.

Description

Extends and rounds timing information so equal intervals, according to specified timestep, are
achieved. NA’s are inserted in other columns as necessary, any columns specified by TDpredNames
or TIpredNames have zeroes rather than NA’s inserted (because some estimation routines do not
tolerate NA’s in covariates).

Usage

ctDiscretiseData(
dlong,
timestep,
timecol = "time",
idcol = "id",
TDpredNames = NULL,
TIpredNames = NULL

)

Arguments

dlong Long format data
timestep Positive real value to discretise
timecol Name of column containing absolute (not intervals) time information.
idcol Name of column containing subject id variable.
TDpredNames Vector of column names of any time dependent predictors
TIpredNames Vector of column names of any time independent predictors

14 ctExample1

Value

long format ctsem data.

Examples

long <- ctDiscretiseData(dlong=ctstantestdat, timestep = .1,
TDpredNames=c('TD1'),TIpredNames=c('TI1','TI2','TI3'))

ctDocs Get documentation pdf for ctsem

Description

Get documentation pdf for ctsem

Usage

ctDocs()

Value

Nothing. Opens a pdf when run interactively.

Examples

ctDocs()

ctExample1 ctExample1

Description

Simulated example dataset for the ctsem package

Format

100 by 17 matrix containing containing ctsem wide format data. 6 measurement occasions of leisure
time and happiness and 5 measurement intervals for each of 100 individuals.

ctExample1TIpred 15

ctExample1TIpred ctExample1TIpred

Description

Simulated example dataset for the ctsem package

Format

100 by 18 matrix containing containing ctsem wide format data. 6 measurement occasions of leisure
time and happiness, 1 measurement of number of friends, and 5 measurement intervals for each of
100 individuals.

ctExample2 ctExample2

Description

Simulated example dataset for the ctsem package

Format

100 by 18 matrix containing containing ctsem wide format data. 8 measurement occasions of leisure
time and happiness, 7 measurement occasions of a money intervention dummy, and 7 measurement
intervals for each of 50 individuals.

ctExample2level ctExample2level

Description

Simulated example dataset for the ctsem package

Format

100 by 18 matrix containing ctsem wide format data. 8 measurement occasions of leisure time and
happiness, 7 measurement occasions of a money intervention dummy, and 7 measurement intervals
for each of 50 individuals.

16 ctExtract

ctExample3 ctExample3

Description

Simulated example dataset for the ctsem package

Format

1 by 399 matrix containing containing ctsem wide format data. 100 observations of variables Y1
and Y2 and 199 measurement intervals, for 1 subject.

ctExample4 ctExample4

Description

Simulated example dataset for the ctsem package

Format

20 by 79 matrix containing 20 observations of variables Y1, Y2, Y3, and 19 measurement intervals
dTx, for each of 20 individuals.

ctExtract Extract samples from a ctStanFit object

Description

Extract samples from a ctStanFit object

Usage

ctExtract(
object,
subjectMatrices = FALSE,
cores = 2,
nsamples = "all",
subjects = "all"

)

ctFit 17

Arguments

object ctStanFit object, samples may be from Stan’s HMC, or the importance sampling
approach of ctsem.

subjectMatrices

Calculate subject specific system matrices?

cores Only used if subjectMatrices = TRUE . For faster computation use more cores.

nsamples either ’all’ or an integer denoting number of random samples to extract.

subjects either ’all’, or an integer vector denoting subjects to extract.

Value

Array of posterior samples.

Examples

e = ctExtract(ctstantestfit)

ctFit ctFit function placeholder

Description

For the original ctsem OpenMx functionality, the package ctsemOMX should be loaded.

Usage

ctFit(...)

Arguments

... arguments to pass to ctFit, if ctsemOMX is loaded.

Value

message or fit object.

Examples

data(AnomAuth)
AnomAuthmodel <- ctModel(LAMBDA = matrix(c(1, 0, 0, 1), nrow = 2, ncol = 2),

Tpoints = 5, n.latent = 2, n.manifest = 2, MANIFESTVAR=diag(0, 2), TRAITVAR = NULL)
AnomAuthfit <- ctFit(AnomAuth, AnomAuthmodel)

18 ctFitAuto

ctFitAuto ctFitAuto

Description

Fit a ctStan model with automatic parameter selection

Usage

ctFitAuto(
m,
dat,
DRIFT = TRUE,
DIFFUSION = TRUE,
fast = FALSE,
initialRestrictions = NA,
individuals = FALSE,
groupFreeThreshold = 0.5,
cores = 2,
...

)

Arguments

m ctStan model object without time independent predictors.

dat Data in long format

DRIFT Logical, if TRUE, off diagonal drift parameters in the model are tested for in-
clusion

DIFFUSION Logical, if TRUE, off diagonal diffusion parameters in the model are tested for
inclusion

fast Logical, if TRUE, do not compute uncertainty hessian / samples in individual
level models.

initialRestrictions

Alternative to the DRIFT / DIFFUSION arguments – specify explicitly which
parameters should be fixed initially, vector of integers based on the $setup$matsetup
element of the ctStanFit object, which gives the parameter numbers. Primarily
for internal use.

individuals Logical, if TRUE, fit individual level models and determine a group model based
on the groupFreeThreshold argument.

groupFreeThreshold

Numeric, threshold for group model structure – if a parameter improves fit in
this proportion of individuals or greater, it is freed for all individuals.

cores Number of CPU cores to use

... Additional arguments passed to ctStanFit

ctFitAutoGroupModel 19

Details

This function is used to automatically select parameters in a ctStan model. Any specified DRIFT
/ DIFFUSION matrix off diagonals are only included if they significantly improve the likelihood,
based on an estimated likelihood ratio test (relying on the Hessian).

Value

A ctStan fit object

Examples

Not run:
testmodel <- ctstantestfit$ctstanmodelbase
testmodel$pars$TI1_effect <- NULL
testmodel$n.TIpred <- 0
testmodel$TIpredNames <- NULL
testfit <- ctFitAuto(testmodel, dat = ctstantestdat, DRIFT = TRUE, DIFFUSION = TRUE)
summary(testfit)

End(Not run)

ctFitAutoGroupModel ctFitAutoGroupModel

Description

Fit a ctStan model with automatic parameter selection for multiple subjects

Usage

ctFitAutoGroupModel(
m,
dat,
cores,
DRIFT = TRUE,
DIFFUSION = TRUE,
groupFreeThreshold = 0.5,
...

)

Arguments

m ctStan model object without time independent predictors.

dat Data in long format

cores Number of CPU cores to use

DRIFT Logical, if TRUE, off diagonal drift parameters in the model are tested for in-
clusion

20 ctFitCovCheck

DIFFUSION Logical, if TRUE, off diagonal diffusion parameters in the model are tested for
inclusion

groupFreeThreshold

Numeric, threshold for group free parameter selection. Default is .5

... Additional arguments passed to ctStanFit

Details

This function is used to automatically select parameters in a ctStan model. Any specified DRIFT
/ DIFFUSION matrix off diagonals are only included if they significantly improve the likelihood,
based on an estimated likelihood ratio test (relying on the Hessian). Subjects are fit one by one, and
a group model is determined based on the groupFreeThreshold parameter – when the proportion of
subjects with a parameter free is above this threshold, the parameter is freed in the group model.

Value

A list containing a list of ctStan fit objects for each subject, and a group model

Examples

Not run:
testmodel <- ctstantestfit$ctstanmodelbase
testmodel$pars$TI1_effect <- NULL
testmodel$n.TIpred <- 0
testmodel$TIpredNames <- NULL
testfit <- ctFitAutoGroupModel(testmodel,
dat = ctstantestdat, cores=2, DRIFT = TRUE, DIFFUSION = TRUE)
ctModelLatex(testfit$groupModel)
lapply(testfit$fits,function(x) print(ctStanContinuousPars(x)$DRIFT))

End(Not run)

ctFitCovCheck Visual model-fit diagnostics for ctsem fits, optionally split by the mean
of a chosen observed variable.

Description

Visual model-fit diagnostics for ctsem fits, optionally split by the mean of a chosen observed vari-
able.

Usage

ctFitCovCheck(fit, cor = TRUE, plot = TRUE, splitby = NULL)

ctFitCovCheckPlot 21

Arguments

fit A ‘ctStanFit‘ object.

cor Logical; if ‘TRUE‘ correlations are analysed instead of covariances.

plot Logical; if ‘TRUE‘ (default) a ‘ggplot2‘ object (or list of plots) is returned. If
‘FALSE‘, the raw ‘data.table‘ with diagnostics is returned.

splitby Optional character string giving the variable name on which to split subjects.

Value

Either a plot/list of plots (default, given by ‘ctFitCovCheckPlot‘) or a ‘data.table‘.

Examples

ctFitCovCheck(ctstantestfit, cor = TRUE, plot = TRUE)

gg=ctFitCovCheck(ctstantestfit, cor = FALSE, plot = TRUE, splitby = "TI1")
print(gg[[1]]+
ggplot2::ggtitle("Covariance Check for Y1 with all other manifest variables, split by TI1"))

ctFitCovCheckPlot ctFitCovCheckPlot

Description

Plot the results of ctFitCovCheck.

Usage

ctFitCovCheckPlot(x, maxlag = 10, vars = NA, splitvar = NA, cor = FALSE, ...)

Arguments

x Output from ctFitCovCheck.

maxlag Maximum lag to plot.

vars Optional character vector of variable names to plot. If ‘NA‘, all variables are
plotted.

splitvar Optional character string specifying a variable to split the plot by.

cor Logical; if ‘TRUE‘, plot correlations instead of covariances. (label change)

... not used.

Value

ggplot object.

22 ctFitMultiModel

Examples

Not run:
ctFitCovCheckPlot(ctFitCovCheck(ctstantestfit,cor=TRUE,plot=FALSE),maxlag=3)

End(Not run)

ctFitMultiModel Fit and summarise a list of ctsem models

Description

Fit and summarise a list of ctsem models

Usage

ctFitMultiModel(
mlist,
datalong,
prefix = "",
type = "ct",
cores = 2,
summaryOutput = TRUE,
saveFits = TRUE,
summaryArgs = list(),
cv = FALSE,
cvArgs = list(),
...

)

Arguments

mlist Named list of models

datalong ctsem long format data

prefix prefix for output files.

type ’ct’ for continuous time or ’dt’ for discrete time

cores number of cpu cores to use

summaryOutput Generate summary output into ctSummary folder? Large datasets can take some
time.

saveFits Save fit objects to working directory?

summaryArgs Additional arguments for ctSummarise.

cv Perform k-fold cross validation?

cvArgs Additional arguments for ctLOO function used for cross validation.

... Additional arguments for ctStanFit.

ctGenerate 23

Value

List containing a named list of model fits ($fits), and a compare object ($compare)

Examples

Not run:
sunspots<-data.frame(id=1,

time=do.call(seq,(lapply(attributes(sunspot.year)$tsp,function(x) x))),
sunspots=sunspot.year)

ssmodel1 <- ctModel(type='omx', manifestNames='sunspots', Tpoints=3,
latentNames=c('ss_level', 'ss_velocity'),
LAMBDA=matrix(c(1, 'ma1| log(1+(exp(param)))'), nrow=1, ncol=2),
DRIFT=matrix(c(0, 'a21 | -log(1+exp(param))', 1, 'a22'), nrow=2, ncol=2),
MANIFESTMEANS=matrix(c('m1|param * 10 + 44'), nrow=1, ncol=1),
MANIFESTVAR=diag(0,1), #As per original spec
CINT=matrix(c(0, 0), nrow=2, ncol=1),
DIFFUSION=matrix(c(0, 0, 0, "diffusion"), ncol=2, nrow=2))

ssmodel2 <- ssmodel1
ssmodel2$LAMBDA[2] <- 0

fits<-ctFitMultiModel(list(m1=ssmodel1,m2=ssmodel2),datalong = sunspots,
summaryOutput = FALSE, saveFits = FALSE, cores=1, cv=TRUE, cvArgs=list(folds=5))

print(fits$compare)

End(Not run)

ctGenerate ctGenerate

Description

This function generates data according to the specified ctsem model object.

Usage

ctGenerate(
ctmodelobj,
n.subjects = 100,
burnin = 0,
dtmean = 1,
logdtsd = 0,
dtmat = NA,
wide = FALSE

)

24 ctIntervalise

Arguments

ctmodelobj ctsem model object from ctModel.

n.subjects Number of subjects to output.

burnin Number of initial time points to discard (to simulate stationary data)

dtmean Positive numeric. Average time interval (delta T) to use.

logdtsd Numeric. Standard deviation for variability of the time interval.

dtmat Either NA, or numeric matrix of n.subjects rows and Tpoints-1 columns, con-
taining positive numeric values for all time intervals between measurements. If
not NA, dtmean and logdtsd are ignored.

wide Logical. Output in wide format?

Details

Covariance related matrices are treated as Cholesky factors. TRAITTDPREDCOV and TIPRED-
COV matrices are not accounted for, at present. The first 1:n.TDpred rows and columns of TD-
PREDVAR are used for generating tdpreds at each time point.

