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Bernoulli Bernoulli distribution
Description

Probability mass function, distribution function, quantile function and random generation for the
Bernoulli distribution.

Usage

dbern(x, prob = 0.5, log = FALSE)

pbern(q, prob = 0.5, lower.tail = TRUE, log.p = FALSE)

gbern(p, prob = 0.5, lower.tail = TRUE, log.p = FALSE)
rbern(n, prob = 0.5)
Arguments
X, q vector of quantiles.
prob probability of success; (@ < prob < 1).
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
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See Also

Binomial

Examples

prop.table(table(rbern(1e5, 0.5)))

BetaBinom Beta-binomial distribution

Description

Probability mass function and random generation for the beta-binomial distribution.

Usage
1, log = FALSE)

dbbinom(x, size, alpha = 1, beta

1, lower.tail = TRUE, log.p = FALSE)

pbbinom(q, size, alpha = 1, beta

rbbinom(n, size, alpha = 1, beta = 1)
Arguments
X, q vector of quantiles.
size number of trials (zero or more).
alpha, beta non-negative parameters of the beta distribution.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

If p ~ Beta(a, 8) and X ~ Binomial(n,p), then X ~ BetaBinomial(n, «, 3).

Probability mass function

fz) =

n\ Bz + a,n —x+ )
x B(a, B)
Cumulative distribution function is calculated using recursive algorithm that employs the fact that

I'(z) = (z — 1), and B(z,y) = Flffzigl%), and that (7) = []\_, ®*1=%. This enables re-writing
probability mass function as

z nal—i (a—i—w(—l)! ([i’-i—n—)a;—l)!
_ - a+B+n—1)!
f) = (13 i ) B(a, )
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what makes recursive updating from x to = + 1 easy using the properties of factorials

z . atz—1)! (atz) (B4n—z—1)! (B+n—z)"*
fet1) = Hn+1—z ntl-z41? )(Lwl;_l)!(awlgl) )
=1 U z+ 1 B(aa/@)

and let’s us efficiently calculate cumulative distribution function as a sum of probability mass func-
tions

See Also

Beta, Binomial

Examples

X <- rbbinom(1e5, 1000, 5, 13)

XX <- 0:1000

hist(x, 100, freq = FALSE)

lines(xx-0.5, dbbinom(xx, 1000, 5, 13), col = "red")
hist(pbbinom(x, 1000, 5, 13))

xx <- seq(@, 1000, by = 0.1)

plot(ecdf(x))

lines(xx, pbbinom(xx, 1000, 5, 13), col = "red”, lwd = 2)

BetaNegBinom Beta-negative binomial distribution

Description

Probability mass function and random generation for the beta-negative binomial distribution.

Usage

dbnbinom(x, size, alpha = 1, beta 1, log = FALSE)

pbnbinom(q, size, alpha 1, beta 1, lower.tail = TRUE, log.p = FALSE)

rbnbinom(n, size, alpha = 1, beta

D)
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Arguments
X, q vector of quantiles.
size number of trials (zero or more). Must be strictly positive, need not be integer.
alpha, beta non-negative parameters of the beta distribution.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

If p ~ Beta(a, 8) and X ~ NegBinomial(r, p), then X ~ BetaNegBinomial(r, a, 3).
Probability mass function
I(r+z)Bla+r 5+ 2)
! T'(r) B(q, 8)
Cumulative distribution function is calculated using recursive algorithm that employs the fact that

I'(z) = (x — 1) and B(z,y) = Flf(””gﬁ)igij)) This enables re-writing probability mass function as

fz) =

(a+r—1)! (B+z—1)!

2! T(r) B(a, f)

what makes recursive updating from x to = + 1 easy using the properties of factorials

(atr—1)! (B+z—1)! (B+x)
f(l‘ + 1) _ (7" +x— 1)' (T + -T) (a+B+r+z—1)! (a+B+r+zx)

(@ + 1)I(r) B(a, 5)
and let’s us efficiently calculate cumulative distribution function as a sum of probability mass func-
tions
Fz) =) [f(k)
k=0
See Also

Beta, NegBinomial

Examples

X <- rbnbinom(1e5, 1000, 5, 13)

XX <- 0:1eb5

hist(x, 100, freq = FALSE)

lines(xx-0.5, dbnbinom(xx, 1000, 5, 13), col = "red")
hist(pbnbinom(x, 1000, 5, 13))

xx <- seq(@, 1e5, by = 0.1)

plot(ecdf(x))

lines(xx, pbnbinom(xx, 1000, 5, 13), col = "red”, 1lwd = 2)
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BetaPrime Beta prime distribution

Description
Density, distribution function, quantile function and random generation for the beta prime distribu-
tion.

Usage
dbetapr(x, shapel, shape2, scale = 1, log = FALSE)

pbetapr(q, shapel, shape2, scale = 1, lower.tail = TRUE, log.p = FALSE)
gbetapr(p, shapel, shape2, scale = 1, lower.tail = TRUE, log.p = FALSE)
rbetapr(n, shapel, shape2, scale = 1)
Arguments
X, q vector of quantiles.
shapel, shape2 non-negative parameters.
scale positive valued scale parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

If X ~ Beta(a, ), then ;25 ~ BetaPrime(q, 3).

Probability density function

(z/o)* ' A +ajo)~*F

f(l‘) = B(Q,B)U

Cumulative distribution function

F(2) =T css (0, )

T+a/o

See Also

Beta
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Examples

x <- rbetapr(le5, 5, 3, 2)
hist(x, 350, freq = FALSE, xlim = c(@, 100))

curve(dbetapr(x, 5, 3, 2), 0, 100, col = "red”, add = TRUE, n = 500)
hist(pbetapr(x, 5, 3, 2))

plot(ecdf(x), xlim = c(@, 100))

curve(pbetapr(x, 5, 3, 2), 0, 100, col = "red”, add = TRUE, n = 500)

Bhattacharjee Bhattacharjee distribution

Description

Density, distribution function, and random generation for the Bhattacharjee distribution.

Usage
dbhatt(x, mu = @, sigma = 1, a = sigma, log = FALSE)
pbhatt(q, mu = @, sigma = 1, a = sigma, lower.tail = TRUE, log.p = FALSE)
rbhatt(n, mu = @, sigma = 1, a = sigma)
Arguments
X, q vector of quantiles.
mu, sigma, a location, scale and shape parameters. Scale and shape must be positive.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

If Z ~ Normal(0, 1) and U ~ Uniform(0, 1), then Z + U follows Bhattacharjee distribution.
Probability density function

=g () o ()

Cumulative distribution function

P = £ [l 0 () g () g (£ ()]



BirnbaumSaunders

References

Bhattacharjee, G.P., Pandit, S.N.N., and Mohan, R. (1963). Dimensional chains involving rectan-
gular and normal error-distributions. Technometrics, 5, 404-406.

Examples

x <- rbhatt(le5, 5, 3, 5)

hist(x, 100, freq = FALSE)
curve(dbhatt(x, 5, 3, 5), -20, 20, col

hist(pbhatt(x, 5, 3, 5))

plot(ecdf(x))

curve(pbhatt(x, 5, 3, 5), -20, 20, col

"red”, add

"red”, lwd

TRUE)

2, add = TRUE)

BirnbaumSaunders

Birnbaum-Saunders (fatigue life) distribution

Description

Density, distribution function, quantile function and random generation for the Birnbaum-Saunders
(fatigue life) distribution.

Usage

dfatigue(x, alpha, beta

pfatigue(q, alpha, beta

gfatigue(p, alpha, beta

rfatigue(n, alpha, beta

Arguments

X, q

alpha, beta, mu
log, log.p
lower.tail

p

n

mu

mu

mu

mu

vector of quantiles.

o,
0,

)

log = FALSE)

lower.tail

lower.tail

TRUE, log.p

TRUE, log.p

FALSE)

FALSE)

shape, scale and location parameters. Scale and shape must be positive.

logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the number

required.
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Details

Probability density function

RV o
) = M ¢<1<\/ B’“‘—\/fu))

Cumulative distribution function

Q

oo ()
Quantile function
2
F~'(p) = lg‘ﬁl(p) + \/(Z@‘l(p))2 +1| B+u

References

Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions. Journal of Applied
Probability, 6(2), 637-652.

Desmond, A. (1985) Stochastic models of failure in random environments. Canadian Journal of
Statistics, 13, 171-183.

Vilca-Labra, F., and Leiva-Sanchez, V. (2006). A new fatigue life model based on the family of
skew-elliptical distributions. Communications in Statistics-Theory and Methods, 35(2), 229-244.

Leiva, V., Sanhueza, A., Sen, P. K., and Paula, G. A. (2008). Random number generators for the
generalized Birnbaum-Saunders distribution. Journal of Statistical Computation and Simulation,
78(11), 1105-1118.

Examples

x <- rfatigue(le5, .5, 2, 5)

hist(x, 100, freq = FALSE)

curve(dfatigue(x, .5, 2, 5), 2, 20, col = "red”, add = TRUE)
hist(pfatigue(x, .5, 2, 5))

plot(ecdf(x))

curve(pfatigue(x, .5, 2, 5), 2, 20, col = "red”, lwd = 2, add = TRUE)

BivNormal Bivariate normal distribution

Description

Density, distribution function and random generation for the bivariate normal distribution.
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Usage

dbvnorm(
X,
y = NULL,
meanl = 0,
mean2 = meanl,
sdl =1,
sd2 = sdi,
cor =0,
log = FALSE

)

rbvnorm(n, meanl = @, mean2 = meanl, sdl = 1, sd2 = sd1, cor = Q)

Arguments
X,y vectors of quantiles; alternatively X may be a two-column matrix (or data.frame)
and y may be omitted.
mean1, mean2 vectors of means.
sd1, sd2 vectors of standard deviations.
cor vector of correlations (-1 < cor < 1).
log logical; if TRUE, probabilities p are given as log(p).
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

Probability density function

References

Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. Chapman &
Hall/CRC

Mukhopadhyay, N. (2000). Probability and statistical inference. Chapman & Hall/CRC

See Also

Normal

Examples

y <- x <- seq(-4, 4, by = 0.25)
z <- outer(x, y, function(x, y) dbvnorm(x, y, cor = -0.75))
persp(x, y, z)

1 1 $1M1>2 (mm) (582#2) <$2M2
r)= ——exp< — -2 + ==
/(@) 27\/1 — p20,09 p{ 2(1 - p?) [( o1 p o1 op) o



12 BivPoiss

y <- x <- seq(-4, 4, by = 0.25)
z <- outer(x, y, function(x, y) dbvnorm(x, y, cor = -0.25))
persp(x, y, z)

BivPoiss Bivariate Poisson distribution

Description

Probability mass function and random generation for the bivariate Poisson distribution.

