Package ‘fastml’

January 27, 2026

Type Package

Title Guarded Resampling Workflows for Safe and Automated Machine
Learning in R

Version 0.7.7

Description
Provides a guarded resampling workflow for training and evaluating machine-learning models.
When the guarded resampling path is used, preprocessing and model fitting are re-
estimated within
each resampling split to reduce leakage risk. Supports multiple resampling schemes, integrates
with established engines in the 'tidymodels' ecosystem, and aims to improve evaluation reliabil-
ity by
coordinating preprocessing, fitting, and evaluation within supported workflows. Of-
fers a lightweight
AutoML-
style workflow by automating model training, resampling, and tuning across multiple algorithms,
while keeping evaluation design explicit and user-controlled.

Encoding UTF-8
License MIT + file LICENSE

URL https://selcukorkmaz.github.io/fastml-tutorial/,
https://github.com/selcukorkmaz/fastml

BugReports https://github.com/selcukorkmaz/fastml/issues
Depends R (>=4.1.0)

Imports stats, recipes, dplyr, ggplot2, reshape2, rsample, parsnip,
tune, workflows, yardstick, tibble, rlang, dials, RColorBrewer,
baguette, discrim, doFuture, foreach, finetune, future, plsmod,
probably, viridisLite, DALEX, magrittr, pROC, janitor, stringr,
broom, tidyr, purrr, survival, flexsurv, rstpm2, iml, lime,
survRM2, iBreakDown, xgboost, pdp, modelStudio, fairmodels

Suggests testthat (>= 3.0.0), withr, C50, ranger, aorsf, censored,
crayon, kernlab, klaR, kknn, keras, lightgbm, rstanarm,
mixOmics, patchwork, GGally, glmnet, themis, DT, UpSetR, VIM,
dbscan, ggpubr, gridExtra, htmlwidgets, kableExtra, moments,

1

https://selcukorkmaz.github.io/fastml-tutorial/
https://github.com/selcukorkmaz/fastml
https://github.com/selcukorkmaz/fastml/issues

2 Contents

naniar, plotly, scales, skimr, sparsediscrim, knitr, rmarkdown,
pec

RoxygenNote 7.3.3
Config/testthat/edition 3
NeedsCompilation no

Author Selcuk Korkmaz [aut, cre] (ORCID:
<https://orcid.org/0000-0003-4632-6850>),
Dincer Goksuluk [aut] (ORCID: <https://orcid.org/0000-0002-2752-7668>),
Eda Karaismailoglu [aut] (ORCID:
<https://orcid.org/0000-0003-3085-7809>)
Maintainer Selcuk Korkmaz <selcukorkmaz@gmail.com>
Repository CRAN

Date/Publication 2026-01-27 22:50:18 UTC

Contents
availableMethods e e 3
counterfactual_explain 4
defaults_registry e 5
estimate_tuning_time e e e 5
explain_ale e e e 6
explain_dalex L e 7
explain_lime 8
explain_stability 9
fastexplain 10
fastexplore e e e e e 12
fastml L e e e e e e 14
fastml_compute_holdout_results L 22
fastml_guard_validate_indices 24
fastml_normalize survival_status. 25
flatten_and_rename_models 25
get_best_ model_idx L 26
get_best_ model_names 26
get_best_ workflowso 27
get_default_differences 27
get_default_engine 28
get_default_params e 28
get_default_tune_params e 29
GEL_ENZINE_NAMES . . .« « v v v v v v e e e e e e e e e e e e e e 30
get_model_engine_names. 31
get_tuning_complexityo 32
get_tuning_params_for_complexity oL oo 33
interaction_strength L. L e e 34
load_model e e 35
plotfastml 35

plotfastml_stability L 36

https://orcid.org/0000-0003-4632-6850
https://orcid.org/0000-0002-2752-7668
https://orcid.org/0000-0003-3085-7809

availableMethods 3

PlOt_ice e e e e 37
predict.fastml 38
predict_survival 39
print.fastml_stability 40
print_default_differences Lo 40
Print_tuning_presetS e e e e e e e e e e e e e e 41
process_model L e e e 41
recommend_tuning_config 44
reset_default_warnings 44
SANIIZE e 45
savefastml L L L e 45
summary.fastml Lo e 46
SUITOZALE IICC . » « v v v v v v v e 47
train_models e 48
tuning_config 51
validate_defaults_registry 52
warn_default_override e 53
Index 54
availableMethods Get Available Methods
Description

Returns a character vector of algorithm names available for classification, regression or survival

tasks.
Usage
availableMethods(type = c("classification”, "regression”, "survival”), ...)
Arguments
type A character string specifying the type of task. Must be one of "classification”,
"regression”, or "survival”. Defaults to c("classification”, "regression”,
"survival") and uses match.arg to select one.
Additional arguments (currently not used).
Details

Depending on the specified type, the function returns a different set of algorithm names:

* For "classification”, it returns algorithms such as "logistic_reg”, "multinom_reg",
"decision_tree", "C5_rules”, "rand_forest”, "xgboost"”, "lightgbm”, "svm_linear"”,
"svm_rbf", "nearest_neighbor", "naive_Bayes"”, "mlp”, "discrim_linear"”, "discrim_quad"”,

and "bag_tree".