Examples

#generate data for 2 process model, each process measured by noisy indicator,
#stable individual differences in process levels.

generatingModel<-ctModel(Tpoints=8,n.latent=2,n.TDpred=0,n.TIpred=0,n.manifest=2,
MANIFESTVAR=diag(.1,2),
LAMBDA=diag(1,2),
DRIFT=matrix(c(-.2,-.05,-.1,-.1),nrow=2),
TRAITVAR=matrix(c(.5,.2,0,.8),nrow=2),
DIFFUSION=matrix(c(1,.2,0,4),2),
CINT=matrix(c(1,0),nrow=2),
T0MEANS=matrix(0,ncol=1,nrow=2),
T0VAR=diag(1,2))

data<-ctGenerate(generatingModel,n.subjects=15,burnin=10)

ctIntervalise Converts absolute times to intervals for wide format ctsem panel data

Description

Converts absolute times to intervals for wide format ctsem panel data

ctIntervalise 25

Usage

ctIntervalise(
datawide,
Tpoints,
n.manifest,
n.TDpred = 0,
n.TIpred = 0,
imputedefs = F,
manifestNames = "auto",
TDpredNames = "auto",
TIpredNames = "auto",
digits = 5,
mininterval = 0.001,
individualRelativeTime = TRUE,
startoffset = 0

)

Arguments

datawide Wide format data, containing absolute time measurements, to convert to interval
time scale. See ctLongToWide to easily convert long format data.

Tpoints Maximum number of discrete time points (waves of data, or measurement occa-
sions) for an individual in the input data structure.

n.manifest number of manifest variables per time point in the data.

n.TDpred number of time dependent predictors in the data structure.

n.TIpred number of time independent predictors in the data structure.

imputedefs if TRUE, impute time intervals based on the measurement occasion (i.e. col-
umn) they are in, if FALSE (default), set related observations to NA. FALSE is
recommended unless you are certain that the imputed value (mean of the rel-
evant time column) is appropriate. Noise and bias in estimates will result if
wrongly set to TRUE.

manifestNames vector of character strings giving variable names of manifest indicator variables
(without _Tx suffix for measurement occasion).

TDpredNames vector of character strings giving variable names of time dependent predictor
variables (without _Tx suffix for measurement occasion).

TIpredNames vector of character strings giving variable names of time independent predictor
variables.

digits How many digits to round to for interval calculations.

mininterval set to lower than any possible observed measurement interval, but above 0 - this
is used for filling NA values where necessary and has no impact on estimates
when set in the correct range. (If all observed intervals are greater than 1, min-
interval=1 may be a good choice)

individualRelativeTime

if TRUE (default), the first measurement for each individual is assumed to be
taken at time 0, and all other times are adjusted accordingly. If FALSE, new

26 ctKalman

columns for an initial wave are created, consisting only of observations which
occurred at the earliest observation time of the entire sample.

startoffset if 0 (default) uses earliest observation as start time. If greater than 0, all first
observations are NA, with distance of startoffset to first recorded observation.

Details

Time column must be numeric!

Examples

wideexample <- ctLongToWide(datalong = ctstantestdat, id = "id",
time = "time", manifestNames = c("Y1", "Y2"),
TDpredNames = "TD1", TIpredNames = c("TI1", "TI2","TI3"))

#Then convert the absolute times to intervals, using the Tpoints reported from the prior step.
wide <- ctIntervalise(datawide = wideexample, Tpoints = 10, n.manifest = 2,
n.TDpred = 1, n.TIpred = 3, manifestNames = c("Y1", "Y2"),
TDpredNames = "TD1", TIpredNames = c("TI1", "TI2","TI3"))

print(wide)

ctKalman ctKalman

Description

Outputs predicted, updated, and smoothed estimates of manifest indicators and latent states, with
covariances, for specific subjects from data fit with ctStanFit, based on either the mode (if opti-
mized) or mean (if sampled) of parameter distribution.

Usage

ctKalman(
fit,
timerange = "asdata",
timestep = "auto",
subjects = fit$standata$idmap[1, 1],
removeObs = FALSE,
plot = FALSE,
standardisederrors = FALSE,
realid = TRUE,
...

)

ctKalman 27

Arguments

fit fit object as generated by ctStanFit.

timerange Either ’asdata’ to just use the observed data range, or a numeric vector of length
2 denoting start and end of time range, allowing for estimates outside the range
of observed data. Ranges smaller than the observed data are ignored.

timestep Either ’asdata’ to just use the observed data (which also requires ’asdata’ for
timerange) or a positive numeric value indicating the time step to use for inter-
polating values. Lower values give a more accurate / smooth representation, but
take a little more time to calculate.

subjects vector of integers denoting which subjects (from 1 to N) to plot predictions for.

removeObs Logical or integer. If TRUE, observations (but not covariates) are set to NA, so
only expectations based on parameters and covariates are returned. If a positive
integer N, every N observations are retained while others are set NA for comput-
ing model expectations – useful for observing prediction performance forward
further in time than one observation.

plot Logical. If TRUE, plots output instead of returning it. See plot.ctKalmanDF
(Stan based fit) for the possible arguments.

standardisederrors

if TRUE, also include standardised error output (based on covariance per time
point).

realid use original (not necessarily integer sequence) subject id’s? Otherwise use inte-
gers 1:N.

... additional arguments to pass to plot.ctKalmanDF.

Value

Returns a list containing matrix objects etaprior, etaupd, etasmooth, y, yprior, yupd, ysmooth, pred-
error, time, loglik, with values for each time point in each row. eta refers to latent states and y to
manifest indicators - y itself is thus just the input data. Covariance matrices etapriorcov, etaupdcov,
etasmoothcov, ypriorcov, yupdcov, ysmoothcov, are returned in a row * column * time array. Some
outputs are unavailable for ctStan fits at present. If plot=TRUE, nothing is returned but a plot is
generated.

Examples

#Basic
ctKalman(ctstantestfit, timerange=c(0,60), plot=TRUE)

#Multiple subjects, y and yprior, showing plot arguments
plot1<-ctKalman(ctstantestfit, timerange=c(0,60), timestep=.1, plot=TRUE,

subjects=2:3,
kalmanvec=c('y','yprior'),
errorvec=c(NA,'ypriorcov')) #'auto' would also have achieved this

#modify plot as per normal with ggplot
print(plot1+ggplot2::coord_cartesian(xlim=c(0,10)))

28 ctLongToWide

#or generate custom plot from scratch:#'
k=ctKalman(ctstantestfit, timerange=c(0,60), timestep=.1, subjects=2:3)
library(ggplot2)
ggplot(k[k$Element %in% 'yprior',],

aes(x=Time, y=value,colour=Subject,linetype=Row)) +
geom_line() +
theme_bw()

ctLongToWide ctLongToWide Restructures time series / panel data from long format
to wide format for ctsem analysis

Description

ctLongToWide Restructures time series / panel data from long format to wide format for ctsem
analysis

Usage

ctLongToWide(
datalong,
id,
time,
manifestNames,
TDpredNames = NULL,
TIpredNames = NULL

)

Arguments

datalong dataset in long format, including subject/id column, observation time (or change
in observation time, with 0 for first observation) column, indicator (manifest /
observed) variables, any time dependent predictors, and any time independent
predictors.

id character string giving column name of the subject/id column
time character string giving column name of the time columnn
manifestNames vector of character strings giving column names of manifest indicator variables
TDpredNames vector of character strings giving column names of time dependent predictor

variables
TIpredNames vector of character strings giving column names of time independent predictor

variables

Details

Time column must be numeric

ctLOO 29

See Also

ctIntervalise

Examples

wideexample <- ctLongToWide(datalong = ctstantestdat, id = "id",
time = "time", manifestNames = c("Y1", "Y2"),
TDpredNames = "TD1", TIpredNames = c("TI1", "TI2","TI3"))

#Then convert the absolute times to intervals, using the Tpoints reported from the prior step.
wide <- ctIntervalise(datawide = wideexample, Tpoints = 10, n.manifest = 2,
n.TDpred = 1, n.TIpred = 3, manifestNames = c("Y1", "Y2"),
TDpredNames = "TD1", TIpredNames = c("TI1", "TI2","TI3"))

print(wide)

ctLOO K fold cross validation for ctStanFit objects

Description

K fold cross validation for ctStanFit objects

Usage

ctLOO(
fit,
folds = 10,
cores = 2,
parallelFolds = FALSE,
tol = 1e-05,
subjectwise = ifelse(length(unique(fit$standata$subject)) >= folds, TRUE, FALSE),
keepfirstobs = FALSE,
leaveOutN = NA,
refit = TRUE,
casewiseApproximation = FALSE

)

Arguments

fit ctStanfit object

folds Number of cross validation splits to use – 10 folds implies that the model is
re-fit 10 times, each time to a data set with 1/10 of the observations randomly
removed.

cores Number of processor cores to use.

parallelFolds compute folds in parallel or use cores to finish single folds faster. parallelFolds
will use folds times as much memory.

30 ctModel

tol tolerance for optimisation of refitted samples, can generally be more relaxed
than the tolerance used for fitting initially.

subjectwise drop random subjects instead of data rows?

keepfirstobs do not drop first observation (more stable estimates)

leaveOutN if a positive integer is given, the folds argument is ignored and instead the folds
are calculated by leaving out every Nth row from the data when fitting. Leaving
2 out would result in 3 folds (starting at rows 1,2,3), each containing one third
of the data.

refit if FALSE, do not optimise parameters for the new data set, just compute the
likelihoods etc from the original parameters

casewiseApproximation

if TRUE, use a bootstrapped gradient contributions approach to approximate the
cross validation parameters – much faster but less reliable.

Value

list

Examples

ctLOO(ctstantestfit)

ctModel Define a ctsem model

Description

This function is used to specify a continuous time structural equation model, which can then be fit
to data with function ctStanFit.

Usage

ctModel(
LAMBDA,
type = "omx",
n.manifest = "auto",
n.latent = "auto",
Tpoints = NULL,
manifestNames = "auto",
manifesttype = rep(0, nrow(LAMBDA)),
latentNames = "auto",
id = "id",
time = "time",
silent = FALSE,
T0VAR = "auto",

ctModel 31

T0MEANS = "auto",
MANIFESTMEANS = "auto",
MANIFESTVAR = "diag",
DRIFT = "auto",
CINT = 0,
DIFFUSION = "auto",
n.TDpred = "auto",
TDpredNames = "auto",
n.TIpred = "auto",
TIpredNames = "auto",
tipredDefault = TRUE,
TRAITVAR = NULL,
T0TRAITEFFECT = NULL,
MANIFESTTRAITVAR = NULL,
TDPREDMEANS = "auto",
TDPREDEFFECT = "auto",
T0TDPREDCOV = "auto",
TDPREDVAR = "auto",
TRAITTDPREDCOV = "auto",
TDTIPREDCOV = "auto",
TIPREDMEANS = "auto",
TIPREDEFFECT = "auto",
T0TIPREDEFFECT = "auto",
TIPREDVAR = "auto",
PARS = NULL,
startValues = NULL

)

Arguments

LAMBDA n.manifest*n.latent loading matrix relating latent to manifest variables, with la-
tent processes 1:n.latent along the columns, and manifest variables 1:n.manifest
in the rows.

type character string. If ’omx’ (default) configures model for maximum likelihood
fitting with ctFit, using OpenMx. If ’ct’ or ’dt’ configures either continuous
(’ct’) or discrete (’dt’) time model for Bayesian fitting with ctStanFit, using
Stan.

n.manifest Number of manifest indicators per individual at each measurement occasion /
time point. Manifest variables are included as the first element of the wide data
matrix, with all the 1:n.manifest manifest variables at time 1 followed by those
of time 2, and so on.

n.latent Number of latent processes.

Tpoints For type=’omx’ only. Number of time points, or measurement occasions, in the
data. This will generally be the maximum number of time points for a single
individual, but may be one extra if sample relative time intervals are used, see
ctIntervalise.

manifestNames n.manifest length vector of manifest variable names as they appear in the data

32 ctModel

structure, without any _Tx time point suffix that may be present in wide data.
Defaults to Y1, Y2, etc.

manifesttype n.manifest length vector of manifest variable types,defaults to 0 for continuous
vars, 1 for binary vars is also possible.

latentNames n.latent length vector of latent variable names (used for naming parameters, de-
faults to eta1, eta2, etc).

id character string denoting column name containing subject identification vari-
ables. id data may be of any form, though will be coerced internally to an
integer sequence rising from 1.

time character string denoting column name containing timing data. Timing data
must be numeric.

silent Suppress all output to console.

T0VAR lower triangular n.latent*n.latent cholesky matrix of latent process initial vari-
ance / covariance. "auto" freely estimates all parameters.

T0MEANS n.latent*1 matrix of latent process means at first time point, T0. "auto" freely
estimates all parameters.

MANIFESTMEANS n.manifest*1 matrix of manifest intercept parameters. "auto" frees all parame-
ters.

MANIFESTVAR lower triangular n.manifest*n.manifest cholesky matrix of variance / covariance
between manifests at each measurement occasion (i.e. measurement error /
residual). "auto" freely estimates variance parameters, and fixes covariances
between manifests to 0. "free" frees all values, including covariances.

DRIFT n.latent*n.latent DRIFT matrix of continuous auto and cross effects, relating the
processes over time. "auto" freely estimates all parameters.

CINT n.latent * 1 matrix of latent process intercepts, allowing for non 0 asymptotic
levels of the latent processes. Generally only necessary for additional trends
and more complex dynamics.

DIFFUSION lower triangular n.latent*n.latent cholesky matrix of diffusion process variance
and covariance (latent error / dynamic innovation). "auto" freely estimates all
parameters.

n.TDpred Number of time dependent predictor variables in the dataset.

TDpredNames n.TDpred length vector of time dependent predictor variable names, as they ap-
pear in the data structure, without any _Tx time point suffix that may appear in
wide data. Default names are TD1, TD2, etc.

n.TIpred Number of time independent predictors. Each TIpredictor is inserted at the right
of the data matrix, after the time intervals.

TIpredNames n.TIpred length vector of time independent predictor variable names, as they
appear in the data structure. Default names are TI1, TI2, etc.

tipredDefault Logical. TRUE sets any parameters with unspecified time independent predictor
effects to have effects estimated, FALSE fixes the effect to zero unless individu-
ally specified.