Usage
dbvpois(x, y = NULL, a, b, c, log = FALSE)

rbvpois(n, a, b, c)

Arguments
X,y vectors of quantiles; alternatively x may be a two-column matrix (or data.frame)
and y may be omitted.
a, b, c positive valued parameters.
log logical; if TRUE, probabilities p are given as log(p).
n number of observations. If 1length(n) > 1, the length is taken to be the number
required.
Details

Probability mass function

e =ent-ere 55 S () (0 )

k=0

References

Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate Poisson models.
Journal of the Royal Statistical Society: Series D (The Statistician), 52(3), 381-393.

Kocherlakota, S. and Kocherlakota, K. (1992) Bivariate Discrete Distributions. New York: Dekker.

Johnson, N., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions. New York:
Wiley.
Holgate, P. (1964). Estimation for the bivariate Poisson distribution. Biometrika, 51(1-2), 241-287.

Kawamura, K. (1984). Direct calculation of maximum likelihood estimator for the bivariate Poisson
distribution. Kodai mathematical journal, 7(2), 211-221.
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See Also

Poisson

Examples

x <- rbvpois(5000, 7, 8, 5)
image (prop.table(table(x[,1]1, x[,21)))
colMeans(x)

Categorical Categorical distribution

Description
Probability mass function, distribution function, quantile function and random generation for the
categorical distribution.

Usage

dcat(x, prob, log = FALSE)

pcat(q, prob, lower.tail = TRUE, log.p = FALSE)

gcat(p, prob, lower.tail = TRUE, log.p = FALSE, labels)

rcat(n, prob, labels)

rcatlp(n, log_prob, labels)

Arguments

X, q vector of quantiles.

prob, log_prob  vector of length m, or m-column matrix of non-negative weights (or their loga-
rithms in log_prob).

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

p vector of probabilities.

labels if provided, labeled factor vector is returned. Number of labels needs to be the

same as number of categories (number of columns in prob).

n number of observations. If 1ength(n) > 1, the length is taken to be the number
required.
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Details

Probability mass function

Cumulative distribution function

It is possible to sample from categorical distribution parametrized by vector of unnormalized log-
probabilities o, . . ., o, without leaving the log space by employing the Gumbel-max trick (Mad-
dison, Tarlow and Minka, 2014). If ¢1,..., g, are samples from Gumbel distribution with cu-
mulative distribution function F'(g) = exp(—exp(—g)), then k = argmax;{g; + «;} is a draw
from categorical distribution parametrized by vector of probabilities p1, ..., P, such that p; =
exp(a;)/ [ZT:l exp(a;)]. This is implemented in rcatlp function parametrized by vector of log-
probabilities log_prob.

References

Maddison, C. J., Tarlow, D., & Minka, T. (2014). A* sampling. [In:] Advances in Neural Informa-
tion Processing Systems (pp. 3086-3094). https://arxiv.org/abs/1411.0030

Examples

# Generating 10 random draws from categorical distribution
# with k=3 categories occuring with equal probabilities
# parametrized using a vector

rcat(10, c(1/3, 1/3, 1/3))

# or with k=5 categories parametrized using a matrix of probabilities
# (generated from Dirichlet distribution)

p <- rdirichlet(10, c(1, 1, 1, 1, 1))
rcat(10, p)

x <- rcat(le5, c(0.2, 0.4, 0.3, 0.1))
plot(prop.table(table(x)), type = "h")
lines(@:5, dcat(@:5, c(0.2, 0.4, 0.3, 0.1)), col

"red")

p <- rdirichlet(1, rep(1, 20))
x <- rcat(1e5, matrix(rep(p, 2), nrow = 2, byrow = TRUE))

XX <= 0:21
plot(prop.table(table(x)))
lines(xx, dcat(xx, p), col = "red")

xx <- seq(@, 21, by = 0.01)
plot(ecdf(x))
lines(xx, pcat(xx, p), col = "red”, lwd = 2)


https://arxiv.org/abs/1411.0030
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pp <- seq(@, 1, by = 0.001)
plot(ecdf(x))
lines(qcat(pp, p), pp, col = "red”, lwd = 2)

Dirichlet Dirichlet distribution

Description

Density function, cumulative distribution function and random generation for the Dirichlet distri-
bution.

Usage
ddirichlet(x, alpha, log = FALSE)

rdirichlet(n, alpha)

Arguments
X k-column matrix of quantiles.
alpha k-values vector or k-column matrix; concentration parameter. Must be positive.
log logical; if TRUE, probabilities p are given as log(p).
n number of observations. If 1length(n) > 1, the length is taken to be the number
required.
Details

Probability density function
L g o) k—1
fla) = =75 x
T, o L1
References

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag.

Examples

# Generating 10 random draws from Dirichlet distribution
# parametrized using a vector

rdirichlet(10, c(1, 1, 1, 1))

# or parametrized using a matrix where each row
# is a vector of parameters
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alpha <- matrix(c(1, 1, 1, 1:3, 7:9), ncol = 3, byrow = TRUE)
rdirichlet(10, alpha)

DirMnom Dirichlet-multinomial (multivariate Polya) distribution

Description

Density function, cumulative distribution function and random generation for the Dirichlet-multinomial
(multivariate Polya) distribution.

Usage
ddirmnom(x, size, alpha, log = FALSE)

rdirmnom(n, size, alpha)

Arguments
X k-column matrix of quantiles.
size numeric vector; number of trials (zero or more).
alpha k-values vector or k-column matrix; concentration parameter. Must be positive.
log logical; if TRUE, probabilities p are given as log(p).
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

If (p1,...,px) ~ Dirichlet(a,...,a) and (z1,...,zr) ~ Multinomial(n, p1,...,px), then
(z1,...,2k) ~ DirichletMultinomial(n, aq, . . . , a).

Probability density function

References

Gentle, J.E. (2006). Random number generation and Monte Carlo methods. Springer.

Kvam, P. and Day, D. (2001) The multivariate Polya distribution in combat modeling. Naval Re-
search Logistics, 48, 1-17.

See Also

Dirichlet, Multinomial
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DiscreteGamma Discrete gamma distribution

Description

Probability mass function, distribution function and random generation for discrete gamma distri-
bution.

Usage

ddgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)

pdgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)

rdgamma(n, shape, rate = 1, scale = 1/rate)

Arguments
X, q vector of quantiles.
shape, scale shape and scale parameters. Must be positive, scale strictly.
rate an alternative way to specify the scale.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

Probability mass function of discrete gamma distribution fy (y) is defined by discretization of con-
tinuous gamma distribution fy(y) = Sx(y) — Sx(y + 1) where Sx is a survival function of
continuous gamma distribution.

References

Chakraborty, S. and Chakravarty, D. (2012). Discrete Gamma distributions: Properties and param-
eter estimations. Communications in Statistics-Theory and Methods, 41(18), 3301-3324.

See Also

GammaDist, DiscreteNormal
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Examples

X <- rdgamma(le5, 9, 1)

xx <- 0:50

plot(prop.table(table(x)))

lines(xx, ddgamma(xx, 9, 1), col = "red")
hist(pdgamma(x, 9, 1))

plot(ecdf(x))

xx <- seq(@, 50, 0.1)
lines(xx, pdgamma(xx, 9, 1), col = "red”, 1lwd = 2, type = "s")

DiscretelLaplace Discrete Laplace distribution

Description

Probability mass, distribution function and random generation for the discrete Laplace distribution
parametrized by location and scale.

Usage
ddlaplace(x, location, scale, log = FALSE)

pdlaplace(q, location, scale, lower.tail = TRUE, log.p = FALSE)

rdlaplace(n, location, scale)

Arguments
X, q vector of quantiles.
location location parameter.
scale scale parameter; @ < scale < 1.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower. tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

If U ~ Geometric(l — p) and V' ~ Geometric(l — p), then U — V' ~ DiscreteLaplace(p),
where geometric distribution is related to discrete Laplace distribution in similar way as exponential
distribution is related to Laplace distribution.

Probability mass function

L JAP
T)=——
f(z) e
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Cumulative distribution function

References

19

Inusah, S., & Kozubowski, T.J. (2006). A discrete analogue of the Laplace distribution. Journal of

statistical planning and inference, 136(3), 1090-1102.

Kotz, S., Kozubowski, T., & Podgorski, K. (2012). The Laplace distribution and generalizations: a
revisit with applications to communications, economics, engineering, and finance. Springer Science

& Business Media.

Examples

p <- 0.45

x <- rdlaplace(le5, @, p)
xx <- seq(-200, 200, by = 1)
plot(prop.table(table(x)))

lines(xx, ddlaplace(xx, @, p), col = "red")
hist(pdlaplace(x, 0, p))

plot(ecdf(x))

lines(xx, pdlaplace(xx, @, p), col = "red", type =

nsn)

DiscreteNormal Discrete normal distribution

Description

Probability mass function, distribution function and random generation for discrete normal distri-

bution.
Usage
ddnorm(x, mean = @, sd = 1, log = FALSE)
pdnorm(q, mean = @, sd = 1, lower.tail = TRUE,
rdnorm(n, mean = @, sd = 1)
Arguments
X, q vector of quantiles.
mean vector of means.
sd vector of standard deviations.

log.p = FALSE)
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log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
n number of observations. If 1ength(n) > 1, the length is taken to be the number
required.
Details

Probability mass function

fo-a() o (:52)

Cumulative distribution function

References
Roy, D. (2003). The discrete normal distribution. Communications in Statistics-Theory and Meth-
ods, 32, 1871-1883.

See Also

Normal

Examples

X <= rdnorm(1e5, 0, 3)

xx <- -15:15

plot(prop.table(table(x)))

lines(xx, ddnorm(xx, @, 3), col = "red")
hist(pdnorm(x, @, 3))

plot(ecdf(x))

xx <- seq(-15, 15, 0.1)
lines(xx, pdnorm(xx, @, 3), col = "red”, lwd = 2, type = "s")

DiscreteUniform Discrete uniform distribution

Description

Probability mass function, distribution function, quantile function and random generation for the
discrete uniform distribution.
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Usage

ddunif(x, min,
pdunif(q, min,
qdunif(p, min,

rdunif(n, min,

Arguments

X, q

min, max
log, log.p
lower.tail

p

n

Details

21

max, log = FALSE)

max, lower.tail = TRUE, log.p = FALSE)

max, lower.tail = TRUE, log.p = FALSE)

max)

vector of quantiles.

lower and upper limits of the distribution. Must be finite.

logical; if TRUE, probabilities p are given as log(p).