* For "regression”, itreturns algorithms such as "linear_reg
"elastic_net"”, "decision_tree
"svm_rbf", "nearest_neighbor

* For "survival”, it returns algorithms such as "rand_forest
"stratified_cox”, "time_varying_cox

n

s
non
i

"piecewise_exp"”, and "xgboost".

Value

n

mlp

rand_forest”,

non
k]

>

non

counterfactual_explain

n on n

,"ridge_reg”,
xgboost"”, "lightgbm
pls”, and "bayes_glm".

non

non

non

survreg”,

n

royston_parmar”,

n

lasso_reg"”,

non

, "svm_linear”,

, "cox_ph", "penalized_cox",

n

parametric_surv”,

A character vector containing the names of the available algorithms for the specified task type.

counterfactual_explain

Generate counterfactual explanations for a fastml model

Description

Uses DALEX ceteris-paribus profiles (‘predict_profile‘) to compute counterfactual-style what-if
explanations for a given observation.

Usage

counterfactual_explain(

object,

observation,
variables
data

Arguments

object
observation

variables

data

positive_class

event_class

NULL,
c("train”, "test"),
positive_class
event_class =
label_levels

NULL,
NULL,
NULL,

A ‘fastml® object.

A single observation (data frame with one row) to compute counterfactuals for.

Optional character vector of candidate variables to vary. Only numeric variables
are used for counterfactual profiling.

Character string specifying which data to use for the explainer background:
"train" (default) or "test".

Optional string used to filter lines/points in the resulting profiles for classifica-

tion tasks.

Optional event class indicator propagated from ‘fastml_prepare_explainer_inputs()*

(kept for compatibility).

defaults_registry 5

label_levels Optional vector of label levels propagated from ‘fastml_prepare_explainer_inputs()
(kept for compatibility).

Additional arguments passed to ‘DALEX::predict_profile°.

Value

A list (returned invisibly) containing the DALEX profile, filtered lines/points when ‘positive_class*
is supplied, and the plotted object if rendering succeeds.

defaults_registry Defaults Registry for Engine and Parameter Transparency

Description

Functions to track, compare, and warn about differences between fastml defaults and parsnip de-
faults, providing users with full transparency and control over model configuration.

estimate_tuning_time Estimate Tuning Time

Description

Provides a rough estimate of tuning time based on the configuration.

Usage

estimate_tuning_time(
n_params,
n_folds = 10,
n_rows = 1000,
complexity = "balanced”,
tuning_strategy = "grid",
base_fit_time = 1

)

Arguments
n_params Number of parameters being tuned.
n_folds Number of cross-validation folds.
Nn_rows Number of rows in training data.
complexity Tuning complexity level.

tuning_strategy
Tuning strategy ("grid" or "bayes").

base_fit_time Estimated time for a single model fit in seconds.

6 explain_ale

Value

A list with estimated total time and breakdown.

explain_ale Compute Accumulated Local Effects (ALE) for a fastml model

Description

Uses the ‘iml‘ package to calculate ALE for the specified feature.

Usage
explain_ale(object, feature, data = c("train”, "test"), ...)
Arguments
object A ‘fastml® object.
feature Character string specifying the feature name.
data Character string specifying which data to use: "train” (default) or "test".
Additional arguments passed to ‘iml::FeatureEffect’.
Value

An ‘iml‘ object containing ALE results.

Examples
Not run:
data(iris)
iris <- iris[iris$Species != "setosa”, 1]
iris$Species <- factor(iris$Species)
model <- fastml(data = iris, label = "Species")

explain_ale(model, feature = "Sepal.lLength”)

End(Not run)

explain_dalex

explain_dalex

Generate DALEX explanations for a fastml model

Description

Creates a DALEX

explainer and computes permutation based variable importance, partial depen-

dence (model profiles) and Shapley values.