TRAITVAR For type=’omx’ only. Either NULL, if no trait / unobserved heterogeneity ef-
fect, or lower triangular n.latent*n.latent cholesky matrix of trait variance / co-
variance across subjects. "auto" freely estimates all parameters.

ctModel 33

T0TRAITEFFECT For type=’omx’ only. Either NULL, if no trait / individual heterogeneity effect,
or lower triangular n.latent*n.latent cholesky matrix of initial trait variance /
covariance. "auto" freely estimates all parametrers, if the TRAITVAR matrix is
specified.

MANIFESTTRAITVAR

For type=’omx’ only. Either NULL (default) if no trait variance / individual
heterogeneity in the level of the manifest indicators, otherwise a lower triangular
n.manifest * n.manifest variance / covariance matrix. Set to "auto" to include
and free all parameters - but identification problems will arise if TRAITVAR is
also set.

TDPREDMEANS For type=’omx’ only. (n.TDpred * (Tpoints - 1)) rows * 1 column matrix of time
dependent predictor means. If ’auto’, the means are freely estimated. Otherwise,
the means for the Tpoints observations of your first time dependent predictor are
followed by those of TDpred 2, and so on.

TDPREDEFFECT n.latent*n.TDpred matrix of effects from time dependent predictors to latent
processes. Effects from 1:n.TDpred columns TDpredictors go to 1:n.latent rows
of latent processes. "auto" freely estimates all parameters.

T0TDPREDCOV For type=’omx’ only. n.latent rows * (Tpoints * n.TDpred) columns covariance
matrix between latents at T0 and time dependent predictors. Default of "auto"
restricts covariance to 0, which is consistent with covariance to other time points.
To freely estimate parameters, specify either ’free’, or the desired matrix.

TDPREDVAR For type=’omx’ only. lower triangular (n.TDpred * Tpoints) rows * (n.TDpred
* Tpoints) columns variance / covariance cholesky matrix for time dependent
predictors. "auto" (default) freely estimates all parameters.

TRAITTDPREDCOV For type=’omx’ only. n.latent rows * (n.TDpred*Tpoints) columns covariance
matrix of latent traits and time dependent predictors. Defaults to zeroes, as-
suming predictors are independent of subjects baseline levels. When predictors
depend on the subjects, this should instead be set to ’free’ or manually spec-
ified. The Tpoints columns of the first preditor are followed by those of the
second and so on. Covariances with the trait variance of latent process 1 are
specified in row 1, process 2 in row 2, etc. "auto" (default) sets this matrix to
zeroes, (if both traits and time dependent predictors exist, otherwise this matrix
is set to NULL, and ignored in any case).

TDTIPREDCOV For type=’omx’ only. (n.TDpred * Tpoints) rows * n.TIpred columns covari-
ance matrix between time dependent and time independent predictors. "auto"
(default) freely estimates all parameters.

TIPREDMEANS For type=’omx’ only. n.TIpred * 1 matrix of time independent predictor means.
If ’auto’, the means are freely estimated.

TIPREDEFFECT For type=’omx’ only. n.latent*n.TIpred effect matrix of time independent pre-
dictors on latent processes. "auto" freely estimates all parameters and generates
starting values. TIPREDEFFECT parameters for type=’stan’ are estimated by
default on all subject level parameters, to restrict this, manually edit the model
object after creation.

T0TIPREDEFFECT For type=’omx’ only.n.latent*n.TIpred effect matrix of time independent pre-
dictors on latents at T0. "auto" freely estimates all parameters, though note that
under the default setting of stationary for ctFit, this matrix is ignored as the
effects are determined based on the overall process parameters.

34 ctModelCoverage_check

TIPREDVAR For type=’omx’ only.lower triangular n.TIpred * n.TIpred Cholesky decom-
posed covariance matrix for all time independent predictors. "auto" (default)
freely estimates all parameters.

PARS for types ’ct’ and ’dt’ only. May be of any structure, only needed to contain
extra parameters for certain non-linear models.

startValues For type=’omx’ only. A named vector, where the names of each value must
match a parameter in the specified model, and the value sets the starting value
for that parameter during optimization. If not set, random starting values repre-
senting relatively stable processes with small effects and covariances are gener-
ated by ctFit. Better starting values may improve model fit speed and the chance
of an appropriate model fit.

Examples

Frequentist example:
impulse and level change time dependent predictor
example from Driver, Oud, Voelkle (2015)
data('ctExample2')
tdpredmodel <- ctModel(n.manifest = 2, n.latent = 3, n.TDpred = 1,
Tpoints = 8, manifestNames = c('LeisureTime', 'Happiness'),
TDpredNames = 'MoneyInt',
latentNames = c('LeisureTime', 'Happiness', 'MoneyIntLatent'),
LAMBDA = matrix(c(1,0, 0,1, 0,0), ncol = 3), TRAITVAR = "auto")

tdpredmodel$TRAITVAR[3,] <- 0
tdpredmodel$TRAITVAR[, 3] <- 0
tdpredmodel$DIFFUSION[, 3] <- 0
tdpredmodel$DIFFUSION[3,] <- 0
tdpredmodel$T0VAR[3,] <- 0
tdpredmodel$T0VAR[, 3] <- 0
tdpredmodel$CINT[3] <- 0
tdpredmodel$T0MEANS[3] <- 0
tdpredmodel$TDPREDEFFECT[3,] <- 1
tdpredmodel$DRIFT[3,] <- 0

###Bayesian example:
model<-ctModel(type='ct',
n.latent=2, latentNames=c('eta1','eta2'),
n.manifest=2, manifestNames=c('Y1','Y2'),
n.TDpred=1, TDpredNames='TD1',
n.TIpred=3, TIpredNames=c('TI1','TI2','TI3'),
LAMBDA=diag(2))

ctModelCoverage_check Coverage Check Function

ctModelHigherOrder 35

Description

Performs a coverage check analysis by generating data from a model, fitting it multiple times with
different fit arguments, and plotting the results.

Usage

ctModelCoverage_check(
initialData,
fitting_model,
niter,
fit_args,
cores = 10,
plot_every = max(c(10, cores))

)

Arguments

initialData An initial dataset to fit to determine ’true’ parameters for further generation.

fitting_model A ctModel object used for fitting the data

niter Number of iterations to run

fit_args Named list of fit argument sets to test (e.g., list(boot = list(optimcontrol = list(bootstrapUncertainty
= TRUE)), hess = list(optimcontrol = list(bootstrapUncertainty = FALSE))))

cores Number of cores to use for parallel processing

plot_every Print plots every n iterations (default = 10)

Value

A list containing the results data.table and final plots

ctModelHigherOrder Raise the order of a ctsem model object of type ’omx’.

Description

Raise the order of a ctsem model object of type ’omx’.

Usage

ctModelHigherOrder(
ctm,
indices,
diffusion = TRUE,
crosseffects = FALSE,
cint = FALSE,
explosive = FALSE

)

36 ctModelLatex

Arguments

ctm ctModel

indices Vector of integers, which latents to raise the order of.

diffusion Shift the diffusion parameters / values to the higher order?

crosseffects Shift cross coupling parameters of the DRIFT matrix to the higher order?

cint shift continuous intercepts to higher order?

explosive Allow explosive (non equilibrium returning) processes?

Value

extended ctModel

Examples

om <- ctModel(LAMBDA=diag(1,2),DRIFT=0,
MANIFESTMEANS=0,type='omx',Tpoints=4)

om <- ctModelHigherOrder(om,1:2)
print(om$DRIFT)

m <- ctStanModel(om)
print(m$pars)

ctModelLatex Generate and optionally compile latex equation of subject level ctsem
model.

Description

Generate and optionally compile latex equation of subject level ctsem model.

Usage

ctModelLatex(
x,
matrixnames = TRUE,
digits = 3,
linearise = class(x) %in% "ctStanFit",
textsize = "normalsize",
folder = tempdir(),
filename = paste0("ctsemTex", as.numeric(Sys.time())),
tex = TRUE,
equationonly = FALSE,
compile = TRUE,
open = TRUE,
includeNote = TRUE,

ctModelLatex 37

minimal = FALSE,
savepng = FALSE

)

Arguments

x ctsem model object or ctStanFit object.

matrixnames Logical. If TRUE, includes ctsem matrix names such as DRIFT and DIFFU-
SION under the matrices.

digits Precision of decimals for numeric values.

linearise Logical. Show the linearised normal approximation for subject parameters and
covariate effects, or the raw parameters?

textsize Standard latex text sizes – tiny scriptsize footnotesize small normalsize large
Large LARGE huge Huge. Useful if output overflows page.

folder Character string specifying folder to save to, defaults to temporary directory, use
"./" for working directory.

filename filename, without suffix, to output .tex and .pdf files too.

tex Save .tex file? Otherwise latex is simply returned within R as a string.

equationonly Logical. If TRUE, output is only the latex relevant to the equation, not a com-
pileable document.

compile Compile to .pdf? (Depends on tex = TRUE)

open Open after compiling? (Depends on compile = TRUE)

includeNote Include text describing matrix transformations and subject notation? triangular
matrices (which results in a covariance or Cholesky matrix) is shown – the latter
is a more direct representation of the model, while the former is often simpler to
convey.

minimal if TRUE, outputs reduced form version displaying matrix dimensions and equa-
tion structure only.

savepng Logical. If TRUE, renders the equation as a png file instead of a pdf, viewing
the png in RStudio viewer when available.

Value

character string of latex code. Side effects include saving a .tex, .pdf, and displaying the pdf.

Examples

ctmodel <- ctModel(type='ct',
n.latent=2, n.manifest=1,
manifestNames='sunspots',
latentNames=c('ss_level', 'ss_velocity'),
LAMBDA=matrix(c(1, 'ma1'), nrow=1, ncol=2),
DRIFT=matrix(c(0, 1, 'a21', 'a22'), nrow=2, ncol=2, byrow=TRUE),
MANIFESTMEANS=matrix(c('m1'), nrow=1, ncol=1),
CINT=matrix(c(0, 0), nrow=2, ncol=1),
DIFFUSION=matrix(c(

38 ctPlotArray

0, 0,
0, "diffusion"), ncol=2, nrow=2, byrow=TRUE))

l=ctModelLatex(ctmodel,compile=FALSE, open=FALSE)
cat(l)

ctPlotArray Plots three dimensional y values for quantile plots

Description

1st margin of $Y sets line values, 2nd sets variables, 3rd quantiles.

Usage

ctPlotArray(
input,
grid = FALSE,
add = FALSE,
colvec = "auto",
lwdvec = "auto",
ltyvec = "auto",
typevec = "auto",
plotcontrol = list(ylab = "Array values", xaxs = "i"),
legend = TRUE,
legendcontrol = list(),
polygon = TRUE,
polygonalpha = 0.1,
polygoncontrol = list(steps = 25)

)

Arguments

input list containing 3 dimensional array to use for Y values, $y and vector of corre-
sponding x values $x.

grid Logical. Plot with a grid?

add Logical. If TRUE, plotting is overlayed on current plot, without creating new
plot.

colvec color vector of same length as 2nd margin.

lwdvec lwd vector of same length as 2nd margin.

ltyvec lty vector of same length as 2nd margin.

typevec type vector of same length as 2nd margin.

plotcontrol list of arguments to pass to plot.

legend Logical. Draw a legend?

legendcontrol list of arguments to pass to legend.

ctPoly 39

polygon Logical. Draw the uncertainty polygon?
polygonalpha Numeric, multiplier for alpha (transparency) of the uncertainty polygon.
polygoncontrol list of arguments to pass to ctPoly

Value

Nothing. Generates plots.

Examples

#'
input<-ctStanTIpredeffects(ctstantestfit, plot=FALSE, whichpars='CINT',
nsamples=10,nsubjects=10)

ctPlotArray(input=input)

ctPoly Plots uncertainty bands with shading

Description

Plots uncertainty bands with shading

Usage

ctPoly(x, y, ylow, yhigh, steps = 20, ...)

Arguments

x x values
y y values
ylow lower limits of y
yhigh upper limits of y
steps number of polygons to overlay - higher integers lead to smoother changes in

transparency between y and yhigh / ylow.
... arguments to pass to polygon()

Value

Nothing. Adds a polygon to existing plot.

Examples

plot(0:100,sqrt(0:100),type='l')
ctPoly(x=0:100, y=sqrt(0:100),
yhigh=sqrt(0:100) - runif(101),
ylow=sqrt(0:100) + runif(101),
col=adjustcolor('red',alpha.f=.1))

40 ctPostPredPlots

ctPostPredData Create a data.table to compare data generated from a ctsem fit with
the original data.

Description

This function allows for easy comparison of data generated from a fitted ctsem model with the
original data used to fit the model. It provides options to include residuals in the comparison.

Usage

ctPostPredData(fit, residuals = F)

Arguments

fit A fitted ctsem model.

residuals If set to TRUE, includes residuals in the comparison.

Value

A data table containing the comparison between generated and original data.

See Also

Other ctsem functions for model fitting and analysis.

Examples

data_comparison <- ctPostPredData(ctstantestfit)

ctPostPredPlots Create diagnostic plots to assess the goodness-of-fit for a ctsem model.

Description

This function generates a set of diagnostic plots to assess the goodness-of-fit for a fitted ctsem
model.

Usage

ctPostPredPlots(fit)

Arguments

fit A fitted ctsem model.

ctPredictTIP 41

Details

The function calculates various statistics and creates visualizations to evaluate how well the gen-
erated data matches the original data used to fit the model. The plots included are as follows: -
A scatter plot comparing observed values and the median of generated data. - A plot showing
the proportion of observed data outside the 95 - A density plot of the proportion of observed data
greater than the generated data. - A time series plot of the proportion of observed data greater than
generated data.