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the number
required.

If min == max, then discrete uniform distribution is a degenerate distribution.

Examples

x <= rdunif(1e5,
xx <= -1:11

1, 10)

plot(prop.table(table(x)), type = "h")
lines(xx, ddunif(xx, 1, 10), col = "red")
hist(pdunif(x, 1, 10))

xx <- seq(-1, 11,

plot(ecdf(x))

by = 0.01)

lines(xx, pdunif(xx, 1, 10), col = "red")

DiscreteWeibull

Discrete Weibull distribution (type I)

Description

Density, distribution function, quantile function and random generation for the discrete Weibull
(type I) distribution.
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Usage

ddweibull(x, shapel, shape2, log = FALSE)

pdweibull(q, shapel, shape2, lower.tail = TRUE, log.p

FALSE)

qdweibull(p, shapel, shape2, lower.tail = TRUE, log.p

FALSE)
rdweibull(n, shapel, shape2)

Arguments

X, q vector of quantiles.

shapel, shape2 parameters (named q, /3). Values of shape2 need to be positive and @ < shape1

<1.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

Details

Probability mass function
J(@) = ¢ =g’

Cumulative distribution function
F(x) -1— q(a:+1)6

() -

Quantile function

F~(p)

References

Nakagawa, T. and Osaki, S. (1975). The Discrete Weibull Distribution. IEEE Transactions on
Reliability, R-24, 300-301.

Kulasekera, K.B. (1994). Approximate MLE’s of the parameters of a discrete Weibull distribution
with type I censored data. Microelectronics Reliability, 34(7), 1185-1188.

Khan, M.A., Khalique, A. and Abouammoh, A.M. (1989). On estimating parameters in a discrete
Weibull distribution. IEEE Transactions on Reliability, 38(3), 348-350.

See Also

Weibull
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Examples

X <- rdweibull(1e5, 0.32, 1)

xx <- seq(-2, 100, by = 1)
plot(prop.table(table(x)), type = "h")
lines(xx, ddweibull(xx, .32, 1), col = "red")

# Notice: distribution of F(X) is far from uniform:
hist(pdweibull(x, .32, 1), 50)

plot(ecdf(x))
lines(xx, pdweibull(xx, .32, 1), col = "red”, 1lwd = 2, type = "s")

Frechet Frechet distribution

Description

Density, distribution function, quantile function and random generation for the Frechet distribution.

Usage

dfrechet(x, lambda = 1, mu = @, sigma = 1, log = FALSE)

pfrechet(q, lambda = 1, mu = @, sigma = 1, lower.tail = TRUE, log.p = FALSE)

gfrechet(p, lambda = 1, mu = @, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rfrechet(n, lambda = 1, mu = @, sigma = 1)

Arguments

X, q vector of quantiles.

lambda, sigma, mu
shape, scale, and location parameters. Scale and shape must be positive.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number

required.
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Details

Probability density function

fo) = 2 (m;u>uexp <_ (l;u)x>

Cumulative distribution function

Quantile function

References

Bury, K. (1999). Statistical Distributions in Engineering. Cambridge University Press.

Examples

x <- rfrechet(1e5, 5, 2, 1.5)

xx <- seq(@, 1000, by = 0.1)

hist(x, 200, freq = FALSE)

lines(xx, dfrechet(xx, 5, 2, 1.5), col = "red")
hist(pfrechet(x, 5, 2, 1.5))

plot(ecdf(x))

lines(xx, pfrechet(xx, 5, 2, 1.5), col = "red”, lwd = 2)

GammaPoiss Gamma-Poisson distribution

Description

Probability mass function and random generation for the gamma-Poisson distribution.

Usage

dgpois(x, shape, rate, scale = 1/rate, log = FALSE)

pgpois(q, shape, rate, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)

rgpois(n, shape, rate, scale = 1/rate)
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Arguments
X, q vector of quantiles.
shape, scale shape and scale parameters. Must be positive, scale strictly.
rate an alternative way to specify the scale.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
n number of observations. If 1length(n) > 1, the length is taken to be the number
required.
Details

Gamma-Poisson distribution arises as a continuous mixture of Poisson distributions, where the
mixing distribution of the Poisson rate A is a gamma distribution. When X ~ Poisson()) and
A ~ Gamma(c, 8), then X ~ GammaPoisson(a, ).

Probability mass function

IN'a+x I5) “ 8 \“
= Sire (rv5) (- 153)
2!D(a) \1+8 1+ 8
Cumulative distribution function is calculated using recursive algorithm that employs the fact that
I'(x) = (x — 1)!. This enables re-writing probability mass function as

_(a+z-—1) B\ B\

1@ = = (1+5> (1_1+ﬂ)
what makes recursive updating from x to « + 1 easy using the properties of factorials
_(etz—Dliat+a) (B \"( B B \"
O SNy (1+B> (1+B) (1_1+ﬂ>

and let’s us efficiently calculate cumulative distribution function as a sum of probability mass func-
tions

See Also

Gamma, Poisson

Examples

x <- rgpois(le5, 7, 0.002)

xx <- seq(@, 12000, by = 1)

hist(x, 100, freq = FALSE)

lines(xx, dgpois(xx, 7, 0.002), col = "red")
hist(pgpois(x, 7, 0.002))
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xx <- seq(@, 12000, by = 0.1)
plot(ecdf(x))
lines(xx, pgpois(xx, 7, 0.002), col = "red”, lwd = 2)

GEV Generalized extreme value distribution

Description

Density, distribution function, quantile function and random generation for the generalized extreme
value distribution.

Usage
dgev(x, mu = @, sigma = 1, xi = 0@, log = FALSE)

pgev(q, mu = @, sigma = 1, xi = @, lower.tail = TRUE, log.p = FALSE)

ggev(p, mu = @, sigma = 1, xi = @, lower.tail = TRUE, log.p = FALSE)
rgev(n, mu = @, sigma = 1, xi = Q)
Arguments
X, q vector of quantiles.
mu, sigma, xi location, scale, and shape parameters. Scale must be positive.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If 1length(n) > 1, the length is taken to be the number
required.
Details

Probability density function
f(z) = { (1+€w ”) /g_lexp (— (1+€%)—1/§) €40
exp (= 5#) exp (—exp (—554)) £€=0

Cumulative distribution function

Q| Q|

Quantile function ¢
iy [ or— g1 = (=log(p)t) £#0
o) { p — o log(—log(p)) £=0
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References

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer.

Examples

curve(dgev(x, xi -1/2), -4, 4, col = "green", ylab = "")
curve(dgev(x, xi = @), -4, 4, col = "red”, add = TRUE)
curve(dgev(x, xi = 1/2), -4, 4, col = "blue”, add = TRUE)
legend("topleft”, col = c("green”, "red”, "blue"), lty =1,

legend = expression(xi == -1/2, xi == 0, xi == 1/2), bty = "n")

x <- rgev(le5, 5, 2, .5)

hist(x, 1000, freq = FALSE, xlim = c(@, 50))

curve(dgev(x, 5, 2, .5), 0, 50, col = "red”, add = TRUE, n = 5000)
hist(pgev(x, 5, 2, .5))

plot(ecdf(x), xlim = c(0, 50))

curve(pgev(x, 5, 2, .5), 0, 50, col = "red”, lwd = 2, add = TRUE)

Gompertz Gompertz distribution

Description

Density, distribution function, quantile function and random generation for the Gompertz distribu-
tion.

Usage

dgompertz(x, a =1, b =1, log = FALSE)

pgompertz(q, a = 1, b = 1, lower.tail = TRUE, log.p = FALSE)
ggompertz(p, a =1, b =1, lower.tail = TRUE, log.p = FALSE)
rgompertz(n, a =1, b = 1)
Arguments
X, q vector of quantiles.
a, b positive valued scale and location parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower. tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
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Details

Probability density function
f(z) =aexp (bx - %(exp(bx) - 1))
Cumulative distribution function

F(z)=1—exp (f%(exp(bx) - 1))

Quantile function

Fl(p) = %log (1 — Zlog(l —p))

References

Lenart, A. (2012). The Gompertz distribution and Maximum Likelihood Estimation of its param-
eters - a revision. MPIDR WORKING PAPER WP 2012-008. https://www.demogr.mpg.de/
papers/working/wp-2012-008. pdf

Examples

x <- rgompertz(le5, 5, 2)

hist(x, 100, freq = FALSE)

curve(dgompertz(x, 5, 2), @, 1, col = "red”, add
hist(pgompertz(x, 5, 2))

plot(ecdf(x))

curve(pgompertz(x, 5, 2), @, 1, col = "red”, 1lwd = 2, add = TRUE)

TRUE)

GPD Generalized Pareto distribution

Description

Density, distribution function, quantile function and random generation for the generalized Pareto
distribution.

Usage
dgpd(x, mu = @, sigma = 1, xi = @, log = FALSE)
pgpd(gq, mu = @, sigma = 1, xi = @, lower.tail = TRUE, log.p = FALSE)

FALSE)

ggpd(p, mu = @, sigma = 1, xi = @, lower.tail = TRUE, log.p

rgpd(n, mu = @, sigma = 1, xi = Q)


https://www.demogr.mpg.de/papers/working/wp-2012-008.pdf
https://www.demogr.mpg.de/papers/working/wp-2012-008.pdf

GPD 29

Arguments
X, q vector of quantiles.
mu, sigma, xi location, scale, and shape parameters. Scale must be positive.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If 1length(n) > 1, the length is taken to be the number
required.
Details

Probability density function

o |

Cumulative distribution function

exp (- “) ¢=0

1
fed
1
o

—pu\—1/¢
Fla) = L—(1+&5E) §#0
e (R4 €20
Quantile function
Py = ntotEE €40
p—olog(l—p) £=0

References

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer.

Examples

x <- rgpd(1e5, 5, 2, .1)

hist(x, 100, freq = FALSE, xlim = c(0, 50))
curve(dgpd(x, 5, 2, .1), @, 50, col = "red”, add
hist(pgpd(x, 5, 2, .1))

plot(ecdf(x))

curve(pgpd(x, 5, 2, .1), @, 50, col = "red”, lwd = 2, add = TRUE)

TRUE, n = 5000)
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Gumbel Gumbel distribution

Description

Density, distribution function, quantile function and random generation for the Gumbel distribution.