Usage

explain_dalex(
object,

data = c("train”, "test"),
features = NULL,
grid_size = 20,

shap_sample =
vi_iterations
seed = 123,

loss_function

Arguments

object
data

features

grid_size

shap_sample

vi_iterations
seed

loss_function

Value

5y
=10,

= NULL

A fastml object.

Character string specifying which data to use for explanations: "train” (de-
fault) uses training data, "test” uses held-out test data. Using test data pro-
vides explanations that better reflect model generalization, while training data
explanations may be influenced by overfitting.

Character vector of feature names for partial dependence (model profiles). De-
fault NULL.

Number of grid points for partial dependence. Default 20.

Integer number of observations from the selected data source to compute SHAP
values for. Default 5.

Integer. Number of permutations for variable importance (B). Default 10.
Integer. A value specifying the random seed.
Function. The loss function for model_parts.

e IfNULL and task = ’classification’, defaults to DALEX: : loss_cross_entropy.
e IfNULL and task = 'regression’, defaults to DALEX: : loss_root_mean_square.

Invisibly returns a list with variable importance, optional model profiles and SHAP values.

8 explain_lime

explain_lime Generate LIME explanations for a fastml model

Description

Creates a ‘lime* explainer using processed (encoded, scaled) data and returns feature explanations
for new observations. The new observation is automatically preprocessed using the same recipe to
ensure alignment with the explainer background.

Usage

explain_lime(
object,
new_observation,
data = c("train”, "test"),

n_features = 5,
n_labels = 1,
)
Arguments
object A ‘fastml® object.

new_observation
A data frame containing the new observation(s) to explain. Must contain the
same columns as the original training data (before preprocessing). The function
will apply the stored preprocessor to transform it.

data Character string specifying which data to use for the LIME explainer back-
ground: "train” (default) or "test"”.

n_features Number of features to show in the explanation. Default 5.

n_labels Number of labels to explain (classification only). Default 1.

Additional arguments passed to ‘lime::explain®.

Value

An object produced by ‘lime::explain‘.

Examples
Not run:
data(iris)
iris <- iris[iris$Species != "setosa"”,]
iris$Species <- factor(iris$Species)
model <- fastml(data = iris, label = "Species”)

explain_lime(model, new_observation = iris[1, 1)

End(Not run)

explain_stability 9

explain_stability Analyze Feature Importance Stability Across Cross-Validation Folds

Description

Computes feature importance for each fold model and aggregates results to assess the stability of
feature importance rankings across resamples. This helps identify features that are consistently
important vs those whose importance varies across different data subsets.

Usage

explain_stability(
object,
model_name = NULL,
vi_iterations = 10,

seed = 123,
plot = TRUE,
conf_level = 0.95
)
Arguments
object A fastml object trained with store_fold_models = TRUE.
model_name Character string specifying which model to analyze. If NULL, uses the best

model. Should match the format "algorithm (engine)", e.g., "rand_forest (ranger)".

vi_iterations Integer. Number of permutations for variable importance per fold. Default is 10
for faster computation across many folds.

seed Integer. Random seed for reproducibility.
plot Logical. If TRUE (default), displays a stability plot showing mean importance
with confidence intervals.
conf_level Numeric. Confidence level for intervals. Default is 0.95.
Details

This function requires that the fastml model was trained with store_fold_models = TRUE, which
stores the models fitted on each cross-validation fold. Without stored fold models, only the final
best model is available, and cross-fold stability analysis is not possible.

The stability analysis computes permutation-based variable importance for each fold’s model using
DALEX, then aggregates across folds to show:

* Mean importance and standard deviation

* Confidence intervals for importance

* Rank stability (how consistently features rank across folds)

Features with high mean importance but also high variance may be important for some data subsets
but not others, suggesting potential instability in the model’s reliance on those features.

10 fastexplain

Value

A list with class "fastml_stability"” containing:

importance_summary Data frame with aggregated feature importance (mean, sd, se, lower/upper
CI) across folds.

fold_importance List of per-fold variable importance results.

rank_stability Data frame showing how feature ranks vary across folds.

n_folds Number of folds analyzed.

model_name Name of the model analyzed.

Examples

Train model with fold models stored
model <- fastml(
data = iris,

label = "Species”,
algorithms = "rand_forest”,
store_fold_models = TRUE

)

Analyze stability
stability <- explain_stability(model)
print(stability)

fastexplain Explain a fastml model using various techniques

Description

Provides model explainability across several backends. With method = "dalex" it:

* Creates a DALEX explainer from the trained model.

* Computes permutation-based variable importance with vi_iterations permutations and dis-
plays the table and plot.

» Computes partial dependence-like model profiles when features are supplied.