Value

a list of ggplot2 plots.

Examples

print(ctPostPredPlots(ctstantestfit))

ctPredictTIP ctPredictTIP

Description

Outputs the estimated effect of time independent predictors (covariate moderators) on the expected
observations.

Usage

ctPredictTIP(
sf,
tipreds = "all",
subject = 1,
timestep = "auto",
doDynamics = TRUE,
plot = TRUE,
quantiles = c(0.16, 0.5, 0.84),
discreteTimeQuantiles = c(0.025, 0.5, 0.975),
showUncertainty = TRUE,
TIPvalues = NA

)

Arguments

sf A fitted ctStanFit object from the ctsem package.

tipreds A character vector specifying which time independent predictors to use. Default
is ’all’, which uses all time independent predictors in the model.

42 ctResiduals

subject An integer value specifying the internal ctsem subject ID (mapping visible under
myfit$setup$idmap) for which predictions are made. This is relevant only when
time dependent predictors are also included in the model.

timestep A numeric value specifying the time step for predictions. Default is ’auto’,
which tries to automatically determine an appropriate time step.

doDynamics A logical value indicating whether to plot the effects of time independent pre-
dictors on the dynamics of the system. Default is TRUE. Can be problematic for
systems with many dimensions.

plot A logical value indicating whether to ggplot the results instead of returning a
data.frame of predictions. Default is TRUE.

quantiles A numeric vector specifying the quantiles of the time independent predictors to
plot. Default is 1SD either side and the median, c(.32,.5,.68).

discreteTimeQuantiles

a numeric vector of length 3 specifying the quantiles of the discrete time points
to plot, when showUncertainty is TRUE.

showUncertainty

A logical value indicating whether to plot the uncertainty of the predictions.
Default is TRUE.

TIPvalues An nvalue * nTIpred numeric matrix specifying the fixed values for each time
independent predictor effect to plot. Default is NA, which instead relies on the
quantiles specified in the quantiles argument.

Details

This function estimates the effects of covariate moderators on the expected process and observations
for a specified subject in a dynamic system. The covariate moderators are defined at the specified
quantiles, and their effects on the trajectory are plotted or returned as a data frame.

Value

If plot is TRUE, a list of ggplot objects showing the estimated effects of covariate moderators.
Otherwise, a data frame with the predictions.

Examples

Example usage:
ctPredictTIP(ctstantestfit, tipreds='all', doDynamics=FALSE, plot=TRUE)

ctResiduals Extract Standardized Residuals from a ctsem Fit

Description

This function takes a fit object from the ctsem package and extracts the standardized residuals.

ctStanContinuousPars 43

Usage

ctResiduals(fit)

Arguments

fit A fitted model object generated by the ctsem package.

Details

This function uses the ctStanKalman function to calculate the standardized residuals and then
extracts and formats them as a data table. The standardized residuals represent the differences
between the observed and predicted values, divided by the standard errors of the observations.

Value

A data table containing the standardized residuals for each subject and time point.

See Also

ctStanKalman

Examples

data.table::setDTthreads(1) #ignore this line
Example usage:
residuals <- ctResiduals(ctstantestfit)

ctStanContinuousPars ctStanContinuousPars

Description

Returns the continuous time parameter matrices of a ctStanFit fit object

Usage

ctStanContinuousPars(
fit,
calcfunc = quantile,
calcfuncargs = list(probs = 0.5),
timeinterval = 1

)

44 ctStanDiscretePars

Arguments

fit fit object from ctStanFit

calcfunc Function to apply over samples, must return a single value. By default the me-
dian over all samples is returned using the quantile function, but one might
also be interested in the mean or sd, for instance.

calcfuncargs A list of additional parameters to pass to calcfunc. For instance, with the default
of calcfunc = quantile, the probs argument is needed to ensure only a single
value is returned.

timeinterval time interval for discrete time parameter matrix computation.

Examples

#posterior median over all subjects (also reflects mean of unconstrained pars)
ctStanContinuousPars(ctstantestfit)

ctStanDiscretePars ctStanDiscretePars

Description

Calculate model implied regressions for a sequence of time intervals (if ct) or steps (if dt) based on
a ctStanFit object, for specified subjects. Wrap with print() when used inside for loops!

Usage

ctStanDiscretePars(
ctstanfitobj,
subjects = "popmean",
times = seq(from = 0, to = 10, by = 0.1),
nsamples = 200,
observational = FALSE,
standardise = FALSE,
cov = FALSE,
plot = FALSE,
cores = 2,
...

)

Arguments

ctstanfitobj model fit from ctStanFit

subjects Either ’popmean’, to use the population mean parameter, or a vector of integers
denoting which subjects.

ctStanDiscreteParsPlot 45

times Numeric vector of positive values, discrete time parameters will be calculated
for each. If the fit object is a discrete time model, these should be positive
integers.

nsamples Number of samples from the stanfit to use for plotting. Higher values will in-
crease smoothness / accuracy, at cost of plotting speed. Values greater than the
total number of samples will be set to total samples.

observational Logical. If TRUE, outputs expected change in processes *conditional on ob-
serving* a 1 unit change in each – this change is correlated according to the
DIFFUSION matrix. If FALSE, outputs expected regression values – also inter-
pretable as an independent 1 unit change on each process, giving the expected
response under a 1 unit experimental impulse.

standardise Logical. If TRUE, output is standardised according to expected total within
subject variance, given by the asymDIFFUSIONcov matrix.

cov Logical. If TRUE, covariances are returned instead of regression coefficients.

plot Logical. If TRUE, ggplots output using ctStanDiscreteParsPlot instead of
returning output.

cores Number of cpu cores to use for computing subject matrices. If subject matrices
were saved during fiting, not used.

... additional plotting arguments to control ctStanDiscreteParsPlot

Details

If plot=TRUE, the function will return a ggplot2 object (and hence needs to be printed if intended
to display within a loop). This can be modified by the various ggplot2 functions, or displayed using
print(x).

Examples

data.table::setDTthreads(1) #ignore this line
ctStanDiscretePars(ctstantestfit,times=seq(.5,4,.1),
plot=TRUE,indices='CR')

#modify plot
require(ggplot2)
g=ctStanDiscretePars(ctstantestfit,times=seq(.5,4,.1),
plot=TRUE,indices='CR')

g= g+ labs(title='Cross effects')
print(g)

ctStanDiscreteParsPlot

ctStanDiscreteParsPlot

Description

Plots the output from ctStanDiscretePars, for model implied regression strengths at specified
times for continuous time models fit with ctStanFit.

46 ctStanDiscreteParsPlot

Usage

ctStanDiscreteParsPlot(
x,
indices = "all",
quantiles = c(0.025, 0.5, 0.975),
latentNames = "auto",
ylab = "Coefficient",
xlab = "Time interval",
ylim = NA,
facets = NA,
splitSubjects = TRUE,
colour = "Effect",
title = "auto",
polygonalpha = 0.1,
ggcode = FALSE

)

Arguments

x list object returned from ctStanDiscretePars.
indices Either a string specifying type of plot to create, or an n by 2 matrix specify-

ing which indices of the output matrix to plot. ’AR’ specifies all diagonals,
for discrete time autoregression parameters. ’CR’ specifies all off-diagonals,for
discrete time cross regression parameters. ’all’ plots all AR and CR effects at
once.

quantiles numeric vector of length 3, with values between 0 and 1, specifying which quan-
tiles to plot. The default plots 95% credible intervals and the posterior median
at 50%.

latentNames Vector of character strings denoting names for the latent variables. ’auto’ just
uses eta1 eta2 etc.

ylab y label.
xlab x label.
ylim Custom ylim.
facets May be ’Subject’ or ’Effect’.
splitSubjects if TRUE, subjects are plotted separately, if FALSE they are combined.
colour Character string denoting how colour varies. ’Effect’ or ’Subject’.
title Character string. ’auto’ generates automatically, NULL can be used to disable

title.
polygonalpha Numeric between 0 and 1 to multiply the alpha of the fill.
ggcode if TRUE, returns a list containing the data.table to plot, and a character string

that can be evaluated (with the necessary arguments such as ylab etc filled in).
For modifying plots.

Value

A ggplot2 object. This can be modified by the various ggplot2 functions, or displayed using print(x).

ctStanFit 47

Examples

data.table::setDTthreads(1) #ignore this line
x <- ctStanDiscretePars(ctstantestfit)
ctStanDiscreteParsPlot(x, indices='CR')

#to modify plot:
g <- ctStanDiscreteParsPlot(x, indices='CR') +
ggplot2::labs(title='My ggplot modification')

print(g)

ctStanFit ctStanFit

Description

Fits a ctsem model specified via ctModel with type either ’ct’ or ’dt’.

Usage

ctStanFit(
datalong,
ctstanmodel,
stanmodeltext = NA,
iter = 1000,
intoverstates = TRUE,
binomial = FALSE,
fit = TRUE,
intoverpop = "auto",
sameInitialTimes = FALSE,
stationary = FALSE,
plot = FALSE,
derrind = NA,
optimize = TRUE,
optimcontrol = list(),
nlcontrol = list(),
nopriors = NA,
priors = FALSE,
chains = 2,
cores = ifelse(optimize, getOption("mc.cores", 2L), "maxneeded"),
inits = NULL,
compileArgs = list(),
forcerecompile = FALSE,
saveCompile = TRUE,
savescores = FALSE,
savesubjectmatrices = FALSE,
saveComplexPars = FALSE,

48 ctStanFit

gendata = FALSE,
control = list(),
verbose = 0,
vb = FALSE,
...

)

Arguments

datalong long format data containing columns for subject id (numeric values, 1 to max
subjects), manifest variables, any time dependent (i.e. varying within subject)
predictors, and any time independent (not varying within subject) predictors.

ctstanmodel model object as generated by ctModel with type=’ct’ or ’dt’, for continuous or
discrete time models respectively.

stanmodeltext already specified Stan model character string, generally leave NA unless mod-
ifying Stan model directly. (Possible after modification of output from fitting
with argument fit=FALSE)

iter used when optimize=FALSE. number of iterations, half of which will be devoted
to warmup by default when sampling.

intoverstates logical indicating whether or not to integrate over latent states using a Kalman
filter. Generally recommended to set TRUE unless using non-gaussian measure-
ment model.

binomial Deprecated. Logical indicating the use of binary rather than Gaussian data, as
with IRT analyses. This now sets intoverstates = FALSE and the manifesttype
of every indicator to 1, for binary.

fit If TRUE, fit specified model using Stan, if FALSE, return stan model object
without fitting.

intoverpop if ’auto’, set to TRUE if optimizing and FALSE if using hmc. if TRUE, inte-
grates over population distribution of parameters rather than full sampling. Al-
lows for optimization of non-linearities and random effects, via state expansion.

sameInitialTimes

if TRUE, include an empty observation for every subject that has no observation
at the earliest observation time of the dataset. This ensures that the T0MEANS
occurs for every subject at the same time, rather than just at the earliest observa-
tion for that subject. Important when modelling trends over time, age, etc.

stationary Logical. If TRUE, T0VAR and T0MEANS input matrices are ignored, the pa-
rameters are instead fixed to long run expectations. More control over this can
be achieved by instead setting parameter names of T0MEANS and T0VAR ma-
trices in the input model to ’stationary’, for elements that should be fixed to
stationarity.

plot if TRUE, for sampling, a Shiny program is launched upon fitting to interactively
plot samples. May struggle with many (e.g., > 5000) parameters. For optimiz-
ing, various optimization details are plotted – in development.

derrind deprecated, latents involved in dynamic error calculations are determined auto-
matically now.

ctStanFit 49

optimize if TRUE, use stanoptimis function for maximum a posteriori / importance
sampling estimates, otherwise use the HMC sampler from Stan, which is (much)
slower, but generally more robust for complex individual differences.

optimcontrol list of parameters sent to stanoptimis governing optimization / importance
sampling.

nlcontrol List of non-linear control parameters. maxtimestep must be a positive numeric,
specifying the largest time span covered by the numerical integration. The large
default ensures that for each observation time interval, only a single step of expo-
nential integration is used. When maxtimestep is smaller than the observation
time interval, the integration is nested within an Euler like loop. Smaller values
may offer greater accuracy, but are slower and not always necessary. Given the
exponential integration, linear model elements are fit exactly with only a single
step.

nopriors deprecated, use priors argument. logical. If TRUE, any priors are disabled –
sometimes desirable for optimization.

priors if TRUE, priors are included in computations, otherwise specified priors are
ignored.

chains used when optimize=FALSE. Number of chains to sample, during HMC or post-
optimization importance sampling. Unless the cores argument is also set, the
number of chains determines the number of cpu cores used, up to the maximum
available minus one. Irrelevant when optimize=TRUE.

cores number of cpu cores to use. Either ’maxneeded’ to use as many as available
minus one, up to the number of chains, or a positive integer. If optimize=TRUE,
more cores are generally faster.

inits either character string ’optimize, NULL, or vector of (unconstrained) parameter
start values, as returned by the rstan function rstan::unconstrain_pars, or
the parameter values found in a ctsem fit object myfit$stanfit$rawest (or
$rawposterior) for instance.

compileArgs List of arguments to pass to stan_model for compilation of the Stan model.

forcerecompile logical. For development purposes. If TRUE, stan model is recompiled, regard-
less of apparent need for compilation.

saveCompile if TRUE and compilation is needed / requested, writes the stan model to the
parent frame as ctsem.compiled (unless that object already exists and is not from
ctsem), to avoid unnecessary recompilation.

savescores Logical. If TRUE, output from the Kalman filter is saved in output. For datasets
with many variables or time points, will increase file size substantially.

savesubjectmatrices

Logical. If TRUE, subject specific matrices are saved – only relevant when
either time dependent predictors or individual differences are used. Can increase
memory usage dramatically in large models, and can be computed after fitting
using ctExtract or ctStanSubjectPars .

saveComplexPars

Logical. If TRUE, also save rowwise output of any complex parameters speci-
fied, i.e. combinations of parameters, functions and states.