Usage

dgumbel(x, mu = @, sigma = 1, log = FALSE)

pgumbel(q, mu = @, sigma = 1, lower.tail = TRUE, log.p

FALSE)

ggumbel(p, mu = @, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rgumbel(n, mu = @, sigma = 1)

Arguments
X, q vector of quantiles.
mu, sigma location and scale parameters. Scale must be positive.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If 1ength(n) > 1, the length is taken to be the number
required.
Details

Probability density function

oo (5 0m(454))

Cumulative distribution function
F(x) =exp ( exp (w — u))
o

F~Y(p) = p — alog(—log(p))

Quantile function

References

Bury, K. (1999). Statistical Distributions in Engineering. Cambridge University Press.
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Examples

X <- rgumbel(le5, 5, 2)

hist(x, 100, freq = FALSE)

curve(dgumbel(x, 5, 2), @, 25, col = "red"”, add = TRUE)
hist(pgumbel(x, 5, 2))

plot(ecdf(x))

curve(pgumbel(x, 5, 2), @, 25, col = "red”, lwd = 2, add = TRUE)

HalfCauchy Half-Cauchy distribution

Description

Density, distribution function, quantile function and random generation for the half-Cauchy distri-
bution.

Usage

dhcauchy(x, sigma = 1, log = FALSE)

phcauchy(q, sigma = 1, lower.tail = TRUE, log.p = FALSE)

ghcauchy(p, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rhcauchy(n, sigma = 1)
Arguments
X, q vector of quantiles.
sigma positive valued scale parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

If X follows Cauchy centered at 0 and parametrized by scale o, then | X| follows half-Cauchy
distribution parametrized by scale ¢. Half-Cauchy distribution is a special case of half-t distribution
with v = 1 degrees of freedom.
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References

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on
article by Browne and Draper). Bayesian analysis, 1(3), 515-534.

Jacob, E. and Jayakumar, K. (2012). On Half-Cauchy Distribution and Process. International Jour-
nal of Statistika and Mathematika, 3(2), 77-81.

See Also
HalfT

Examples

x <- rhcauchy(1e5, 2)

hist(x, 2e5, freq = FALSE, x1lim = c(@, 100))
curve(dhcauchy(x, 2), @, 100, col = "red”, add = TRUE)
hist(phcauchy(x, 2))

plot(ecdf(x), xlim = c(@, 100))

curve(phcauchy(x, 2), col = "red”, 1lwd = 2, add = TRUE)

HalfNormal Half-normal distribution

Description
Density, distribution function, quantile function and random generation for the half-normal distri-
bution.

Usage

dhnorm(x, sigma = 1, log = FALSE)

phnorm(q, sigma = 1, lower.tail = TRUE, log.p = FALSE)
ghnorm(p, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rhnorm(n, sigma = 1)

Arguments
X, q vector of quantiles.
sigma positive valued scale parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.



HalfT

Details

If X follows normal distribution centered at 0 and parametrized by scale o, then | X | follows half-
normal distribution parametrized by scale . Half-t distribution with v = oo degrees of freedom

converges to half-normal distribution.

References

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on

article by Browne and Draper). Bayesian analysis, 1(3), 515-534.

Jacob, E. and Jayakumar, K. (2012). On Half-Cauchy Distribution and Process. International Jour-

nal of Statistika and Mathematika, 3(2), 77-81.

See Also

HalfT

Examples

x <= rhnorm(1e5, 2)

hist(x, 100, freq = FALSE)

curve(dhnorm(x, 2), @, 8, col = "red”, add
hist(phnorm(x, 2))

plot(ecdf(x))
curve(phnorm(x, 2), @, 8, col = "red”, 1lwd = 2, add = TRUE)

TRUE)

HalfT

Half-t distribution

Description

Density, distribution function, quantile function and random generation for the half-t distribution.

Usage
dht(x, nu,
pht(q, nu,
ght(p, nu,

rht(n, nu,

sigma
sigma
sigma

sigma

1, log = FALSE)

1, lower.tail

1, lower.tail

D)

TRUE, log.p

TRUE, log.p

FALSE)

FALSE)
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Arguments
X, q vector of quantiles.
nu, sigma positive valued degrees of freedom and scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If 1ength(n) > 1, the length is taken to be the number
required.
Details

If X follows t distribution parametrized by degrees of freedom v and scale o, then |X| follows
half-t distribution parametrized by degrees of freedom v and scale o.

References

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on
article by Browne and Draper). Bayesian analysis, 1(3), 515-534.

Jacob, E. and Jayakumar, K. (2012). On Half-Cauchy Distribution and Process. International Jour-
nal of Statistika and Mathematika, 3(2), 77-81.

See Also

HalfNormal, HalfCauchy

Examples

x <- rht(1e5, 2, 2)
hist(x, 500, freq = FALSE, xlim = c(@, 100))
curve(dht(x, 2, 2), @, 100, col = "red"”, add = TRUE)
hist(pht(x, 2, 2))
plot(ecdf(x), xlim = c(@, 100))
curve(pht(x, 2, 2), @, 100, col

"red”, lwd = 2, add = TRUE)

Huber "Huber density" distribution

Description

Density, distribution function, quantile function and random generation for the "Huber density"
distribution.
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Usage

dhuber(x, mu = @, sigma = 1, epsilon = 1.345, log = FALSE)

phuber(q, mu = @, sigma = 1, epsilon = 1.345, lower.tail = TRUE, log.p = FALSE)

ghuber(p, mu = @, sigma = 1, epsilon = 1.345, lower.tail = TRUE, log.p = FALSE)
rhuber(n, mu = @, sigma = 1, epsilon = 1.345)

Arguments
X, q vector of quantiles.

mu, sigma, epsilon
location, and scale, and shape parameters. Scale and shape must be positive.

log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If 1ength(n) > 1, the length is taken to be the number
required.
Details

Huber density is connected to Huber loss and can be defined as:

1
f(z) = e~ Pk (@)
2V2m (D(k) + ¢(k)/k — %)
where
1,2

_J 3z lz] <k

pi() = { kla| — 1k |z > k
References

Huber, P.J. (1964). Robust Estimation of a Location Parameter. Annals of Statistics, 53(1), 73-101.
Huber, P.J. (1981). Robust Statistics. Wiley.
Schumann, D. (2009). Robust Variable Selection. ProQuest.

Examples

x <- rhuber(1e5, 5, 2, 3)

hist(x, 100, freq = FALSE)

curve(dhuber(x, 5, 2, 3), -20, 20, col = "red”, add = TRUE, n = 5000)
hist(phuber(x, 5, 2, 3))

plot(ecdf(x))

curve(phuber(x, 5, 2, 3), -20, 20, col = "red”, 1lwd = 2, add = TRUE)
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InvChiSq Inverse chi-squared and scaled chi-squared distributions

Description

Density, distribution function and random generation for the inverse chi-squared distribution and
scaled chi-squared distribution.

Usage
dinvchisq(x, nu, tau, log = FALSE)
pinvchisq(q, nu, tau, lower.tail = TRUE, log.p = FALSE)
ginvchisq(p, nu, tau, lower.tail = TRUE, log.p = FALSE)

rinvchisg(n, nu, tau)

Arguments
X, q vector of quantiles.
nu positive valued shape parameter.
tau positive valued scaling parameter; if provided it returns values for scaled chi-
squared distributions.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

If X follows x?(v) distribution, then 1/X follows inverse chi-squared distribution parametrized by

v. Inverse chi-squared distribution is a special case of inverse gamma distribution with parameters

2 . . . . .
a=%and = %; ora = 5 and 8 = - for scaled inverse chi-squared distribution.

See Also

Chisquare, GammaDist
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Examples

x <- rinvchisq(le5, 20)
hist(x, 100, freq = FALSE)
curve(dinvchisq(x, 20), @, 1, n = 501, col = "red”, add
hist(pinvchisq(x, 20))

plot(ecdf(x))

curve(pinvchisq(x, 20), @, 1, n = 501, col

TRUE)

"red”, lwd = 2, add = TRUE)
# scaled

X <- rinvchisq(1e5, 10, 5)
hist(x, 100, freq = FALSE)
curve(dinvchisq(x, 10, 5), @, 150, n = 501, col = "red"”, add = TRUE)
hist(pinvchisq(x, 10, 5))

plot(ecdf(x))

curve(pinvchisq(x, 10, 5), @, 150, n = 501, col

"red”, lwd = 2, add = TRUE)

InvGamma Inverse-gamma distribution

Description

Density, distribution function and random generation for the inverse-gamma distribution.

Usage

dinvgamma(x, alpha, beta = 1, log = FALSE)

pinvgamma(q, alpha, beta = 1, lower.tail = TRUE, log.p = FALSE)

ginvgamma(p, alpha, beta = 1, lower.tail = TRUE, log.p = FALSE)

rinvgamma(n, alpha, beta = 1)

Arguments
X, q vector of quantiles.
alpha, beta positive valued shape and scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
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Details

Probability mass function

Cumulative distribution function

References

Witkovsky, V. (2001). Computing the distribution of a linear combination of inverted gamma vari-
ables. Kybernetika 37(1), 79-90.

Leemis, L.M. and McQueston, L.T. (2008). Univariate Distribution Relationships. American Statis-
tician 62(1): 45-53.

See Also

GammaDist

Examples

X <- rinvgamma(le5, 20, 3)

hist(x, 100, freq = FALSE)

curve(dinvgamma(x, 20, 3), @, 1, col = "red”, add
hist(pinvgamma(x, 20, 3))

plot(ecdf(x))

curve(pinvgamma(x, 20, 3), @, 1, col = "red”, lwd

TRUE, n = 5000)

2, add = TRUE, n = 5000)

Kumaraswamy Kumaraswamy distribution

Description

Density, distribution function, quantile function and random generation for the Kumaraswamy dis-
tribution.

Usage

dkumar(x, a =1, b =1, log = FALSE)

pkumar(q, a = 1, b = 1, lower.tail = TRUE, log.p = FALSE)

gkumar(p, a =1, b =1, lower.tail = TRUE, log.p = FALSE)

rkumar(n, a =1, b

D)
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Arguments
X, q
a, b
log, log.p
lower.tail

p

n

Details
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vector of quantiles.

positive valued parameters.

logical; if TRUE, probabilities p are given as log(p).

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the number
required.