* Computes Shapley values (SHAP) for shap_sample training rows, displays the SHAP table,
and plots a canonical SHAP summary (beeswarm) plot colored by raw feature values and
ordered by mean(|SHAP value|) per feature. For classification, separate panels per class are
shown.

fastexplain

Usage

fastexplain(
object,

11

method = "dalex”,

data

c("train", "test"),

features = NULL,

n_features

5,

variables = NULL,

observation
grid_size
shap_sample
vi_iterations
seed = 123,

loss_function

N

NULL,

0

35,
=10,

NULL,

protected = NULL,

Arguments

object
method

data

features

n_features

variables

observation

grid_size

shap_sample

vi_iterations
seed

loss_function

protected

A fastml object.

Character string specifying the explanation method. Supported values are "dalex”,

"lime", "ice", "ale"”, "surrogate”, "interaction”, "studio”, "fairness”,

"breakdown"”, and "counterfactual”. Defaults to "dalex".

Character string specifying which data to use for explanations: "train” (de-
fault) uses training data, "test” uses held-out test data. Using test data pro-
vides explanations that better reflect model generalization, while training data
explanations may be influenced by overfitting.

Character vector of feature names for partial dependence (model profiles). De-
fault NULL.

Number of features to show in the explanation (used for lime). Default 5.

Character vector. Variable names to compute explanations for (used for coun-
terfactuals).

A single observation for methods that need a new data point (method = "1ime",
method = "counterfactual”, or method = "breakdown"). Default NULL.

Number of grid points for partial dependence. Default 20.

Integer number of observations from the selected data source to compute SHAP
values for. Default 5.

Integer. Number of permutations for variable importance (B). Default 10.
Integer. A value specifying the random seed.
Function. The loss function for model_parts

e IfNULL and task = ’classification’, defaults to DALEX: : loss_cross_entropy.
e IfNULL and task = regression’, defaults to DALEX: : loss_root_mean_square.

Character or factor vector of protected attribute(s) required for method = "fairness".
Default NULL.

12 fastexplore

Additional arguments passed to the underlying helper functions for the chosen
method.

Details

» Data source selection: By default, explanations are computed on training data (data = "train"),
which reflects in-sample model behavior and may be influenced by overfitting. Set data =
"test" to compute explanations on held-out test data for a more realistic assessment of how
the model uses features on unseen data.

* Method dispatch: method can route to LIME, ICE, ALE, surrogate tree, interaction strengths,
DALEX/modelStudio dashboards, fairness diagnostics, iBreakDown contributions, or coun-
terfactual search.

* Variable importance controls: Use vi_iterations to tune permutation stability and loss_function
to override the default DALEX loss (cross-entropy for classification, RMSE for regression).

* Fairness and breakdown support: Provide protected for method = "fairness” and an
observation for method = "breakdown" or method = "counterfactual”. Observations are
aligned to the explainer data before scoring.

Value

For DALEX-based methods, prints variable importance, model profiles, and SHAP summaries.
Other methods return their respective explainer objects (e.g., LIME explanations, ALE plot, sur-
rogate tree, interaction strengths, modelStudio dashboard, fairmodels object, breakdown object, or
counterfactual results), usually invisibly after plotting or printing.

Note

By default, explanations use training data. For unbiased feature importance estimates that better
reflect model generalization, use data = "test” to compute explanations on held-out test data.

fastexplore Lightweight exploratory helper

Description

‘fastexplore()‘ is an optional, lightweight exploratory data analysis (EDA) helper. It returns sum-
mary tables and plot objects; it only writes to disk or renders a report when you explicitly request it
via ‘save_results® or ‘render_report".

Usage

fastexplore(
data,
label = NULL,
visualize = c("histogram”, "boxplot”, "barplot”, "heatmap”, "scatterplot”),
save_results = FALSE,
render_report = FALSE,

fastexplore 13

output_dir = NULL,

sample_size = NULL,

interactive = FALSE,
corr_threshold = 0.9,
auto_convert_numeric = TRUE,
visualize_missing = TRUE,
imputation_suggestions = FALSE,
report_duplicate_details = TRUE,
detect_near_duplicates = FALSE,
auto_convert_dates = FALSE,
feature_engineering = FALSE,
outlier_method = c("igr", "zscore”, "dbscan”, "lof"),
run_distribution_checks = TRUE,
normality_tests = c("shapiro”),
pairwise_matrix = TRUE,
max_scatter_cols = 5,
grouped_plots = TRUE,
use_upset_missing = TRUE