50 ctStanFit

gendata Logical – If TRUE, uses provided data for only covariates and a time and miss-
ingness structure, and generates random data according to the specified model /
priors. Generated data is in the $Ygen subobject after running extract on the
fit object. For datasets with many manifest variables or time points, file size
may be large. To generate data based on the posterior of a fitted model, see
ctStanGenerateFromFit.

control Used when optimize=FALSE. List of arguments sent to stan control argument,
regarding warmup / sampling behaviour. Unless specified, values used are:
list(adapt_delta = .8, adapt_window=2, max_treedepth=10, adapt_init_buffer=2,
stepsize = .001)

verbose Integer from 0 to 2. Higher values print more information during model fit – for
debugging.

vb Logical. Use variational Bayes algorithm from stan? Only kind of working, not
recommended.

... additional arguments to pass to stan function.

Examples

#generate a ctStanModel relying heavily on defaults
model<-ctModel(type='ct',

latentNames=c('eta1','eta2'),
manifestNames=c('Y1','Y2'),
MANIFESTVAR=diag(.1,2),
TDpredNames='TD1',
TIpredNames=c('TI1','TI2','TI3'),
LAMBDA=diag(2))

fit<-ctStanFit(ctstantestdat, model,priors=TRUE)

summary(fit)

plot(fit,wait=FALSE)

extended examples

library(ctsem)
set.seed(3)

Data generation (run this, but no need to understand!) -----------------

Tpoints <- 20
nmanifest <- 4
nlatent <- 2
nsubjects<-20

#random effects
age <- rnorm(nsubjects) #standardised
cint1<-rnorm(nsubjects,2,.3)+age*.5
cint2 <- cint1*.5+rnorm(nsubjects,1,.2)+age*.5

ctStanFit 51

tdpredeffect <- rnorm(nsubjects,5,.3)+age*.5

for(i in 1:nsubjects){
#generating model
gm<-ctModel(Tpoints=Tpoints,n.manifest = nmanifest,n.latent = nlatent,n.TDpred = 1,
LAMBDA = matrix(c(1,0,0,0, 0,1,.8,1.3),nrow=nmanifest,ncol=nlatent),
DRIFT=matrix(c(-.3, .2, 0, -.5),nlatent,nlatent),
TDPREDMEANS=matrix(c(rep(0,Tpoints-10),1,rep(0,9)),ncol=1),
TDPREDEFFECT=matrix(c(tdpredeffect[i],0),nrow=nlatent),
DIFFUSION = matrix(c(1, 0, 0, .5),2,2),
CINT = matrix(c(cint1[i],cint2[i]),ncol=1),
T0VAR=diag(2,nlatent,nlatent),
MANIFESTVAR = diag(.5, nmanifest))

#generate data
newdat <- ctGenerate(ctmodelobj = gm,n.subjects = 1,burnin = 2,

dtmat<-rbind(c(rep(.5,8),3,rep(.5,Tpoints-9))))
newdat[,'id'] <- i #set id for each subject
newdat <- cbind(newdat,age[i]) #include time independent predictor
if(i ==1) {

dat <- newdat[1:(Tpoints-10),] #pre intervention data
dat2 <- newdat #including post intervention data

}
if(i > 1) {

dat <- rbind(dat, newdat[1:(Tpoints-10),])
dat2 <- rbind(dat2,newdat)

}
}
colnames(dat)[ncol(dat)] <- 'age'
colnames(dat2)[ncol(dat)] <- 'age'

#plot generated data for sanity
plot(age)
matplot(dat[,gm$manifestNames],type='l',pch=1)
plotvar <- 'Y1'
plot(dat[dat[,'id']==1,'time'],dat[dat[,'id']==1,plotvar],type='l',

ylim=range(dat[,plotvar],na.rm=TRUE))
for(i in 2:nsubjects){

points(dat[dat[,'id']==i,'time'],dat[dat[,'id']==i,plotvar],type='l',col=i)
}

dat2[,gm$manifestNames][sample(1:length(dat2[,gm$manifestNames]),size = 100)] <- NA

#data structure
head(dat2)

Model fitting ---

##simple univariate default model

52 ctStanFit

m <- ctModel(type = 'ct', manifestNames = c('Y1'), LAMBDA = diag(1))
ctModelLatex(m)

#Specify univariate linear growth curve

m1 <- ctModel(type = 'ct',
manifestNames = c('Y1'), latentNames=c('eta1'),
DRIFT=matrix(-.0001,nrow=1,ncol=1),
DIFFUSION=matrix(0,nrow=1,ncol=1),
T0VAR=matrix(0,nrow=1,ncol=1),
CINT=matrix(c('cint1'),ncol=1),
T0MEANS=matrix(c('t0m1'),ncol=1),
LAMBDA = diag(1),
MANIFESTMEANS=matrix(0,ncol=1),
MANIFESTVAR=matrix(c('merror'),nrow=1,ncol=1))

ctModelLatex(m1)

#fit
f1 <- ctStanFit(datalong = dat2, ctstanmodel = m1, optimize=TRUE, priors=FALSE)

summary(f1)

#plots of individual subject models v data
ctKalman(f1,plot=TRUE,subjects=1,kalmanvec=c('y','yprior'),timestep=.01)
ctKalman(f1,plot=TRUE,subjects=1:3,kalmanvec=c('y','ysmooth'),timestep=.01,errorvec=NA)

ctStanPostPredict(f1, wait=FALSE) #compare randomly generated data from posterior to observed data

cf<-ctCheckFit(f1) #compare mean and covariance of randomly generated data to observed cov
plot(cf,wait=FALSE)

Further example models

#Include intervention
m2 <- ctModel(type = 'ct',

manifestNames = c('Y1'), latentNames=c('eta1'),
n.TDpred=1,TDpredNames = 'TD1', #this line includes the intervention
TDPREDEFFECT=matrix(c('tdpredeffect'),nrow=1,ncol=1), #intervention effect
DRIFT=matrix(-1e-5,nrow=1,ncol=1),
DIFFUSION=matrix(0,nrow=1,ncol=1),
CINT=matrix(c('cint1'),ncol=1),
T0MEANS=matrix(c('t0m1'),ncol=1),
T0VAR=matrix(0,nrow=1,ncol=1),
LAMBDA = diag(1),
MANIFESTMEANS=matrix(0,ncol=1),
MANIFESTVAR=matrix(c('merror'),nrow=1,ncol=1))

#Individual differences in intervention, Bayesian estimation, covariates
m2i <- ctModel(type = 'ct',

ctStanFit 53

manifestNames = c('Y1'), latentNames=c('eta1'),
TIpredNames = 'age',
TDpredNames = 'TD1', #this line includes the intervention
TDPREDEFFECT=matrix(c('tdpredeffect||TRUE'),nrow=1,ncol=1), #intervention effect
DRIFT=matrix(-1e-5,nrow=1,ncol=1),
DIFFUSION=matrix(0,nrow=1,ncol=1),
CINT=matrix(c('cint1'),ncol=1),
T0MEANS=matrix(c('t0m1'),ncol=1),
T0VAR=matrix(0,nrow=1,ncol=1),
LAMBDA = diag(1),
MANIFESTMEANS=matrix(0,ncol=1),
MANIFESTVAR=matrix(c('merror'),nrow=1,ncol=1))

#Including covariate effects
m2ic <- ctModel(type = 'ct',

manifestNames = c('Y1'), latentNames=c('eta1'),
n.TIpred = 1, TIpredNames = 'age',
n.TDpred=1,TDpredNames = 'TD1', #this line includes the intervention
TDPREDEFFECT=matrix(c('tdpredeffect'),nrow=1,ncol=1), #intervention effect
DRIFT=matrix(-1e-5,nrow=1,ncol=1),
DIFFUSION=matrix(0,nrow=1,ncol=1),
CINT=matrix(c('cint1'),ncol=1),
T0MEANS=matrix(c('t0m1'),ncol=1),
T0VAR=matrix(0,nrow=1,ncol=1),
LAMBDA = diag(1),
MANIFESTMEANS=matrix(0,ncol=1),
MANIFESTVAR=matrix(c('merror'),nrow=1,ncol=1))

m2ic$pars$indvarying[m2ic$pars$matrix %in% 'TDPREDEFFECT'] <- TRUE

#Include deterministic dynamics
m3 <- ctModel(type = 'ct',

manifestNames = c('Y1'), latentNames=c('eta1'),
n.TDpred=1,TDpredNames = 'TD1', #this line includes the intervention
TDPREDEFFECT=matrix(c('tdpredeffect'),nrow=1,ncol=1), #intervention effect
DRIFT=matrix('drift11',nrow=1,ncol=1),
DIFFUSION=matrix(0,nrow=1,ncol=1),
CINT=matrix(c('cint1'),ncol=1),
T0MEANS=matrix(c('t0m1'),ncol=1),
T0VAR=matrix('t0var11',nrow=1,ncol=1),
LAMBDA = diag(1),
MANIFESTMEANS=matrix(0,ncol=1),
MANIFESTVAR=matrix(c('merror1'),nrow=1,ncol=1))

#Add system noise to allow for fluctuations that persist in time
m3n <- ctModel(type = 'ct',

manifestNames = c('Y1'), latentNames=c('eta1'),

54 ctStanFitUpdate

n.TDpred=1,TDpredNames = 'TD1', #this line includes the intervention
TDPREDEFFECT=matrix(c('tdpredeffect'),nrow=1,ncol=1), #intervention effect
DRIFT=matrix('drift11',nrow=1,ncol=1),
DIFFUSION=matrix('diffusion',nrow=1,ncol=1),
CINT=matrix(c('cint1'),ncol=1),
T0MEANS=matrix(c('t0m1'),ncol=1),
T0VAR=matrix('t0var11',nrow=1,ncol=1),
LAMBDA = diag(1),
MANIFESTMEANS=matrix(0,ncol=1),
MANIFESTVAR=matrix(c(0),nrow=1,ncol=1))

#include 2nd latent process

m4 <- ctModel(n.manifest = 2,n.latent = 2, type = 'ct',
manifestNames = c('Y1','Y2'), latentNames=c('L1','L2'),
n.TDpred=1,TDpredNames = 'TD1',
TDPREDEFFECT=matrix(c('tdpredeffect1','tdpredeffect2'),nrow=2,ncol=1),
DRIFT=matrix(c('drift11','drift21','drift12','drift22'),nrow=2,ncol=2),
DIFFUSION=matrix(c('diffusion11','diffusion21',0,'diffusion22'),nrow=2,ncol=2),
CINT=matrix(c('cint1','cint2'),nrow=2,ncol=1),
T0MEANS=matrix(c('t0m1','t0m2'),nrow=2,ncol=1),
T0VAR=matrix(c('t0var11','t0var21',0,'t0var22'),nrow=2,ncol=2),
LAMBDA = matrix(c(1,0,0,1),nrow=2,ncol=2),
MANIFESTMEANS=matrix(c(0,0),nrow=2,ncol=1),
MANIFESTVAR=matrix(c('merror1',0,0,'merror2'),nrow=2,ncol=2))

#dynamic factor model -- fixing CINT to 0 and freeing indicator level intercepts

m3df <- ctModel(type = 'ct',
manifestNames = c('Y2','Y3'), latentNames=c('eta1'),
n.TDpred=1,TDpredNames = 'TD1', #this line includes the intervention
TDPREDEFFECT=matrix(c('tdpredeffect'),nrow=1,ncol=1), #intervention effect
DRIFT=matrix('drift11',nrow=1,ncol=1),
DIFFUSION=matrix('diffusion',nrow=1,ncol=1),
CINT=matrix(c(0),ncol=1),
T0MEANS=matrix(c('t0m1'),ncol=1),
T0VAR=matrix('t0var11',nrow=1,ncol=1),
LAMBDA = matrix(c(1,'Y3loading'),nrow=2,ncol=1),
MANIFESTMEANS=matrix(c('Y2_int','Y3_int'),nrow=2,ncol=1),
MANIFESTVAR=matrix(c('Y2residual',0,0,'Y3residual'),nrow=2,ncol=2))

ctStanFitUpdate Update a ctStanFit object

ctStanGenerate 55

Description

Either to include different data, or because you have upgraded ctsem and the internal data structure
has changed.

Usage

ctStanFitUpdate(oldfit, data = NA, recompile = FALSE, refit = FALSE, ...)

Arguments

oldfit fit object to be upgraded

data replacement long format data object

recompile whether to force a recompile – safer but slower and usually unnecessary.

refit if TRUE, refits the model using the old estimates as a starting point. Only appli-
cable for optimized fits, not sampling.

... extra arguments to pass to ctStanFit

Value

updated ctStanFit object.

Examples

newfit <- ctStanFitUpdate(ctstantestfit,refit=FALSE)

ctStanGenerate Generate data from a ctstanmodel object

Description

Generate data from a ctstanmodel object

Usage

ctStanGenerate(
cts,
datastruct = NA,
is = FALSE,
fullposterior = TRUE,
nsamples = 200,
parsonly = FALSE,
cores = 2

)

56 ctStanGenerateFromFit

Arguments

cts ctStanModel , or ctStanFit,object.
datastruct long format data structure as used by ctsem. Not used if cts is a ctStanFit object.
is If optimizing, follow up with importance sampling?
fullposterior Generate from the full posterior or just the (unconstrained) mean?
nsamples How many samples to generate?
parsonly If TRUE, only return samples of raw parameters, don’t generate data.
cores Number of cpu cores to use.