Probability density function

f(z) = abz® (1 — z2)b~1

Cumulative distribution function

Quantile function

References

F(z)=1—(1—a%°

Flp)=1—(1—p"/")

Jones, M. C. (2009). Kumaraswamy’s distribution: A beta-type distribution with some tractability
advantages. Statistical Methodology, 6, 70-81.

Cordeiro, G.M. and de Castro, M. (2009). A new family of generalized distributions. Journal of
Statistical Computation & Simulation, 1-17.

Examples

x <- rkumar(le5, 5, 16)

hist(x, 100, freq = FALSE)

curve(dkumar(x, 5, 16), @, 1, col = "red”, add = TRUE)
hist(pkumar(x, 5, 16))

plot(ecdf(x))

curve(pkumar(x, 5, 16), @, 1, col = "red”, 1lwd = 2, add = TRUE)
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Laplace Laplace distribution

Description

Density, distribution function, quantile function and random generation for the Laplace distribution.

Usage

dlaplace(x, mu = @, sigma = 1, log = FALSE)
plaplace(q, mu = @, sigma = 1, lower.tail = TRUE, log.p = FALSE)
glaplace(p, mu = @, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rlaplace(n, mu = @, sigma = 1)

Arguments
X, q vector of quantiles.
mu, sigma location and scale parameters. Scale must be positive.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

Probability density function

1 T — [
)= oo (- |722)
Cumulative distribution function
Lexp (££) T <
F(z)=4 2 T e
@={ 1 25
Quantile function
1 w+ o log(2p) p<0.5
e = { j—clog(2(1—p)) p=05

References
Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. Chapman &
Hall/CRC

Forbes, C., Evans, M. Hastings, N., & Peacock, B. (2011). Statistical Distributions. John Wiley &
Sons.
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x <- rlaplace(le5, 5, 16)
hist(x, 100, freq = FALSE)

curve(dlaplace(x, 5, 16), -200, 200, n = 500, col

"red”, add = TRUE)

hist(plaplace(x, 5, 16))

plot(ecdf(x))

curve(plaplace(x, 5, 16), -200, 200, n

500, col = "red”, lwd = 2, add = TRUE)

LocationScaleT

Location-scale version of the t-distribution

Description

Probability mass function, distribution function and random generation for location-scale version
of the t-distribution. Location-scale version of the t-distribution besides degrees of freedom v, is
parametrized using additional parameters p for location and o for scale (u = 0 and ¢ = 1 for
standard t-distribution).

Usage
dlst(x, df,
plst(q, df,
glst(p, df,
rlst(n, df,
Arguments
X’ q
df
mu
sigma
log, log.p

lower.tail

p
n

See Also

TDist

mu

mu

mu

mu

= @, sigma = 1, log = FALSE)

= 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

= 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

= 0@, sigma = 1)

vector of quantiles.

degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

vector of locations

vector of positive valued scale parameters.

logical; if TRUE, probabilities p are given as log(p).

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
vector of probabilities.

number of observations. If 1length(n) > 1, the length is taken to be the number
required.
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Examples

x <- rlst(l1e5, 1000, 5, 13)

hist(x, 100, freq = FALSE)

curve(dlst(x, 1000, 5, 13), -60, 60, col = "red", add = TRUE)
hist(plst(x, 1000, 5, 13))

plot(ecdf(x))

curve(plst(x, 1000, 5, 13), -60, 60, col = "red”, lwd = 2, add = TRUE)

LogSeries Logarithmic series distribution

Description
Density, distribution function, quantile function and random generation for the logarithmic series
distribution.

Usage
dlgser(x, theta, log = FALSE)

plgser(q, theta, lower.tail = TRUE, log.p = FALSE)
glgser(p, theta, lower.tail = TRUE, log.p = FALSE)
rlgser(n, theta)
Arguments
X, q vector of quantiles.
theta vector; concentration parameter; (0 < theta <1).
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details
Probability mass function
fla) =
x)= —
log(1 —6) x
Cumulative distribution function
—1 *L0*
F(z) =
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Quantile function and random generation are computed using algorithm described in Krishnamoor-
thy (2006).

References

Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. Chapman &
Hall/CRC

Forbes, C., Evans, M. Hastings, N., & Peacock, B. (2011). Statistical Distributions. John Wiley &
Sons.

Examples

x <- rlgser(1e5, 0.66)

xx <- seq(@, 100, by = 1)
plot(prop.table(table(x)), type = "h")
lines(xx, dlgser(xx, 0.66), col = "red")

# Notice: distribution of F(X) is far from uniform:
hist(plgser(x, 0.66), 50)

xx <- seq(@, 100, by = 0.01)
plot(ecdf(x))
lines(xx, plgser(xx, 0.66), col = "red”, lwd = 2)

Lomax Lomax distribution

Description

Density, distribution function, quantile function and random generation for the Lomax distribution.

Usage
dlomax(x, lambda, kappa, log = FALSE)

plomax(q, lambda, kappa, lower.tail = TRUE, log.p

FALSE)

glomax(p, lambda, kappa, lower.tail = TRUE, log.p = FALSE)

rlomax(n, lambda, kappa)

Arguments

X, q vector of quantiles.
lambda, kappa  positive valued parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).
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lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.

Details
Probability density function
AK
o) = Tzt

Cumulative distribution function
Flz)=1-(1+Xx)™"

Quantile function
_ L—p) Ve -1
F 1 _ (
) =—7——

Examples

x <- rlomax(1e5, 5, 16)

hist(x, 100, freq = FALSE)

curve(dlomax(x, 5, 16), @, 1, col = "red”, add
hist(plomax(x, 5, 16))

plot(ecdf(x))

curve(plomax(x, 5, 16), @, 1, col = "red”, 1lwd = 2, add = TRUE)

TRUE, n = 5000)

MultiHypergeometric Multivariate hypergeometric distribution

Description

Probability mass function and random generation for the multivariate hypergeometric distribution.

Usage
dmvhyper(x, n, k, log = FALSE)

rmvhyper(nn, n, k)

Arguments
X m-~column matrix of quantiles.
n m-length vector or m-column matrix of numbers of balls in m colors.
k the number of balls drawn from the urn.
log logical; if TRUE, probabilities p are given as log(p).
nn number of observations. If length(n) > 1, the length is taken to be the number

required.
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Details

Probability mass function
m ng
HiZI (ml)
N
(%)
The multivariate hypergeometric distribution is generalization of hypergeometric distribution. It is

used for sampling without replacement k out of N marbles in m colors, where each of the colors
appears n; times. Where k = Y _" , z;, N = > " n;and k < N.

fz) =

References

Gentle, J.E. (2006). Random number generation and Monte Carlo methods. Springer.

See Also

Hypergeometric

Examples

# Generating 10 random draws from multivariate hypergeometric
# distribution parametrized using a vector

rmvhyper(10, c(10, 12, 5, 8, 11), 33)

Multinomial Multinomial distribution

Description

Probability mass function and random generation for the multinomial distribution.

Usage

dmnom(x, size, prob, log = FALSE)

rmnom(n, size, prob)

Arguments
X k-column matrix of quantiles.
size numeric vector; number of trials (zero or more).
prob k-column numeric matrix; probability of success on each trial.
log logical; if TRUE, probabilities p are given as log(p).
n number of observations. If 1length(n) > 1, the length is taken to be the number

required.
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Details

Probability mass function

k
n!
fa) = —— ]
[Tz i

References

Gentle, J.E. (2006). Random number generation and Monte Carlo methods. Springer.

See Also

Binomial, Multinomial

Examples

# Generating 10 random draws from multinomial distribution
# parametrized using a vector

(x <= rmnom(10@, 3, c(1/3, 1/3, 1/3)))
# Results are consistent with dmultinom() from stats:

all.equal(dmultinom(x[1,]1, 3, c(1/3, 1/3, 1/3)),
dmnom(x[1, , drop = FALSE], 3, c(1/3, 1/3, 1/3)))

NegHyper Negative hypergeometric distribution

Description

Probability mass function, distribution function, quantile function and random generation for the
negative hypergeometric distribution.

Usage

dnhyper(x, n, m, r, log = FALSE)

pnhyper(q, n, m, r, lower.tail = TRUE, log.p = FALSE)

gnhyper(p, n, m, r, lower.tail = TRUE, log.p = FALSE)

rnhyper(nn, n, m, r)
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Arguments
X, q vector of quantiles representing the number of balls drawn without replacement
from an urn which contains both black and white balls.
n the number of black balls in the urn.
m the number of white balls in the urn.
r the number of white balls that needs to be drawn for the sampling to be stopped.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
nn number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

Negative hypergeometric distribution describes number of balls x observed until drawing without
replacement to obtain r white balls from the urn containing m white balls and 7 black balls, and is
defined as

x—1\ /m+n—x
(7’—1) ( m—r )
e
The algorithm used for calculating probability mass function, cumulative distribution function and
quantile function is based on Fortran program NHYPERG created by Berry and Mielke (1996,
1998). Random generation is done by inverse transform sampling.

References

Berry, K. J., & Mielke, P. W. (1998). The negative hypergeometric probability distribution: Sam-
pling without replacement from a finite population. Perceptual and motor skills, 86(1), 207-210.
https://journals.sagepub.com/doi/10.2466/pms.1998.86.1.207

Berry, K. J., & Mielke, P. W. (1996). Exact confidence limits for population proportions based
on the negative hypergeometric probability distribution. Perceptual and motor skills, 83(3 suppl),
1216-1218. https://journals.sagepub.com/doi/10.2466/pms.1996.83.3f.1216

Schuster, E. F., & Sype, W. R. (1987). On the negative hypergeometric distribution. International
Journal of Mathematical Education in Science and Technology, 18(3), 453-459.

Chae, K. C. (1993). Presenting the negative hypergeometric distribution to the introductory statistics
courses. International Journal of Mathematical Education in Science and Technology, 24(4), 523-
526.

Jones, S.N. (2013). A Gaming Application of the Negative Hypergeometric Distribution. UNLV
Theses, Dissertations, Professional Papers, and Capstones. Paper 1846. https://oasis.library.
unlv.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=2847&context=thesesdissertations

See Also

Hypergeometric


https://journals.sagepub.com/doi/10.2466/pms.1998.86.1.207
https://journals.sagepub.com/doi/10.2466/pms.1996.83.3f.1216
https://oasis.library.unlv.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=2847&context=thesesdissertations
https://oasis.library.unlv.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=2847&context=thesesdissertations
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Examples

x <- rnhyper(1e5, 60, 35, 15)

xx <- 15:95

plot(prop.table(table(x)))

lines(xx, dnhyper(xx, 60, 35, 15), col
hist(pnhyper(x, 60, 35, 15))

uredlr)

xx <- seq(@, 100, by = 0.01)
plot(ecdf(x))
lines(xx, pnhyper(xx, 60, 35, 15), col

"red”, lwd = 2)

NormalMix Mixture of normal distributions

Description

Density, distribution function and random generation for the mixture of normal distributions.