)
Arguments
data A ‘data.frame* to explore.
label Optional column name of the target/label. If supplied and categorical, grouped
plots and class balance summaries are produced.
visualize Character vector indicating which plot families to build. Defaults to ‘c("histogram",

non

"boxplot", "barplot”, "heatmap", "scatterplot")*.

save_results Logical; if ‘TRUE’, plots/results are saved under ‘output_dir‘ (defaults to the
working directory). Default is ‘FALSE".

render_report Logical; if “TRUE®, a short HTML report is rendered via ‘rmarkdown‘ (if avail-
able). Default is ‘FALSE".

output_dir Directory to save results/report when ‘save_results‘ or ‘render_report‘ is “TRUE".

sample_size Optional integer; if supplied, visualizations are produced on a random sample
of this size.
interactive Logical; if “TRUE* and ‘plotly*‘ is available, an interactive correlation heatmap
is produced. Falls back to static ggplot output otherwise.
corr_threshold Absolute correlation threshold for flagging high correlations.
auto_convert_numeric
Logical; convert factor/character columns that look numeric into numeric.
visualize_missing
Logical; if “TRUE", include simple missingness visualizations.
imputation_suggestions
Logical; if ‘TRUE', prints lightweight suggestions based on missingness pat-

terns.
report_duplicate_details

Logical; if ‘TRUE®, returns a small sample of duplicated rows when present.

14 fastml

detect_near_duplicates
Placeholder for future fuzzy duplicate checks.

auto_convert_dates
Logical; convert YYYY-MM-DD strings to ‘Date".

feature_engineering
Logical; if “TRUE®, derive day/month/year from date columns to aid inspection
of temporal structure.

ne n

outlier_method One of “"igr"*, ‘"zscore"‘, “"dbscan"*, ‘"lof"*.

run_distribution_checks
Logical; if “TRUE, run normality tests on numeric columns.

normality_tests
Character vector of normality tests to run; currently supports
“ks".

pairwise_matrix
Logical; if “TRUE* and ‘GGally‘ is available, returns a ggpairs scatterplot matrix
for a subset of numeric columns.

max_scatter_cols
Maximum number of numeric columns to include in the pairwise matrix.

on

shapiro"* and

grouped_plots Logical; if “TRUE® and ‘label‘ is a factor, group histograms/boxplots/density
plots by label.

use_upset_missing
Logical; retained for compatibility. When ‘TRUE® and ‘UpSetR‘ is installed, an
UpSet plot of missingness is returned; otherwise a simpler missingness heatmap
is used.

Details

This helper is intentionally decoupled from the core modeling workflow. Most of its heavy depen-
dencies are treated as optional and loaded via ‘requireNamespace()* when requested features are
used.

Value

A list of summaries (tables/tibbles) and plot objects (ggplot/plotly), plus any saved file paths when
‘save_results‘/‘render_report* are enabled.

fastml Fast Machine Learning Function

Description

Trains and evaluates multiple classification or regression models automatically detecting the task
based on the target variable type.

fastml

Usage

fastml(
data = NULL,
train_data = NULL,
test_data = NULL,

label,
algorithms = "all"”,
task = "auto",

test_size = 0.2,

resampling_method = if (identical(task, "survival”)) "none
folds = ifelse(grepl(”cv"”, resampling_method), 10, 25),
repeats = NULL,

group_cols = NULL,

block_col = NULL,

block_size = NULL,

initial_window = NULL,

assess_window = NULL,

n

else "cv",

skip = 9,
outer_folds = NULL,
event_class = "first”,

exclude = NULL,

recipe = NULL,

tune_params = NULL,
engine_params = list(),
metric = NULL,
class_threshold = "auto”,
algorithm_engines = NULL,
use_parsnip_defaults = FALSE,
warn_engine_defaults = TRUE,
n_cores = 1,

stratify = TRUE,

impute_method = "error”,
encode_categoricals = TRUE,
scaling_methods = c("center”, "scale"),
balance_method = "none”,

resamples = NULL,
summaryFunction = NULL,
use_default_tuning = FALSE,
tuning_strategy = "grid"”,
tuning_iterations = 10,
tuning_complexity = "balanced”,
grid_levels = NULL,
early_stopping = FALSE,
adaptive = FALSE,
learning_curve = FALSE,
seed = 123,

verbose = FALSE,

eval_times = NULL,

15

16 fastml

survival_metric_convention = "fastml”,
bootstrap_ci = TRUE,

bootstrap_samples = 500,
bootstrap_seed = NULL,
at_risk_threshold = 0.1,

audit_mode = FALSE,

multiclass_auc = "macro”,
store_fold_models = FALSE

Arguments

data A data frame containing the complete dataset. If both ‘train_data‘ and ‘test_data‘
are ‘NULL®, ‘fastml()‘ will split this into training and testing sets according
to ‘test_size‘ and ‘stratify‘. When ‘group_cols® is supplied, the holdout keeps
groups intact; when ‘block_col® is supplied, the holdout uses the last rows in
time order. Defaults to ‘NULL".