Value

List contining Y, and array of nsamples by data rows by manifest variables, and llrow, an array of
nsamples by data rows log likelihoods.

Examples

#generate and plot samples from prior predictive
priorpred <- ctStanGenerate(cts = ctstantestfit,cores=2,nsamples = 50)

ctStanGenerateFromFit Add a $generated object to ctstanfit object, with random data gener-
ated from posterior of ctstanfit object

Description

Add a $generated object to ctstanfit object, with random data generated from posterior of ctstanfit
object

Usage

ctStanGenerateFromFit(
fit,
nsamples = 200,
fullposterior = FALSE,
verboseErrors = FALSE,
cores = 2

)

Arguments

fit ctstanfit object
nsamples Positive integer specifying number of datasets to generate.
fullposterior Logical indicating whether to sample from the full posterior (original nsamples)

or the posterior mean.
verboseErrors if TRUE, print verbose output when errors in generation encountered.
cores Number of cpu cores to use.

ctStanKalman 57

Value

Matrix of generated data – one dataset per iteration, according to original time and missingness
structure.

Examples

gen <- ctStanGenerateFromFit(ctstantestfit, nsamples=3,fullposterior=TRUE,cores=1)
plot(gen$generated$Y[3,,2],type='l') #Third random data sample, 2nd manifest var, all time points.

ctStanKalman Get Kalman filter estimates from a ctStanFit object

Description

Get Kalman filter estimates from a ctStanFit object

Usage

ctStanKalman(
fit,
nsamples = NA,
pointest = TRUE,
collapsefunc = NA,
cores = 1,
subjects = 1:max(fit$standata$subject),
timestep = "asdata",
maxtime = "asdata",
standardisederrors = FALSE,
subjectpars = TRUE,
tformsubjectpars = TRUE,
indvarstates = FALSE,
removeObs = F,
...

)

Arguments

fit fit object from ctStanFit.

nsamples either NA (to extract all) or a positive integer from 1 to maximum samples in
the fit.

pointest If TRUE, uses the posterior mode as the single sample.

collapsefunc function to apply over samples, such as mean

cores Integer number of cpu cores to use. Only needed if savescores was set to FALSE
when fitting.

subjects integer vector of subjects to compute for.

58 ctStanModel

timestep Either a positive numeric value, ’asdata’ to use the times in the dataset, or ’auto’
to select a timestep automatically (resulting in some interpolation but not exces-
sive computation).

maxtime only relevant if timestep is not ’asdata’. Positive numeric denoting max time for
computations.

standardisederrors

If TRUE, computes standardised errors for prior, upd, smooth conditions.
subjectpars if TRUE, state estimates are not returned, instead, predictions of each subjects

parameters are returned, for parameters that had random effects specified.
tformsubjectpars

if FALSE, subject level parameters are returned in raw, pre transformation form.
indvarstates if TRUE, do not remove indvarying states from output
removeObs Logical or integer. If TRUE, observations (but not covariates) are set to NA, so

only expectations based on parameters and covariates are returned. If a positive
integer N, every N observations are retained while others are set NA for comput-
ing model expectations – useful for observing prediction performance forward
further in time than one observation.

... additional arguments to collpsefunc.

Value

list containing Kalman filter elements, each element in array of iterations, data row, variables. llrow
is the log likelihood for each row of data.

Examples

k=ctStanKalman(ctstantestfit,subjectpars=TRUE,collapsefunc=mean)

ctStanModel Convert a frequentist (omx) ctsem model specification to Bayesian
(Stan).

Description

Convert a frequentist (omx) ctsem model specification to Bayesian (Stan).

Usage

ctStanModel(ctmodelobj, type = "ct", tipredDefault = TRUE)

Arguments

ctmodelobj ctsem model object of type ’omx’ (default)
type either ’ct’ for continuous time, or ’dt’ for discrete time.
tipredDefault Logical. TRUE sets any parameters with unspecified time independent predictor

effects to have effects estimated, FALSE fixes the effect to zero unless individu-
ally specified.

ctStanParnames 59

Value

List object of class ctStanModel, with random effects specified for any intercept type parame-
ters (T0MEANS, MANIFESTMEANS, and or CINT), and time independent predictor effects for
all parameters. Adjust these after initial specification by directly editing the pars subobject, so
model$pars .

Examples

model <- ctModel(type='omx', Tpoints=50,
n.latent=2, n.manifest=1,
manifestNames='sunspots',
latentNames=c('ss_level', 'ss_velocity'),
LAMBDA=matrix(c(1, 'ma1'), nrow=1, ncol=2),
DRIFT=matrix(c(0, 1, 'a21', 'a22'), nrow=2, ncol=2, byrow=TRUE),
MANIFESTMEANS=matrix(c('m1'), nrow=1, ncol=1),
MANIFESTVAR=matrix(0, nrow=1, ncol=1),
CINT=matrix(c(0, 0), nrow=2, ncol=1),
DIFFUSION=matrix(c(

0, 0,
0, "diffusion"), ncol=2, nrow=2, byrow=TRUE))

stanmodel=ctStanModel(model)

ctStanParnames ctStanParnames

Description

Gets internal stan parameter names of a ctStanFit object sampled via stan based on specified sub-
strings.

Usage

ctStanParnames(x, substrings = c("pop_", "popsd"))

Arguments

x ctStanFit object

substrings vector of character strings, parameter names of the stan model containing any
of these strings will be returned. Useful strings may be ’pop_’ for popula-
tion means, ’popsd’ for population standard deviations, or specific combinations
such as ’pop_DRIFT’ for the population means of temporal dynamics parame-
ters

Value

vector of character strings.

60 ctStanPlotPost

Examples

sunspots<-sunspot.year
sunspots<-sunspots[50: (length(sunspots) - (1988-1924))]
id <- 1
time <- 1749:1924
datalong <- cbind(id, time, sunspots)

#setup model
ssmodel <- ctModel(type='ct', n.latent=2, n.manifest=1,
manifestNames='sunspots',
latentNames=c('ss_level', 'ss_velocity'),
LAMBDA=matrix(c(1, 'ma1| log(1+(exp(param)))'), nrow=1, ncol=2),
DRIFT=matrix(c(0, 'a21 | -log(1+exp(param))', 1, 'a22'), nrow=2, ncol=2),
MANIFESTMEANS=matrix(c('m1|param * 10 + 44'), nrow=1, ncol=1),
MANIFESTVAR=diag(0,1), #As per original spec
CINT=matrix(c(0, 0), nrow=2, ncol=1),
DIFFUSION=matrix(c(0, 0, 0, "diffusion"), ncol=2, nrow=2))

#fit
ssfit <- ctStanFit(datalong, ssmodel, iter=2,

optimize=FALSE, chains=1)
ctStanParnames(ssfit,substrings=c('pop_','popsd'))

ctStanPlotPost ctStanPlotPost

Description

Plots prior and posterior distributions of model parameters in a ctStanModel or ctStanFit object.

Usage

ctStanPlotPost(
obj,
rows = "all",
npp = 6,
priorwidth = TRUE,
smoothness = 1,
priorsamples = 10000,
plot = TRUE,
wait = FALSE,
...

)

ctStanPostPredict 61

Arguments

obj fit or model object as generated by ctStanFit, ctModel, or ctStanModel.

rows vector of integers denoting which rows of obj$setup$popsetup to plot priors for.
Character string ’all’ plots all rows with parameters to be estimated.

npp Integer number of parameters to show per page.

priorwidth if TRUE, plots will be scaled to show bulk of both the prior and posterior distri-
butions. If FALSE, scale is based only on the posterior.

smoothness Positive numeric – multiplier to modify smoothness of density plots, higher is
smoother but can cause plots to exceed natural boundaries, such as standard
deviations below zero.

priorsamples number of samples from prior to use. More is slower.

plot Logical, if FALSE, ggplot objects are returned in a list instead of plotting.

wait If true, user is prompted to continue before plotting next graph. If false, graphs
are plotted one after another without waiting.

... Parameters to pass to ctStanFit. cores = x will speed things up, where x is the
number of cpu cores to use.

Examples

ctStanPlotPost(ctstantestfit, rows=3:4)

ctStanPostPredict Compares model implied density and values to observed, for a ctStan-
Fit object.

Description

Compares model implied density and values to observed, for a ctStanFit object.

Usage

ctStanPostPredict(
fit,
diffsize = 1,
jitter = 0.02,
wait = TRUE,
probs = c(0.025, 0.5, 0.975),
datarows = "all",
nsamples = 500,
resolution = 100,
plot = TRUE

)

62 ctStanSubjectPars

Arguments

fit ctStanFit object.

diffsize Integer > 0. Number of discrete time lags to use for data viz.

jitter Positive numeric between 0 and 1, if TRUE, jitters empirical data by specified
proportion of std dev.

wait Logical, if TRUE and plot=TRUE, waits for input before plotting next plot.

probs Vector of length 3 containing quantiles to plot – should be rising numeric values
between 0 and 1.

datarows integer vector specifying rows of data to plot. Otherwise ’all’ uses all data.

nsamples Number of datasets to generate for comparisons, if fit object does not contain
generated data already.

resolution Positive integer, the number of rows and columns to split plots into for shading.

plot logical. If FALSE, a list of ggplot objects is returned.

Details

This function relies on the data generated during each iteration of fitting to approximate the model
implied distributions – thus, when limited iterations are available, the approximation will be worse.

Value

If plot=FALSE, an array containing quantiles of generated data. If plot=TRUE, nothing, only plots.

if plot=TRUE, nothing is returned and plots are created. Otherwise, a list containing ggplot objects
is returned and may be customized as desired.

Examples

#'
ctStanPostPredict(ctstantestfit,wait=FALSE, diffsize=2,resolution=100)

ctStanSubjectPars Extract an array of subject specific parameters from a ctStanFit object.

Description

Extract an array of subject specific parameters from a ctStanFit object.

Usage

ctStanSubjectPars(fit, pointest = TRUE, cores = 2, nsamples = "all")

ctstantestdat 63

Arguments

fit fit object

pointest if TRUE, returns only the set of individual difference parameters based on the
max a posteriori estimate (or the median if sampling approaches were used).

cores Number of cores to use.

nsamples Number of samples to calculate parameters for. Not used if pointest=TRUE.

Details

This function returns the estimates of individual parameters, taking into account any covariates and
random effects.

Value

an nsamples by nsubjects by nparams array.

Examples

indpars <- ctStanSubjectPars(ctstantestfit)
dimnames(indpars)
plot(indpars[1,,'cint1'],indpars[1,,'cint2'])

ctstantestdat ctstantestdat

Description

Generated dataset for testing ctStanFit from ctsem package.

Format

matrix

ctstantestfit ctstantestfit

Description

Dummy fit for testing functions from ctsem package.

Format

ctStanFit object

64 ctStanTIpredeffects

ctStanTIpredeffects Get time independent predictor effect estimates

Description

Computes and plots combined effects and quantiles for effects of time independent predictors on
subject level parameters of a ctStanFit object.

Usage

ctStanTIpredeffects(
fit,
returndifference = FALSE,
probs = c(0.025, 0.5, 0.975),
includeMeanUncertainty = FALSE,
whichTIpreds = 1,
parmatrices = TRUE,
whichpars = "all",
nsamples = 100,
timeinterval = 1,
nsubjects = 20,
filter = NA,
plot = FALSE

)

Arguments

fit fit object from ctStanFit

returndifference

logical. If FALSE, absolute parameter values are returned. If TRUE, only the
effect of the covariate (i.e. without the average value of the parameter) are re-
turned. The former can be easier to interpret, but the latter are more likely to fit
multiple plots together. Not used if parmatrices=TRUE.

probs numeric vector of quantile probabilities from 0 to 1. Specify 3 values if plotting,
the 2nd will be drawn as a line with uncertainty polygon based on 1st and 3rd.

includeMeanUncertainty

if TRUE, output includes sampling variation in the mean parameters. If FALSE,
mean parameters are fixed at their median, only uncertainty in time independent
predictor effects is included.

whichTIpreds integer vector specifying which of the tipreds in the fit object you want to use
to calculate effects. Unless quadratic / higher order versions of predictors have
been included, selecting more than one probably doesn’t make sense. If for
instance a squared predictor has been included, then you can specify both the
linear and squared version. The x axis of the plot (if generated) will be based
off the first indexed predictor. To check what predictors are in the model, run
fit$ctstanmodel$TIpredNames.

ctStanUpdModel 65

parmatrices Logical. If TRUE (default), system matrices rather than specific parameters are
referenced – e.g. ’DRIFT’ instead of a parameter name like drift12.

whichpars if parmatrices==TRUE, character vector specifying which matrices, and poten-
tially which indices of the matrices, to plot. c(’dtDRIFT[2,1]’, ’DRIFT’) would
output for row 2 and column 1 of the discrete time drift matrix, as well as all
indices of the continuous time drift matrix. If parmatrices==FALSE, integer
vector specifying which of the subject level parameters to compute effects on.
The integers corresponding to certain parameters can be found in the param col-
umn of the fit$setup$matsetup object. In either case ’all’ uses all available
parameters.

nsamples Positive integer specifying the maximum number of saved iterations to use.
Character string ’all’ can also be used.

timeinterval positive numeric indicating time interval to use for discrete time parameter ma-
trices, if parmatrices=TRUE.

nsubjects Positive integer specifying the number of subjects to compute values for. When
only one TIpred is used, this specifies the number of points along the curve.
Character string ’all’ can also be used. Time taken for plotting is a function of
nsubjects*niterations.

filter either NA, or a length 2 vector, where the first element contains the time in-
dependent predictor index to filter by, and the second contains the comparison
operator in string form (e.g. "< 3", to only calculate effects for subjects where
the tipreds of the denoted index are less than 3).

plot Logical. If TRUE, nothing is returned but instead ctPlotArray is used to plot
the output instead.