Usage

dmixnorm(x, mean, sd, alpha, log = FALSE)
pmixnorm(q, mean, sd, alpha, lower.tail = TRUE, log.p = FALSE)

rmixnorm(n, mean, sd, alpha)

Arguments

X, q vector of quantiles.

mean matrix (or vector) of means.

sd matrix (or vector) of standard deviations.

alpha matrix (or vector) of mixing proportions; mixing proportions need to sum up to
1.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

n number of observations. If 1ength(n) > 1, the length is taken to be the number
required.

p vector of probabilities.
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Details

Probability density function

f(@) = o fila;p, o0) + -+ apfe(@; o, o)
Cumulative distribution function

F(x) = oy Fy(zypa,01) + - -+ + o Fi (23 pg, o)

where >, a; = 1.

Examples

x <- rmixnorm(l1e5, c(0.5, 3, 6), c(3, 1, 1), c(1/3, 1/3, 1/3))

hist(x, 100, freq = FALSE)

curve(dmixnorm(x, c(@.5, 3, 6), c(3, 1, 1), c(1/3, 1/3, 1/3)),
-20, 20, n = 500, col = "red”, add = TRUE)

hist(pmixnorm(x, c(@.5, 3, 6), c(3, 1, 1), c(1/3, 1/3, 1/3)))

plot(ecdf(x))

curve(pmixnorm(x, c(@.5, 3, 6), c(3, 1, 1), c(1/3, 1/3, 1/3)),
-20, 20, n = 500, col = "red”, lwd = 2, add = TRUE)

NSBeta Non-standard beta distribution

Description

Non-standard form of beta distribution with lower and upper bounds denoted as min and max. By
default min=0 and max=1 what leads to standard beta distribution.

Usage
dnsbeta(x, shapel, shape2, min = @, max = 1, log = FALSE)

pnsbeta(q, shapel, shape2, min = @, max = 1, lower.tail = TRUE, log.p = FALSE)

gnsbeta(p, shapel, shape2, min = @, max 1, lower.tail = TRUE, log.p = FALSE)

rnsbeta(n, shapel, shape2, min = @, max = 1)

Arguments

X, q vector of quantiles.
shape1, shape2 non-negative parameters of the Beta distribution.
min, max lower and upper bounds.

log, log.p logical; if TRUE, probabilities p are given as log(p).
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lower.tail

p

n

See Also

Beta

Examples

Pareto

logical; if TRUE (default), probabilities are P[X < x], otherwise, P[X > x].
vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the number
required.

x <- rnsbeta(le5, 5, 13, -4, 8)
hist(x, 100, freq = FALSE)

curve(dnsbeta(x, 5, 13, -4, 8), -4, 6, col = "red”, add

TRUE)

hist(pnsbeta(x, 5, 13, -4, 8))

plot(ecdf(x))
curve(pnsbeta(x, 5, 13, -4, 8), -4, 6, col = "red”, lwd

2, add = TRUE)

Pareto

Pareto distribution

Description

Density, distribution function, quantile function and random generation for the Pareto distribution.

Usage

dpareto(x,
ppareto(q,

gpareto(p,

rpareto(n,

Arguments

X, q
a, b
log, log.p
lower.tail

p

n

1, b =1, log = FALSE)

1, b =1, lower.tail = TRUE, log.p = FALSE)
1, b =1, lower.tail = TRUE, log.p = FALSE)
1, b=1)

vector of quantiles.

positive valued scale and location parameters.

logical; if TRUE, probabilities p are given as log(p).

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the number
required.
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Details

Probability density function

flz) = o+l
Cumulative distribution function
b\ @
Flx)=1- (x)
Quantile function
_ b
P = (1—p)t-e

References

Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. Chapman &
Hall/CRC

Examples

x <- rpareto(le5, 5, 16)

hist(x, 100, freq = FALSE)

curve(dpareto(x, 5, 16), @, 200, col = "red”, add = TRUE)
hist(ppareto(x, 5, 16))

plot(ecdf(x))

curve(ppareto(x, 5, 16), @, 200, col = "red"”, lwd = 2, add = TRUE)

PoissonMix Mixture of Poisson distributions

Description

Density, distribution function and random generation for the mixture of Poisson distributions.

Usage

dmixpois(x, lambda, alpha, log = FALSE)
pmixpois(q, lambda, alpha, lower.tail = TRUE, log.p = FALSE)

rmixpois(n, lambda, alpha)
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Arguments

X’q
lambda
alpha

log, log.p
lower.tail

n

Details

PowerDist

vector of quantiles.
matrix (or vector) of (non-negative) means.

matrix (or vector) of mixing proportions; mixing proportions need to sum up to
1.

logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

number of observations. If length(n) > 1, the length is taken to be the number
required.

vector of probabilities.

Probability density function

f(@) = arfi(@; M) + -+ arfr(@; M)

Cumulative distribution function

where >, a; = 1.

Examples

F(z)=ar1Fi(x; M) + -+ ap Fi (x5 \g)

x <- rmixpois(le5, c(5, 12, 19), c(1/3, 1/3, 1/3))

xx <- seq(-1, 50)

plot(prop.table(table(x)))

lines(xx, dmixpois(xx, c(5, 12, 19), c(1/3, 1/3, 1/3)), col

"red“)

hist(pmixpois(x, c(5, 12, 19), c(1/3, 1/3, 1/3)))

xx <- seq(@, 50, by = 0.01)

plot(ecdf(x))

lines(xx, pmixpois(xx, c(5, 12, 19), c(1/3, 1/3, 1/3)), col = "red”, 1lwd = 2)

PowerDist

Power distribution

Description

Density, distribution function, quantile function and random generation for the power distribution.
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Usage
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dpower(x, alpha, beta, log = FALSE)

ppower(q, alpha, beta, lower.tail = TRUE, log.p

FALSE)

gpower(p, alpha, beta, lower.tail = TRUE, log.p = FALSE)

rpower(n, alpha, beta)

Arguments
X, q
alpha, beta
log, log.p
lower.tail

p

n

Details

vector of quantiles.

parameters.

logical; if TRUE, probabilities p are given as log(p).

logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the number
required.

Probability density function

Cumulative distribution function

Quantile function

Examples

51
f(x) = 525
B
F(z) = of

F~(p) = ap*/?

x <- rpower(le5, 5, 16)

hist(x, 100, freq = FALSE)

curve(dpower(x, 5, 16), 2, 6, col = "red”, add = TRUE, n = 5000)
hist(ppower(x, 5, 16))

plot(ecdf(x))

curve(ppower(x, 5, 16), 2, 6, col = "red”, 1lwd = 2, add = TRUE)
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PropBeta Beta distribution of proportions

Description
Probability mass function, distribution function and random generation for the reparametrized beta
distribution.

Usage

dprop(x, size, mean, prior = @, log = FALSE)

pprop(q, size, mean, prior = @, lower.tail = TRUE, log.p = FALSE)

gprop(p, size, mean, prior = @, lower.tail = TRUE, log.p = FALSE)

rprop(n, size, mean, prior = 0)

Arguments
X, q vector of quantiles.
size non-negative real number; precision or number of binomial trials.
mean mean proportion or probability of success on each trial; @ < mean < 1.
prior (see below) with prior = @ (default) the distribution corresponds to re-parametrized
beta distribution used in beta regression. This parameter needs to be non-negative.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

Beta can be understood as a distribution of = k/¢ proportions in ¢ trials where the average
proportion is denoted as p, so it’s parameters become o = ¢ and 8 = ¢(1 — p) and it’s density
function becomes

poutm—1 (1-— x)¢(1—u)+7f—1

1@ = Bt met—m+m

where T is a prior parameter, so the distribution is a posterior distribution after observing ¢u suc-
cesses and ¢(1 — ) failures in ¢ trials with binomial likelihood and symmetric Beta(m, 7) prior
for probability of success. Parameter value 7 = 1 corresponds to uniform prior; 7 = 1/2 cor-
responds to Jeffreys prior; m = 0 corresponds to "uninformative" Haldane prior, this is also the
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re-parametrized distribution used in beta regression. With m = 0 the distribution can be under-
stood as a continuous analog to binomial distribution dealing with proportions rather then counts.
Alternatively ¢ may be understood as precision parameter (as in beta regression).

Notice that in pre-1.8.4 versions of this package, prior was not settable and by default fixed to one,
instead of zero. To obtain the same results as in the previous versions, use prior = 1 in each of the
functions.

References

Ferrari, S., & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal
of Applied Statistics, 31(7), 799-815.

Smithson, M., & Verkuilen, J. (2006). A better lemon squeezer? Maximum-likelihood regression
with beta-distributed dependent variables. Psychological Methods, 11(1), 54-71.

See Also

beta, binomial

Examples

x <- rprop(le5, 100, 0.33)
hist(x, 100, freq = FALSE)
curve(dprop(x, 100, ©.33), @0, 1, col = "red”, add = TRUE)
hist(pprop(x, 100, ©.33))

plot(ecdf(x))

curve(pprop(x, 100, ©.33), 0, 1, col = "red”, lwd

2, add = TRUE)

n <- 500

p <- 0.23

k <- rbinom(1e5, n, p)

hist(k/n, freq = FALSE, 100)

curve(dprop(x, n, p), 0, 1, col = "red”, add = TRUE, n = 500)

Rademacher Random generation from Rademacher distribution

Description

Random generation for the Rademacher distribution (values -1 and +1 with equal probability).

Usage

rsign(n)

Arguments

n number of observations. If length(n) > 1, the length is taken to be the number
required.
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Rayleigh Rayleigh distribution

Description

Density, distribution function, quantile function and random generation for the Rayleigh distribu-
tion.

Usage
drayleigh(x, sigma = 1, log = FALSE)

prayleigh(q, sigma = 1, lower.tail = TRUE, log.p = FALSE)

grayleigh(p, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rrayleigh(n, sigma = 1)
Arguments

X, q vector of quantiles.
sigma positive valued parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.