train_data A data frame pre-split for model training. If provided, ‘test_data® must also be
supplied, and no internal splitting will occur. Defaults to ‘NULL".

test_data A data frame pre-split for model evaluation. If provided, ‘train_data‘ must also
be supplied, and no internal splitting will occur. Defaults to ‘NULL".

label A string specifying the name of the target variable. For survival analysis, supply
a character vector with the names of the time and status columns.

algorithms A vector of algorithm names to use. Default is "all” to run all supported algo-
rithms.

task Character string specifying model type selection. Use "auto" to let the function

detect whether the target is for classification, regression, or survival based on
the data. Survival is detected when ‘label is a character vector of length 2 that
matches time and status columns in the data. You may also explicitly set to

non

"classification", "regression", or "survival".

test_size A numeric value between 0 and 1 indicating the proportion of the data to use for
testing. For grouped holdout, this is applied to groups; for time-ordered holdout,
it selects the final proportion of rows. Default is 0. 2.

resampling_method
A string specifying the resampling method for model evaluation. Defaultis "cv"
(cross-validation) for classification/regression. Other options include "none”,
"boot"”, "repeatedcv”, "grouped_cv”, "blocked_cv”, "rolling_origin”,
and "nested_cv". For survival tasks, resampling is supported for parsnip-
compatible engines (e.g., censored/ranger, glmnet). Native survival engines
(flexsurv/rstpm2/custom xgboost) ignore resampling and will error if custom re-
samples are supplied. When the task auto-detects survival and resampling_method
is omitted, it defaults to "none” so native engines continue to run; set it explic-
itly to enable resampling for parsnip survival fits.

folds An integer specifying the number of folds for cross-validation. Default is 10 for
methods containing "cv" and 25 otherwise.

repeats Number of times to repeat cross-validation (only applicable for methods like
"repeatedcv").

fastml 17

group_cols Character vector naming one or more grouping columns used when resampling_method
= "grouped_cv" or when grouped nested cross-validation is desired. All rows
that share the same combination of values remain together in every fold. Columns
must exist in the training data and cannot contain missing values.

block_col Single column name that defines the ordering variable for resampling_method
= "blocked_cv" or "rolling_origin". Data must already be sorted in ascend-
ing order by this column to avoid leakage from future observations.

block_size Positive integer specifying the block size for "blocked_cv".

initial_window Positive integer giving the number of observations in the initial training window
for "rolling_origin” resampling.

assess_window Positive integer giving the number of observations in each assessment window
for "rolling_origin” resampling.

skip Non-negative integer specifying how many potential rolling windows to skip be-
tween successive resamples when resampling_method = "rolling_origin”.

outer_folds Positive integer giving the number of outer folds to use when resampling_method
= "nested_cv" and no custom resamples object is supplied.

event_class A single string. Either "first" or "second" to specify which level of the binary
outcome factor to treat as the positive class (the "event"). For binary classifi-
cation, "first" treats the first factor level as the positive class, "second" treats
the second level as positive. Use levels(your_data$outcome) to check level
order before training. Default is "first".

exclude A character vector specifying the names of the columns to be excluded from the
training process.

recipe A user-defined recipe object for custom preprocessing. If provided, internal
recipe steps (imputation, encoding, scaling) are skipped.

tune_params A named list of tuning ranges for each algorithm and engine pair. Example:
list(rand_forest = list(ranger = list(mtry =c(1, 3)))) will override the
defaults for the ranger engine. Default is NULL.

engine_params A named list of engine-level arguments to pass directly to the underlying model
fitting functions. Use this for fixed settings that should apply whenever an engine
is fitted (for example, list(royston_parmar = list(rstpm2 =1list(link =
"P0"))), list(cox_ph =1ist(survival =list(ties = "breslow”))),orlist(rand_forest
=list(ranger = list(importance = "impurity”)))). These arguments are
distinct from tune_params, which define ranges of hyperparameters to explore
during tuning. Default is an empty list.

metric The performance metric to optimize during training. For classification, options
include "accuracy”, "roc_auc”, "logloss”, "brier_score”, and "ece” (plus
other class metrics).

class_threshold
For binary classification, controls how class probabilities are converted into hard
class predictions during holdout evaluation. Numeric values in (0, 1) set a fixed
threshold. The default "auto” tunes a threshold on the training data to maximize
F1; use "model” to keep the model’s default threshold.

algorithm_engines
A named list specifying the engine to use for each algorithm.