Value

Either a three dimensional array of predictor effects, or nothing with a plot generated.

Examples

ctStanTIpredeffects(ctstantestfit,
whichpars=c('CINT','dtDIFFUSION[2,2]'), plot=TRUE)

ctStanUpdModel Update an already compiled and fit ctStanFit object

Description

Allows one to change data and or model elements that don’t require recompiling, then re fit.

Usage

ctStanUpdModel(fit, datalong, ctstanmodel, ...)

66 ctWideNames

Arguments

fit ctStanFit object

datalong data as normally passed to ctStanFit

ctstanmodel model as normally passed to ctStanFit

... extra args for ctStanFit

ctWideNames ctWideNames sets default column names for wide ctsem datasets. Pri-
marily intended for internal ctsem usage.

Description

ctWideNames sets default column names for wide ctsem datasets. Primarily intended for internal
ctsem usage.

Usage

ctWideNames(
n.manifest,
Tpoints,
n.TDpred = 0,
n.TIpred = 0,
manifestNames = "auto",
TDpredNames = "auto",
TIpredNames = "auto"

)

Arguments

n.manifest number of manifest variables per time point in the data.

Tpoints Maximum number of discrete time points (waves of data, or measurement occa-
sions) for an individual in the input data structure.

n.TDpred number of time dependent predictors in the data structure.

n.TIpred number of time independent predictors in the data structure.

manifestNames vector of character strings giving column names of manifest indicator variables

TDpredNames vector of character strings giving column names of time dependent predictor
variables

TIpredNames vector of character strings giving column names of time independent predictor
variables

ctWideToLong 67

ctWideToLong ctWideToLong Convert ctsem wide to long format

Description

ctWideToLong Convert ctsem wide to long format

Usage

ctWideToLong(
datawide,
Tpoints,
n.manifest,
n.TDpred = 0,
n.TIpred = 0,
manifestNames = "auto",
TDpredNames = "auto",
TIpredNames = "auto"

)

Arguments

datawide ctsem wide format data

Tpoints number of measurement occasions in data

n.manifest number of manifest variables

n.TDpred number of time dependent predictors

n.TIpred number of time independent predictors

manifestNames Character vector of manifest variable names.

TDpredNames Character vector of time dependent predictor names.

TIpredNames Character vector of time independent predictor names.

Details

Names must account for *all* the columns in the data - i.e. do not leave certain variables out just
because you do not need them.

Examples

#create wide data
wideexample <- ctLongToWide(datalong = ctstantestdat, id = "id",
time = "time", manifestNames = c("Y1", "Y2"),
TDpredNames = "TD1", TIpredNames = c("TI1", "TI2","TI3"))

wide <- ctIntervalise(datawide = wideexample, Tpoints = 10, n.manifest = 2,
n.TDpred = 1, n.TIpred = 3, manifestNames = c("Y1", "Y2"),
TDpredNames = "TD1", TIpredNames = c("TI1", "TI2","TI3"))

68 inv_logit

#Then convert to long format
longexample <- ctWideToLong(datawide = wideexample, Tpoints=10,
n.manifest=2, manifestNames = c("Y1", "Y2"),
n.TDpred=1, TDpredNames = "TD1",
n.TIpred=3, TIpredNames = c("TI1", "TI2","TI3"))

#Then convert the time intervals to absolute time
long <- ctDeintervalise(datalong = longexample, id='id', dT='dT')
head(long,22)

datastructure datastructure

Description

Simulated example dataset for the ctsem package

Format

2 by 15 matrix containing containing ctsem wide format data. 3 measurement occasions of manifest
variables Y1 and Y2, 2 measurement occasions of time dependent predictor TD1, 2 measurement
intervals dTx, and 2 time independent predictors TI1 and TI2, for 2 individuals.

inv_logit Inverse logit

Description

Maps the stan function so the same code works in R.

Usage

inv_logit(x)

Arguments

x value to calculate the inverse logit for.

Examples

inv_logit(-3)

log1p_exp 69

log1p_exp log1p_exp

Description

Maps the stan function so the same code works in R.

Usage

log1p_exp(x)

Arguments

x value to use.

Examples

log1p_exp(-3)

longexample longexample

Description

Simulated example dataset for the ctsem package

Format

7 by 8 matrix containing ctsem long format data, for two subjects, with three manifest variables
Y1, Y2, Y3, one time dependent predictor TD1, two time independent predictors TI1 and TI2, and
absolute timing information Time.

70 plot.ctKalmanDF

Oscillating Oscillating

Description

Simulated example dataset for the ctsem package.

Format

200 by 21 matrix containing containing ctsem wide format data. 11 measurement occasions and 10
measurement intervals for each of 200 individuals

Source

See https://bpspsychub.onlinelibrary.wiley.com/doi/10.1111/j.2044-8317.2012.02043.
x

plot.ctKalmanDF Plots Kalman filter output from ctKalman.

Description

Plots Kalman filter output from ctKalman.

Usage

S3 method for class 'ctKalmanDF'
plot(
x,
subjects = unique(x$Subject),
kalmanvec = c("y", "yprior"),
errorvec = "auto",
errormultiply = 1.96,
plot = TRUE,
elementNames = NA,
polygonsteps = 10,
polygonalpha = 0.1,
facets = "Variable",
...

)

https://bpspsychub.onlinelibrary.wiley.com/doi/10.1111/j.2044-8317.2012.02043.x
https://bpspsychub.onlinelibrary.wiley.com/doi/10.1111/j.2044-8317.2012.02043.x

plot.ctKalmanDF 71

Arguments

x Output from ctKalman. In general it is easier to call ctKalman directly with the
plot=TRUE argument, which calls this function.

subjects vector of integers denoting which subjects (from 1 to N) to plot predictions for.

kalmanvec string vector of names of any elements of the output you wish to plot, the defaults
of ’y’ and ’ysmooth’ plot the original data, ’y’, and the estimates of the ’true’
value of y given all data. Replacing ’y’ by ’eta’ will plot latent states instead
(though ’eta’ alone does not exist) and replacing ’smooth’ with ’upd’ or ’prior’
respectively plots updated (conditional on all data up to current time point) or
prior (conditional on all previous data) estimates.

errorvec vector of names indicating which kalmanvec elements to plot uncertainty bands
for. ’auto’ plots all possible.

errormultiply Numeric denoting the multiplication factor of the std deviation of errorvec ob-
jects. Defaults to 1.96, for 95% intervals.

plot if FALSE, plots are not generated and the ggplot object is simply returned invis-
ibly.

elementNames if NA, all relevant object elements are included – e.g. if yprior is in the kalman-
vec argument, all manifest variables are plotted, and likewise for latent states if
etasmooth was specified. Alternatively, a character vector specifying the mani-
fest and latent names to plot explicitly can be specified.

polygonsteps Number of steps to use for uncertainty band shading.

polygonalpha Numeric for the opacity of the uncertainty region.

facets when multiple subjects are included in multivariate plots, the default is to facet
plots by variable type. This can be set to NA for no facets, or "Subject" for
facetting by subject.

... not used.

Value

A ggplot2 object. Side effect – Generates plots.

Examples

Get output from ctKalman
x<-ctKalman(ctstantestfit,subjects=2,timestep=.01)

Plot with plot.ctKalmanDF
plot(x, subjects=2)

###Single step procedure:
ctKalman(ctstantestfit,subjects=2,

kalmanvec=c('y','yprior'),
elementNames=c('Y1','Y2'),
plot=TRUE,timestep=.01)

72 plot.ctStanFit

plot.ctStanFit plot.ctStanFit

Description

Plots for ctStanFit objects

Usage

S3 method for class 'ctStanFit'
plot(x, types = "all", wait = TRUE, ...)

Arguments

x Fit object from ctStanFit.

types Vector of character strings defining which plots to create. ’all’ plots all possible
types, including: ’regression’, ’kalman’, ’priorcheck’, ’trace’, ’density’,’intervals’.

wait Logical. Pause between plots?

... Arguments to pass through to the specific plot functions. Bewar of clashes may
occur if types=’all’. For details see the specific functions generating each type
of plot.

Details

This function is just a wrapper calling the necessary functions for plotting - it may be simpler in
many cases to access those directly. They are: ctStanDiscretePars,ctKalman, ctStanPlotPost,stan_trace,
stan_dens,stan_plot rstan offers many plotting possibilities not available here, to use that func-
tionality one must simply call the relevant rstan plotting function. Use x$stanfit as the stan fit
object (where x is the name of your ctStanFit object). Because a ctStanFit object has many param-
eters, the additional argument pars=ctStanParnames(x,'pop_') is recommended. This denotes
population means, but see ctStanParnames for other options.

Value

Nothing. Generates plots.

Examples

plot(ctstantestfit,types=c('regression','kalman','priorcheck'), wait=FALSE)

plot.ctStanModel 73

plot.ctStanModel Prior plotting

Description

Plots priors for free model parameters in a ctStanModel.

Usage

S3 method for class 'ctStanModel'
plot(
x,
rows = "all",
wait = FALSE,
nsamples = 1e+06,
rawpopsd = "marginalise",
inddifdevs = c(-1, 1),
inddifsd = 0.1,
plot = TRUE,
...

)

Arguments

x ctStanModel object as generated by ctModel with type=’ct’ or ’dt’.

rows vector of integers denoting which rows of ctstanmodel$pars to plot priors for.
Character string ’all’ plots all rows with parameters to be estimated.

wait If true, user is prompted to continue before plotting next graph.

nsamples Numeric. Higher values increase fidelity (smoothness / accuracy) of density
plots, at cost of speed.

rawpopsd Either ’marginalise’ to sample from the specified (in the ctstanmodel) prior dis-
tribution for the raw population standard deviation, or a numeric value to use for
the raw population standard deviation for all subject level prior plots - the plots
in dotted blue or red.

inddifdevs numeric vector of length 2, setting the means for the individual differences dis-
tributions.

inddifsd numeric, setting the standard deviation of the population means used to generate
individual difference distributions.

plot If FALSE, ouputs list of GGplot objects that can be further modified.

... not used.

74 plotctACF

Details

Plotted in black is the prior for the population mean. In red and blue are the subject level priors
that result given that the population mean is estimated as 1 std deviation above the mean of the
prior, or 1 std deviation below. The distributions around these two points are then obtained by
marginalising over the prior for the raw population std deviation - so the red and blue distributions
do not represent any specific subject level prior, but rather characterise the general amount and
shape of possible subject level priors at the specific points of the population mean prior.

Examples

model <- ctModel(type='ct',
manifestNames='sunspots',
latentNames=c('ss_level', 'ss_velocity'),
LAMBDA=matrix(c(1, 'ma1'), nrow=1, ncol=2),
DRIFT=matrix(c(0, 1, 'a21', 'a22'), nrow=2, ncol=2, byrow=TRUE),
MANIFESTMEANS=matrix(c('m1'), nrow=1, ncol=1),
MANIFESTVAR=matrix(0, nrow=1, ncol=1),
CINT=matrix(c(0, 0), nrow=2, ncol=1),
DIFFUSION=matrix(c(

0, 0,
0, "diffusion"), ncol=2, nrow=2, byrow=TRUE))

plot(model,rows=8)

plotctACF Plot an approximate continuous-time ACF object from ctACF

Description

Plot an approximate continuous-time ACF object from ctACF

Usage

plotctACF(
ctacfobj,
df = "auto",
quantiles = c(0.025, 0.5, 0.975),
separateLearnRates = FALSE,
reducedXlim = 1,
estimateSpline = TRUE

)

Arguments

ctacfobj object

df df for the basis spline.

quantiles quantiles to plot.

sdpcor2cov 75

separateLearnRates

if TRUE, estimate the learning rate for the quantile splines for each combination
of variables. Slower but theoretically more accurate.

reducedXlim if non-zero, n timesteps are removed from the upper and lower end of the x range
where the spline estimates are less likely to be reasonable.

estimateSpline if TRUE, quantile spline regression is used, otherwise the samples are simply
plotted as lines and the other arguments here are not used.

Value

a ggplot object

Examples

data.table::setDTthreads(1) #ignore this line
Example usage:
head(ctstantestdat)
ac=ctACF(ctstantestdat,varnames=c('Y1'),idcol='id',timecol='time',timestep=.5,nboot=5,plot=FALSE)
plotctACF(ac, reducedXlim=0)

sdpcor2cov sdcor2cov

Description

Converts a lower triangular matrix with standard deviations on the diagonal and partial correlations
on lower triangle, to a covariance (or cholesky decomposed covariance)

Usage

sdpcor2cov(mat, coronly = FALSE, cholesky = FALSE)

Arguments

mat input square matrix with std dev on diagonal and lower tri of partial correlations.

coronly if TRUE, ignores everything except the lower triangle and outputs correlation.

cholesky Logical. To return the cholesky decomposition instead of full covariance, set to
TRUE.

Examples

testmat <- diag(exp(rnorm(5,-3,2)),5) #generate arbitrary std deviations
testmat[row(testmat) > col(testmat)] <- runif((5^2-5)/2, -1, 1)
print(testmat)
covmat <- sdpcor2cov(testmat) #convert to covariance
cov2cor(covmat) #convert covariance to correlation

76 stanoptimis

standatact_specificsubjects

Adjust standata from ctsem to only use specific subjects

Description

Adjust standata from ctsem to only use specific subjects

Usage

standatact_specificsubjects(standata, subjects, timestep = NA)

Arguments

standata standata

subjects vector of subjects

timestep ignored at present

Value

list of updated structure

Examples

d <- standatact_specificsubjects(ctstantestfit$standata, 1:2)

stanoptimis Optimize / importance sample a stan or ctStan model.