Details
Probability density function
T x2
flz) = 52 exp T 952
Cumulative distribution function
22
F(x)=1- -
(@) =1-oxp (-5 )
Quantile function
F~Y(p) = V/—202log(1 — p)

References
Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. Chapman &
Hall/CRC.

Forbes, C., Evans, M. Hastings, N., & Peacock, B. (2011). Statistical Distributions. John Wiley &
Sons.
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Examples
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x <- rrayleigh(le5, 13)

hist(x, 100, freq = FALSE)

curve(drayleigh(x, 13), @, 60, col = "red”, add = TRUE)
hist(prayleigh(x, 13))

plot(ecdf(x))

curve(prayleigh(x, 13), 0, 60, col = "red”, lwd = 2, add = TRUE)

ShiftGomp

Shifted Gompertz distribution

Description

Density, distribution function, and random generation for the shifted Gompertz distribution.

Usage

dsgomp(x, b, eta, log = FALSE)

psgomp(q, b, eta, lower.tail = TRUE, log.p = FALSE)

rsgomp(n, b, eta)

Arguments

X, q

b, eta

log, log.p
lower.tail

n

Details

vector of quantiles.

positive valued scale and shape parameters; both need to be positive.

logical; if TRUE, probabilities p are given as log(p).

logical; if TRUE (default), probabilities are P[X < z] otherwise, P[X > z].

number of observations. If length(n) > 1, the length is taken to be the number
required.

If X follows exponential distribution parametrized by scale b and Y follows reparametrized Gumbel

distribution with cumulative distribution function F(z) = exp(—ne

—b@) parametrized by scale b

and shape 7, then max(X,Y") follows shifted Gompertz distribution parametrized by scale b > 0
and shape 17 > 0. The above relation is used by rsgomp function for random generation from shifted
Gompertz distribution.

Probability density function

f(z) = be™" exp(—ne~b) [1 +n(1— e—bx)]

Cumulative distribution function
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References

Skellam

Bemmaor, A.C. (1994). Modeling the Diffusion of New Durable Goods: Word-of-Mouth Effect
Versus Consumer Heterogeneity. [In:] G. Laurent, G.L. Lilien & B. Pras. Research Traditions in
Marketing. Boston: Kluwer Academic Publishers. pp. 201-223.

Jimenez, T.F. and Jodra, P. (2009). A Note on the Moments and Computer Generation of the Shifted
Gompertz Distribution. Communications in Statistics - Theory and Methods, 38(1), 78-89.

Jimenez T.F. (2014). Estimation of the Parameters of the Shifted Gompertz Distribution, Using
Least Squares, Maximum Likelihood and Moments Methods. Journal of Computational and Ap-
plied Mathematics, 255(1), 867-877.

Examples

x <- rsgomp(le5, 0.4, 1)
hist(x, 50, freq = FALSE)

curve(dsgomp(x, @.4, 1), @, 30, col = "red", add = TRUE)
hist(psgomp(x, 0.4, 1))
plot(ecdf(x))
curve(psgomp(x, 0.4, 1), @, 30, col = "red”, lwd = 2, add = TRUE)
Skellam Skellam distribution
Description

Probability mass function and random generation for the Skellam distribution.

Usage

dskellam(x, mul, mu2, log = FALSE)

rskellam(n, mul, mu2)

Arguments

X
mul, mu2
log

n

vector of quantiles.
positive valued parameters.
logical; if TRUE, probabilities p are given as log(p).

number of observations. If 1ength(n) > 1, the length is taken to be the number
required.
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Details
If X and Y follow Poisson distributions with means g1 and ps, than X — Y follows Skellam
distribution parametrized by 11 and ps.

Probability mass function

References

Karlis, D., & Ntzoufras, 1. (2006). Bayesian analysis of the differences of count data. Statistics in
medicine, 25(11), 1885-1905.

Skellam, J.G. (1946). The frequency distribution of the difference between two Poisson variates
belonging to different populations. Journal of the Royal Statistical Society, series A, 109(3), 26.

Examples

x <- rskellam(1e5, 5, 13)

XX <- -40:40

plot(prop.table(table(x)), type = "h")
lines(xx, dskellam(xx, 5, 13), col = "red")

Slash Slash distribution

Description

Probability mass function, distribution function and random generation for slash distribution.

Usage

dslash(x, mu = @, sigma = 1, log = FALSE)

pslash(q, mu = @, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rslash(n, mu = @, sigma = 1)

Arguments
X, q vector of quantiles.
mu vector of locations
sigma vector of positive valued scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
n number of observations. If length(n) > 1, the length is taken to be the number

required.
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Details

If Z ~ Normal(0, 1) and U ~ Uniform(0, 1), then Z/U follows slash distribution.
Probability density function

600G . g
f(x)z{ S
2V27 -

Cumulative distribution function

Examples

x <- rslash(1e5, 5, 3)

hist(x, 1e5, freq = FALSE, xlim = c(-100, 100))

curve(dslash(x, 5, 3), -100, 100, col = "red”, n = 500, add = TRUE)
hist(pslash(x, 5, 3))

plot(ecdf(x), xlim = c(-100, 100))

curve(pslash(x, 5, 3), -100, 100, col = "red”, 1lwd = 2, n = 500, add = TRUE)

Triangular Triangular distribution

Description
Density, distribution function, quantile function and random generation for the triangular distribu-
tion.

Usage
dtriang(x, a = -1, b =1, ¢ = (a + b)/2, log = FALSE)

ptriang(q, a = -1, b =1, ¢ = (a + b)/2, lower.tail = TRUE, log.p = FALSE)
gtriang(p, a = -1, b =1, ¢ = (a + b)/2, lower.tail = TRUE, log.p = FALSE)
rtriang(n, a=-1, b=1, ¢ = (a + b)/2)

Arguments
X, q vector of quantiles.
a, b, c minimum, maximum and mode of the distribution.
log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
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p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

Probability density function

2(z—a)

Tae-a) <€

f(x) = b—a r=c
2(b—x)

b—a)b—) L >C

Quantile function

gy fatVexBa-a)  p< i
F (p)—{ b TP al-a) p> it

For random generation MINMAX method described by Stein and Keblis (2009) is used.

References

Forbes, C., Evans, M. Hastings, N., & Peacock, B. (2011). Statistical Distributions. John Wiley &
Sons.

Stein, W. E., & Keblis, M. F. (2009). A new method to simulate the triangular distribution. Mathe-
matical and computer modelling, 49(5), 1143-1147.

Examples

x <- rtriang(le5, 5, 7, 6)

hist(x, 100, freq = FALSE)
curve(dtriang(x, 5, 7, 6), 3, 10, n
hist(ptriang(x, 5, 7, 6))
plot(ecdf(x))

curve(ptriang(x, 5, 7, 6), 3, 10, n

500, col "red”, add = TRUE)

500, col = "red”, lwd = 2, add = TRUE)
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TruncBinom Truncated binomial distribution

Description

Density, distribution function, quantile function and random generation for the truncated binomial

distribution.
Usage
dtbinom(x, size, prob, a = -Inf, b = Inf, log = FALSE)
ptbinom(q, size, prob, a = -Inf, b = Inf, lower.tail = TRUE, log.p = FALSE)
gtbinom(p, size, prob, a = -Inf, b = Inf, lower.tail = TRUE, log.p = FALSE)
rtbinom(n, size, prob, a = -Inf, b = Inf)
Arguments
X, q vector of quantiles.
size number of trials (zero or more).
prob probability of success on each trial.
a,b lower and upper truncation points (a < x <= b).
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Examples

X <- rtbinom(1e5, 100, 0.83, 76, 86)

xx <- seq(@, 100)

plot(prop.table(table(x)))

lines(xx, dtbinom(xx, 100, ©.83, 76, 86), col = "red")
hist(ptbinom(x, 100, 0.83, 76, 86))

xx <- seq(@, 100, by = 0.01)

plot(ecdf(x))

lines(xx, ptbinom(xx, 100, ©.83, 76, 86), col = "red”, lwd = 2)
uu <- seq(@, 1, by = 0.001)

lines(qtbinom(uu, 100, ©.83, 76, 86), uu, col = "blue", 1ty = 2)
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TruncNormal

Truncated normal distribution

Description

Density, distribution function, quantile function and random generation for the truncated normal

distribution.

Usage

dtnorm(x, mean

ptnorm(

q,

mean = 0,

sd =1,

a = -Inf,

b = Inf,

lower.tail =

log.p = FALSE
)

gtnorm(

p,

mean = 0,

sd =1,

a = -Inf,

b = Inf,

lower.tail =

log.p = FALSE
)

rtnorm(n, mean

Arguments

X’q
mean, sd

a, b

log, log.p
lower.tail

p

n

=0, sd =1, a=-Inf, b = Inf, log = FALSE)

TRUE,

TRUE,

=0, sd =1, a =-Inf, b = Inf)

vector of quantiles.
location and scale parameters. Scale must be positive.

lower and upper truncation points (a < x <= b, with a=-Inf and b = Inf by
default).

logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
vector of probabilities.

number of observations. If length(n) > 1, the length is taken to be the number
required.
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Details

Probability density function

Cumulative distribution function

Quantile function

Fl(p) = @ <q> (;“) tpx [cp (b;“) - @(

For random generation algorithm described by Robert (1995) is used.

References

TruncNormal

=)

Robert, C.P. (1995). Simulation of truncated normal variables. Statistics and Computing 5(2):

121-125. https://arxiv.org/abs/0907.4010
Burkardt, J. (17 October 2014). The Truncated Normal Distribution.