18

fastml

use_parsnip_defaults
Logical. If TRUE, fastml uses parsnip’s default engines instead of fastml’s opti-
mized defaults. This provides compatibility with standard tidymodels behavior.
If FALSE (default), fastml uses its own curated engine defaults which may differ
from parsnip. When engines differ, a warning is issued unless algorithm_engines
explicitly specifies the engine. Use print_default_differences() to see all
differences.

warn_engine_defaults
Logical. If TRUE (default), warns when fastml’s default engine differs from
parsnip’s default. Set to FALSE to suppress these warnings. Warnings are only
shown once per algorithm per session.

n_cores An integer specifying the number of CPU cores to use for parallel processing.
Default is 1.

stratify Logical indicating whether to use stratified sampling when splitting the data.
Only applied to random holdout splitting. Default is TRUE for classification and
FALSE for regression.

impute_method Method for handling missing values. Options include:

"medianImpute” Impute missing values using median imputation (recipe-based).

"knnImpute” Impute missing values using k-nearest neighbors (recipe-based).

"bagImpute” Impute missing values using bagging (recipe-based).

"remove” Remove rows with missing values from the data (recipe-based).

"error” Do not perform imputation; if missing values are detected, stop exe-
cution with an error.

NULL Equivalent to "error”. No imputation is performed, and the function will
stop if missing values are present.

All imputation occurs inside the recipe so the same trained preprocessing can be
applied at prediction time. Default is "error”.
encode_categoricals
Logical indicating whether to encode categorical variables. Default is TRUE.
scaling_methods
Vector of scaling methods to apply. Default is c("center”, "scale”).

non

balance_method Method to handle class imbalance. One of "none”, "upsample”, or "downsample”.
Applied inside the preprocessing recipe so each resampling split is balanced in-
dependently (requires the themis package when enabled). Default is "none”.

resamples Optional rsample object providing custom resampling splits. If supplied, resampling_method,
folds, and repeats are ignored.

summaryFunction
A custom summary function for model evaluation. Default is NULL.

use_default_tuning
Logical. Tuning only runs when resamples are supplied and tuning_strategy
is not "none”. If TRUE and tune_params is NULL, default grids are used; if
tune_params is provided, those values override/extend defaults. When FALSE
and no custom parameters are given, models are fitted once with default settings.
If no resamples are available or tuning_strategy = "none”, tuning requests
are ignored with a warning. Default is FALSE.

fastml

tuning_strategy

19

A string specifying the tuning strategy. Must be one of "grid”, "bayes”,
or "none”. Default is "grid”. If custom tune_params are provided while
tuning_strategy = "none”, they will be ignored with a warning.

tuning_iterations

Number of iterations for Bayesian tuning. Ignored when tuning_strategy is
not "bayes”. Validation of this argument only occurs for the Bayesian strategy.
Default is 10.

tuning_complexity

grid_levels

early_stopping

adaptive

learning_curve

seed

verbose

eval_times

Character string specifying a tuning complexity preset that controls grid density
and parameter range width. One of:

"quick” Minimal tuning (2 levels/param, ~32 combinations for 5 params). Best
for: prototyping, debugging, time-constrained scenarios.

"balanced” Standard tuning (3 levels/param, ~243 combinations). Best for:
most production use cases. This is the default.

"thorough” Comprehensive tuning (5 levels/param, ~3,125 combinations). Best
for: final model selection, publications.

"exhaustive” Maximum coverage (7 levels/param, ~16,807 combinations).
Best for: research, competitions. Consider Bayesian tuning instead.

See print_tuning_presets for detailed comparison. Ignored if grid_levels
is explicitly set.
Integer specifying the number of levels per parameter for grid search. Higher
values create denser grids but increase computation time exponentially (grid size
= levels"n_params). Typical values:

e 2: Very fast, minimal coverage

¢ 3: Balanced (default via tuning_complexity = "balanced")

* 5: Thorough coverage

¢ 7+: Exhaustive (consider Bayesian tuning instead)

If NULL (default), determined by tuning_complexity.

Logical indicating whether to use early stopping in Bayesian tuning methods (if
supported). Default is FALSE.

Logical indicating whether to use adaptive/racing methods for tuning. Default
is FALSE.

Logical. If TRUE, generate learning curves (performance vs. training size).

An integer value specifying the random seed for reproducibility. fastml also con-
figures parallel backends for deterministic RNG streams when possible; some
external engines (e.g., h20, spark, keras) may still be nondeterministic and will
emit a warning.