Description

Optimize / importance sample a stan or ctStan model.

Usage

stanoptimis(
standata,
sm,
init = "random",
initsd = 0.01,
estonly = FALSE,
tol = 1e-08,
stochastic = TRUE,
priors = TRUE,
carefulfit = TRUE,

stanoptimis 77

bootstrapUncertainty = FALSE,
subsamplesize = 1,
parsteps = c(),
parstepsAutoModel = FALSE,
groupFreeThreshold = 0.5,
plot = FALSE,
is = FALSE,
isitersize = 1000,
isESS = 100,
finishsamples = 1000,
lproughnesstarget = 0.2,
verbose = 0,
cores = 2,
matsetup = NA,
nsubsets = 10,
stochasticTolAdjust = 1000

)

Arguments

standata list object conforming to rstan data standards.

sm compiled stan model object.

init vector of unconstrained parameter values, or character string ’random’ to ini-
tialise with random values very close to zero.

initsd positive numeric specifying sd of normal distribution governing random sample
of init parameters, if init=’random’ .

estonly if TRUE,just return point estimates under $rawest subobject.

tol objective tolerance.

stochastic Logical. Use stochastic gradient descent as main optimizer. Always finishes
(double checks) with mize (bfgs) optimizer.

priors logical. If TRUE, a priors integer is set to 1 (TRUE) in the standata object –
only has an effect if the stan model uses this value.

carefulfit Logical. If TRUE, priors are always used for a rough first pass to obtain starting
values when priors=FALSE

bootstrapUncertainty

Logical. If TRUE, subject wise gradient contributions are resampled to estimate
the hessian, for computing standard errors or initializing importance sampling.

subsamplesize value between 0 and 1 representing proportion of subjects to include in first pass
fit.

parsteps ordered list of vectors of integers denoting which parameters should begin fixed
at zero, and freed sequentially (by list order). Useful for complex models, e.g.
keep all cross couplings fixed to zero as a first step, free them in second step.

parstepsAutoModel

if TRUE, determines model structure for the parameters specified in parsteps
automatically. If ’group’, determines this on a group level first and then a subject
level. Primarily for internal ctsem use, see ?ctFitAuto.

78 stanWplot

groupFreeThreshold

threshold for determining whether a parameter is free in a group level model. If
the proportion of subjects with a non-zero parameter is above this threshold, the
parameter is considered free. Only used with parstepsAutoModel = ’group’.

plot Logical. If TRUE, plot iteration details. Probably slower.
is Logical. Use mixture importance sampling, or just return map estimates?
isitersize Number of samples of approximating distribution per iteration of importance

sampling.
isESS target effective sample size for importance sampling. If is=TRUE, this is used to

determine the number of samples to draw from the approximating distribution.
finishsamples Number of samples to draw (either from hessian based covariance or posterior

distribution) for final results computation.
lproughnesstarget

target log posterior roughness for stochastic optimizer (suggest between .05 and
.4).

verbose Integer from 0 to 2. Higher values print more information during model fit – for
debugging.

cores Number of cpu cores to use, should be at least 2.
matsetup subobject of ctStanFit output. If provided, parameter names instead of numbers

are output for any problem indications.
nsubsets number of subsets for stochastic optimizer. Subsets are further split across cores,

but each subjects data remains whole – processed by one core in one subset.
stochasticTolAdjust

Multiplier for stochastic optimizer tolerance.

Value

list containing fit elements

stanWplot Runs stan, and plots sampling information while sampling.

Description

Runs stan, and plots sampling information while sampling.

Usage

stanWplot(object, iter = 2000, chains = 4, ...)

Arguments

object stan model object
iter Number of iterations
chains Number of chains
... All the other regular arguments to stan()

stan_checkdivergences 79

Details

On windows, requires Rtools installed and able to be found by pkgbuild::rtools_path()

Examples

library(rstan)
example 1
scode <- "
parameters {

real y[2];
}
model {

y[1] ~ normal(0, .5);
y[2] ~ double_exponential(0, 2);

}
"
#Uncomment the following lines -- launches rscript not compatible with cran check.
#sm <- stan_model(model_code = scode)
#fit1 <- stanWplot(object = sm,iter = 100000,chains=2,cores=1)

stan_checkdivergences Analyse divergences in a stanfit object

Description

Analyse divergences in a stanfit object

Usage

stan_checkdivergences(sf, nupars = "all")

Arguments

sf stanfit object.

nupars either the string ’all’, or an integer reflecting how many pars (from first to nu-
pars) to use.

Value

A list of four matrices. $locationsort and $sdsort contian the bivariate interactions of unconstrained
parameters, sorted by either the relative location of any divergences, or the relative standard devi-
ation. $locationmeans and $sdmeans collapse across the bivariate interactions to return the means
for each parameter.

80 stan_reinitsf

Examples

sunspots<-sunspot.year
sunspots<-sunspots[50: (length(sunspots) - (1988-1924))]
id <- 1
time <- 1749:1924
datalong <- cbind(id, time, sunspots)

#setup model
ssmodel <- ctModel(type='ct', n.latent=2, n.manifest=1,
manifestNames='sunspots',
latentNames=c('ss_level', 'ss_velocity'),
LAMBDA=matrix(c(1, 'ma1| log(1+(exp(param)))'), nrow=1, ncol=2),
DRIFT=matrix(c(0, 'a21 | -log(1+exp(param))', 1, 'a22'), nrow=2, ncol=2),
MANIFESTMEANS=matrix(c('m1|param * 10 + 44'), nrow=1, ncol=1),
MANIFESTVAR=diag(0,1), #As per original spec
CINT=matrix(c(0, 0), nrow=2, ncol=1),
DIFFUSION=matrix(c(0, 0, 0, "diffusion"), ncol=2, nrow=2))

#fit
ssfit <- ctStanFit(datalong, ssmodel, iter=2,

optimize=FALSE, chains=1)

stan_checkdivergences(ssfit$stanfit$stanfit) #stan object

stan_reinitsf Quickly initialise stanfit object from model and data

Description

Quickly initialise stanfit object from model and data

Usage

stan_reinitsf(model, data, fast = FALSE)

Arguments

model stanmodel
data standata
fast Use cut down form for speed

Value

stanfit object

Examples

sf <- stan_reinitsf(ctstantestfit$stanmodel,ctstantestfit$standata)

stan_unconstrainsamples 81

stan_unconstrainsamples

Convert samples from a stanfit object to the unconstrained scale

Description

Convert samples from a stanfit object to the unconstrained scale

Usage

stan_unconstrainsamples(fit, standata = NA)

Arguments

fit stanfit object.

standata only necessary if R session has been restarted since fitting model – used to reini-
tialize stanfit object.

Value

Matrix containing columns of unconstrained parameters for each post-warmup iteration.

Examples

#get data
sunspots<-sunspot.year
sunspots<-sunspots[50: (length(sunspots) - (1988-1924))]
id <- 1
time <- 1749:1924
datalong <- cbind(id, time, sunspots)

#setup model
ssmodel <- ctModel(type='ct', n.latent=2, n.manifest=1,

manifestNames='sunspots',
latentNames=c('ss_level', 'ss_velocity'),
LAMBDA=matrix(c(1, 'ma1| log(1+(exp(param)))'), nrow=1, ncol=2),
DRIFT=matrix(c(0, 'a21 | -log(1+exp(param))', 1, 'a22'), nrow=2, ncol=2),
MANIFESTMEANS=matrix(c('m1|param * 10 + 44'), nrow=1, ncol=1),
MANIFESTVAR=diag(0,1), #As per original spec
CINT=matrix(c(0, 0), nrow=2, ncol=1),
DIFFUSION=matrix(c(0, 0, 0, "diffusion"), ncol=2, nrow=2))

#fit
ssfit <- ctStanFit(datalong, ssmodel,

iter=200, chains=2,optimize=FALSE, priors=TRUE,control=list(max_treedepth=4))
umat <- stan_unconstrainsamples(ssfit$stanfit$stanfit)

82 summary.ctStanFit

summary.ctStanFit summary.ctStanFit

Description

Summarise a ctStanFit object that was fit using ctStanFit.

Usage

S3 method for class 'ctStanFit'
summary(
object,
timeinterval = 1,
digits = 4,
parmatrices = TRUE,
priorcheck = TRUE,
residualcov = TRUE,
...

)

Arguments

object fit object from ctStanFit, of class ctStanFit.

timeinterval positive numeric indicating time interval to use for discrete time parameter cal-
culations reported in summary.

digits integer denoting number of digits to report.

parmatrices if TRUE, also return additional parameter matrices – can be slow to compute for
large models with many samples.

priorcheck Whether or not to use ctsem:::priorchecking to compare posterior mean and
sd to prior mean and sd.

residualcov Whether or not to show standardised residual covariance. Takes a little longer
to compute.

... Additional arguments to pass to ctsem:::priorcheckreport, such as meanlim,
or sdlim.

Value

List containing summary items.

Examples

summary(ctstantestfit)

test_isclose 83

test_isclose Tests if 2 values are close to each other

Description

Tests if 2 values are close to each other

Usage

test_isclose(..., tol = 1e-08)

Arguments

... values to compare

tol tolerance

Value

Logical or testthat output.

Examples

test_isclose(1,1.0000001, tol=1e-4)

Index

AnomAuth, 5

ctACF, 5, 7
ctACFresiduals, 7
ctAddSamples, 8
ctCheckFit, 8
ctChisqTest, 11
ctCollapse, 11
ctDeintervalise, 12
ctDensity, 12
ctDiscretiseData, 6, 13
ctDocs, 14
ctExample1, 14
ctExample1TIpred, 15
ctExample2, 15
ctExample2level, 15
ctExample3, 16
ctExample4, 16
ctExtract, 16
ctFit, 17
ctFitAuto, 18
ctFitAutoGroupModel, 19
ctFitCovCheck, 20
ctFitCovCheckPlot, 21
ctFitMultiModel, 22
ctGenerate, 23
ctIntervalise, 24, 29, 31
ctKalman, 26, 71, 72
ctLongToWide, 25, 28
ctLOO, 29
ctModel, 4, 24, 30, 47, 48, 61, 73
ctModelCoverage_check, 34
ctModelHigherOrder, 35
ctModelLatex, 36
ctPlotArray, 38, 65
ctPoly, 39, 39
ctPostPredData, 40
ctPostPredPlots, 40
ctPredictTIP, 41
ctResiduals, 42

ctsem (ctsem-package), 4
ctsem-package, 4
ctStanContinuousPars, 43
ctStanDiscretePars, 44, 45, 46, 72
ctStanDiscreteParsPlot, 45, 45
ctStanFit, 4, 26, 27, 30, 31, 44, 47, 56, 57,

61, 63, 64, 66, 72, 82
ctStanFitUpdate, 54
ctStanGenerate, 55
ctStanGenerateFromFit, 50, 56
ctStanKalman, 7, 43, 57
ctStanModel, 56, 58, 61
ctStanParnames, 59, 72
ctStanPlot (plot.ctStanFit), 72
ctStanPlotPost, 60, 72
ctStanPostPredict, 61
ctStanSubjectPars, 62
ctstantestdat, 63
ctstantestfit, 63
ctStanTIpredeffects, 64
ctStanUpdModel, 65
ctWideNames, 66
ctWideToLong, 67

datastructure, 68

extract (ctExtract), 16

inv_logit, 68

legend, 38
log1p_exp, 69
longexample, 69

mean, 44

Oscillating, 70

plot.ctKalmanDF, 27, 70
plot.ctStanFit, 72
plot.ctStanModel, 73

84

INDEX 85

plotctACF, 74

quantile, 44

sd, 44
sdpcor2cov, 75
stan, 50
stan_checkdivergences, 79
stan_model, 49
stan_reinitsf, 80
stan_unconstrainsamples, 81
standatact_specificsubjects, 76
stanoptimis, 49, 76
stanWplot, 78
summary.ctStanFit, 82

test_isclose, 83

	ctsem-package
	AnomAuth
	ctACF
	ctACFresiduals
	ctAddSamples
	ctCheckFit
	ctChisqTest
	ctCollapse
	ctDeintervalise
	ctDensity
	ctDiscretiseData
	ctDocs
	ctExample1
	ctExample1TIpred
	ctExample2
	ctExample2level
	ctExample3
	ctExample4
	ctExtract
	ctFit
	ctFitAuto
	ctFitAutoGroupModel
	ctFitCovCheck
	ctFitCovCheckPlot
	ctFitMultiModel
	ctGenerate
	ctIntervalise
	ctKalman
	ctLongToWide
	ctLOO
	ctModel
	ctModelCoverage_check
	ctModelHigherOrder
	ctModelLatex
	ctPlotArray
	ctPoly
	ctPostPredData
	ctPostPredPlots
	ctPredictTIP
	ctResiduals
	ctStanContinuousPars
	ctStanDiscretePars
	ctStanDiscreteParsPlot
	ctStanFit
	ctStanFitUpdate
	ctStanGenerate
	ctStanGenerateFromFit
	ctStanKalman
	ctStanModel
	ctStanParnames
	ctStanPlotPost
	ctStanPostPredict
	ctStanSubjectPars
	ctstantestdat
	ctstantestfit
	ctStanTIpredeffects
	ctStanUpdModel
	ctWideNames
	ctWideToLong
	datastructure
	inv_logit
	log1p_exp
	longexample
	Oscillating
	plot.ctKalmanDF
	plot.ctStanFit
	plot.ctStanModel
	plotctACF
	sdpcor2cov
	standatact_specificsubjects
	stanoptimis
	stanWplot
	stan_checkdivergences
	stan_reinitsf
	stan_unconstrainsamples
	summary.ctStanFit
	test_isclose
	Index