Florida State University.

https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf

Examples

X <= rtnorm(le5, 5, 3, b =7)

hist(x, 100, freq = FALSE)

curve(dtnorm(x, 5, 3, b =7), -8, 8, col "red”, add = TRUE)
hist(ptnorm(x, 5, 3, b = 7))

plot(ecdf(x))

curve(ptnorm(x, 5, 3, b =7), -8, 8, col = "red”, lwd = 2, add =
R <- 1e5

partmp <- par(mfrow = c(2,4), mar = c(2,2,2,2))

hist(rtnorm(R), freg= FALSE, main = "", xlab = "", ylab = "")

curve(dtnorm(x), -5, 5, col = "red”, add = TRUE)

hist(rtnorm(R, a = @), freq= FALSE, main = "", xlab = "", ylab =

curve(dtnorm(x, a = @), -1, 5, col = "red”, add = TRUE)

hist(rtnorm(R, b = @), freq= FALSE, main = "", xlab = "", ylab =

curve(dtnorm(x, b = @), -5, 5, col = "red”, add = TRUE)

hist(rtnorm(R, a = @, b = 1), freq= FALSE, main = "", xlab = "",
curve(dtnorm(x, a =@, b = 1), -1, 2, col = "red”, add = TRUE)

hist(rtnorm(R, a = -1, b = @), freg= FALSE, main = "", xlab = "",

curve(dtnorm(x, a = -1, b = 0), -2, 2, col = "red”, add = TRUE)

TRUE)

nu)

nu)

ylab = un)

ylab = ")


https://arxiv.org/abs/0907.4010
https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
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hist(rtnorm(R, mean = -6, a = @), freq= FALSE, main = "", xlab = "", ylab = "")
curve(dtnorm(x, mean = -6, a = @), -2, 1, col = "red”, add = TRUE)

hist(rtnorm(R, mean = 8, b = @), freq= FALSE, main = "", xlab = "", ylab = "")
curve(dtnorm(x, mean = 8, b = 0), -2, 1, col = "red"”, add = TRUE)

hist(rtnorm(R, a = 3, b = 5), freq= FALSE, main = "", xlab = "", ylab = "")
curve(dtnorm(x, a = 3, b =5), 2, 5, col = "red”, add = TRUE)

par(partmp)

TruncPoisson Truncated Poisson distribution

Description

Density, distribution function, quantile function and random generation for the truncated Poisson

distribution.
Usage
dtpois(x, lambda, a = -Inf, b = Inf, log = FALSE)
ptpois(q, lambda, a = -Inf, b = Inf, lower.tail = TRUE, log.p = FALSE)
gtpois(p, lambda, a = -Inf, b = Inf, lower.tail = TRUE, log.p = FALSE)
rtpois(n, lambda, a = -Inf, b = Inf)
Arguments
X, q vector of quantiles.
lambda vector of (non-negative) means.
a,b lower and upper truncation points (a < x <= b).
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
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References

Plackett, R.L. (1953). The truncated Poisson distribution. Biometrics, 9(4), 485-488.

Singh, J. (1978). A characterization of positive Poisson distribution and its statistical application.
SIAM Journal on Applied Mathematics, 34(3), 545-548.

Dalgaard, P. (May 1, 2005). [R] simulate zero-truncated Poisson distribution. R-help mailing list.
https://stat.ethz.ch/pipermail/r-help/2005-May/070680.html

Examples

X <- rtpois(le5, 14, 16)

xx <- seq(-1, 50)
plot(prop.table(table(x)))

lines(xx, dtpois(xx, 14, 16), col = "red")
hist(ptpois(x, 14, 16))

xx <- seq(@, 50, by = 0.01)
plot(ecdf(x))
lines(xx, ptpois(xx, 14, 16), col = "red”, lwd = 2)

uu <- seq(@, 1, by = 0.001)
lines(qtpois(uu, 14, 16), uu, col = "blue”, 1ty = 2)

# Zero-truncated Poisson

X <- rtpois(le5, 5, @)

xx <- seq(-1, 50)
plot(prop.table(table(x)))

lines(xx, dtpois(xx, 5, @), col = "red")
hist(ptpois(x, 5, 0))

xx <- seq(@, 50, by = 0.01)

plot(ecdf(x))

lines(xx, ptpois(xx, 5, @), col = "red”, lwd = 2)
lines(qtpois(uu, 5, @), uu, col = "blue”, 1ty = 2)

TukeyLambda Tukey lambda distribution

Description

Quantile function, and random generation for the Tukey lambda distribution.

Usage
gtlambda(p, lambda, lower.tail = TRUE, log.p = FALSE)

rtlambda(n, lambda)


https://stat.ethz.ch/pipermail/r-help/2005-May/070680.html
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Arguments
p vector of probabilities.
lambda shape parameter.
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
log.p logical; if TRUE, probabilities p are given as log(p).
n number of observations. If 1length(n) > 1, the length is taken to be the number
required.
Details

Tukey lambda distribution is a continuous probability distribution defined in terms of its quantile
function. It is typically used to identify other distributions.

Quantile function:

References

Joiner, B.L., & Rosenblatt, J.R. (1971). Some properties of the range in samples from Tukey’s
symmetric lambda distributions. Journal of the American Statistical Association, 66(334), 394-399.

Hastings Jr, C., Mosteller, F., Tukey, J.W., & Winsor, C.P. (1947). Low moments for small samples:
a comparative study of order statistics. The Annals of Mathematical Statistics, 413-426.

Examples

pp = seq(@, 1, by = 0.001)

partmp <- par(mfrow = c(2,3))

plot(gtlambda(pp, -1), pp, type = "1", main = "lambda = -1 (Cauchy)")
plot(gtlambda(pp, @), pp, type = "1", main = "lambda = @ (logistic)")
plot(gtlambda(pp, @.14), pp, type = "1", main = "lambda = .14 (normal)")
plot(gqtlambda(pp, ©.5), pp, type = "1", main = "lambda = 0.5 (concave)")
plot(gtlambda(pp, 1), pp, type = "1", main = "lambda = 1 (uniform)")
plot(gtlambda(pp, 2), pp, type = "1", main = "lambda = 2 (uniform)")

hist(rtlambda(le5, -1), freq = FALSE, main = "lambda = -1 (Cauchy)")
hist(rtlambda(le5, @), freq = FALSE, main = "lambda = @ (logistic)")
hist(rtlambda(1e5, ©.14), freq = FALSE, main = "lambda = ©0.14 (normal)")
hist(rtlambda(le5, ©.5), freq = FALSE, main = "lambda = ©.5 (concave)")
hist(rtlambda(le5, 1), freq = FALSE, main = "lambda = 1 (uniform)")
hist(rtlambda(1e5, 2), freq = FALSE, main = "lambda = 2 (uniform)")
par(partmp)
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Wald Wald (inverse Gaussian) distribution

Description

Density, distribution function and random generation for the Wald distribution.
Usage

dwald(x, mu, lambda, log = FALSE)

pwald(q, mu, lambda, lower.tail = TRUE, log.p = FALSE)

rwald(n, mu, lambda)

Arguments
X, q vector of quantiles.
mu, lambda location and shape parameters. Scale must be positive.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
n number of observations. If 1length(n) > 1, the length is taken to be the number
required.
p vector of probabilities.
Details

Probability density function

fa) = )2 exp(‘“x‘“)z)

2ma’ 2u2x

Cumulative distribution function
A 2 A
F(z) = ® ([ (x - 1)) +exp () o <\/7 (x + 1))
T \ I T \
Random generation is done using the algorithm described by Michael, Schucany and Haas (1976).

References

Michael, J.R., Schucany, W.R., and Haas, R.W. (1976). Generating Random Variates Using Trans-
formations with Multiple Roots. The American Statistician, 30(2): 88-90.
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Examples

x <- rwald(le5, 5, 16)

hist(x, 100, freq = FALSE)

curve(dwald(x, 5, 16), @, 50, col = "red”, add = TRUE)
hist(pwald(x, 5, 16))

plot(ecdf(x))

curve(pwald(x, 5, 16), @, 50, col = "red”, 1lwd = 2, add = TRUE)

ZIB Zero-inflated binomial distribution

Description

Probability mass function and random generation for the zero-inflated binomial distribution.

Usage

dzib(x, size, prob, pi, log = FALSE)

pzib(q, size, prob, pi, lower.tail = TRUE, log.p = FALSE)
gzib(p, size, prob, pi, lower.tail = TRUE, log.p = FALSE)

rzib(n, size, prob, pi)

Arguments
X, q vector of quantiles.
size number of trials (zero or more).
prob probability of success in each trial. @ < prob <=1.
pi probability of extra zeros.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower. tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number
required.
Details

Probability density function

N+ (A =-m)(1=p)" =0
f(@) { (1—7r)(;‘)p””(1—p)"_”” x>0
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See Also

Binomial

Examples

x <- rzib(le5, 10, 0.6, 0.33)

XX <- -2:20

plot(prop.table(table(x)), type = "h")
lines(xx, dzib(xx, 10, 0.6, 0.33), col

"red")

xx <- seq(@, 20, by = 0.01)
plot(ecdf(x))
lines(xx, pzib(xx, 10, 0.6, 0.33), col = "red")

ZINB Zero-inflated negative binomial distribution

Description

Probability mass function and random generation for the zero-inflated negative binomial distribu-
tion.

Usage
dzinb(x, size, prob, pi, log = FALSE)

pzinb(q, size, prob, pi, lower.tail = TRUE, log.p = FALSE)
gzinb(p, size, prob, pi, lower.tail = TRUE, log.p = FALSE)

rzinb(n, size, prob, pi)

Arguments

X, q vector of quantiles.

size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.

prob probability of success in each trial. @ < prob <= 1.

pi probability of extra zeros.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number

required.
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Details

Probability density function

[T+ (A —m)p" x=0
f(z) = { (1—m) (Hrfl)p"(l —p)* x>0

See Also

NegBinomial
Examples

x <- rzinb(1e5, 100, 0.6, 0.33)

XX <- -2:200

plot(prop.table(table(x)), type = "h")

lines(xx, dzinb(xx, 100, 0.6, 0.33), col = "red")

xx <- seq(@, 200, by = 0.01)

plot(ecdf(x))

lines(xx, pzinb(xx, 100, 0.6, 0.33), col = "red")

ZIP Zero-inflated Poisson distribution

Description

Probability mass function and random generation for the zero-inflated Poisson distribution.
Usage

dzip(x, lambda, pi, log = FALSE)

pzip(q, lambda, pi, lower.tail = TRUE, log.p = FALSE)

gzip(p, lambda, pi, lower.tail = TRUE, log.p = FALSE)

rzip(n, lambda, pi)
Arguments

X, q vector of quantiles.

lambda vector of (non-negative) means.

pi probability of extra zeros.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower. tail logical; if TRUE (default), probabilities are P[X < x] otherwise, P[X > z].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number

required.
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Details

Probability density function

7+(1—me™ =0
) = { (1 —71')”67A x>0

!

See Also

Poisson

Examples

x <- rzip(le5, 6, 0.33)

XX <- -2:20

plot(prop.table(table(x)), type = "h")
lines(xx, dzip(xx, 6, ©0.33), col = "red")

xx <- seq(@, 20, by = 0.01)
plot(ecdf(x))
lines(xx, pzip(xx, 6, ©.33), col = "red")
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GammaPoiss, 24
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