Logical; if TRUE, prints progress messages during the training and evaluation
process.

Optional numeric vector of evaluation horizons for survival models. When
NULL, defaults to the median and 75th percentile of the observed follow-up times
(rounded to the dataset’s time unit).

20

fastml

survival_metric_convention
Character string specifying which survival metric conventions to follow. ‘"fastml"*
(default) uses fastml’s internal defaults for evaluation horizons and t_max. ‘"tidy-
models"‘ uses ‘eval_times* as the explicit evaluation grid and applies yardstick-
style Brier/IBS normalization; when ‘eval_times* is ‘NULL’, time-dependent
Brier metrics are omitted.

bootstrap_ci Logical indicating whether bootstrap confidence intervals should be computed
for performance metrics. Applies to all task types.

bootstrap_samples
Integer giving the number of bootstrap resamples to use when bootstrap_ci =
TRUE. Defaults to 500.

bootstrap_seed Optional seed passed to the bootstrap procedure used to estimate confidence
intervals. When omitted, defaults to ‘seed‘ for reproducible intervals; set to
‘NULL' to allow random bootstrap draws.

at_risk_threshold
Numeric value between 0 and 1 used for survival metrics to determine the last
follow-up time (¢,,4,). The maximum time is set to the largest observed time
where at least this proportion of subjects remain at risk.

audit_mode Logical; if TRUE, enables runtime auditing of custom preprocessing hooks and
records potentially unsafe behaviour (such as global environment access or file
I/O) while flagging the run as potentially unsafe.

multiclass_auc For multiclass ROC AUC, the averaging method to use: “"'macro"‘ (default,
tidymodels) or ‘"macro_weighted"‘. Macro weights each class equally, while
macro_weighted weights by class prevalence and can change model rankings
on imbalanced data.

store_fold_models
Logical. If TRUE, stores the models trained on each cross-validation fold (mem-
ory intensive). This enables explain_stability to compute feature impor-
tance across folds and assess explanation stability. Default is FALSE.

Details

Fast Machine Learning Function

Trains and evaluates multiple classification or regression models. The function automatically de-
tects the task based on the target variable type and can perform advanced hyperparameter tuning
using various tuning strategies.

Model selection is based exclusively on resampling metrics (cross-validation or nested CV). The
holdout split is reserved for final performance estimation and is never used to choose the best model,
mirroring tidymodels: :last_fit() semantics.

For multiclass ROC AUC, fastml defaults to macro averaging (tidymodels). Macro treats each class
equally, while macro_weighted weights by class prevalence and can change model rankings on
imbalanced data. Keep the same setting when comparing runs.

Tuning: Speed vs Robustness Trade-offs

Hyperparameter tuning involves a fundamental trade-off between computational cost and the likeli-
hood of finding optimal hyperparameters. fastml provides presets via tuning_complexity to make
this trade-off explicit:

fastml 21

Level Grid Size* Time Quality Use Case

quick ~32 ~1x Low Prototyping, debugging
balanced ~243 ~10x Medium Most production use
thorough ~3,125 ~100x High Final models, papers
exhaustive ~16,807 ~1000x Very High Research, competitions

*Grid size shown for 5 tunable parameters (levels"5)

Recommendations:

* Start with tuning_complexity = "quick” during development

* Use "balanced"” (default) for most production pipelines

¢ Switch to "thorough” for final model selection

* Consider tuning_strategy = "bayes” instead of exhaustive grid search
* Enable adaptive = TRUE for early stopping of poor configurations

Use print_tuning_presets to see all presets and estimate_tuning_time to estimate runtime
before starting.

Value

An object of class fastml containing the best model, performance metrics, and other information.

Factor Level Warning

For binary classification, the interpretation of metrics like sensitivity, specificity, and ROC AUC de-
pends on which factor level is treated as the "positive" class (the event of interest). The event_class
parameter controls this:

e "first” (default): The first factor level is treated as positive

» "second”: The second factor level is treated as positive
Important: Recipe preprocessing steps like step_other() or step_unknown() can modify factor

levels, potentially changing which level is "first" or "second". Always verify factor levels after
preprocessing.

To ensure consistent behavior, explicitly set factor levels before calling fastml:

Ensure "positive” is the second level (event_class = "second")
data$outcome <- factor(data$outcome, levels = c("negative”, "positive"))
Or ensure "positive"” is the first level (event_class = "first")

data$outcome <- factor(data$outcome, levels = c("positive”, "negative"))

22 fastml_compute_holdout_results

Examples

Example 1: Using the iris dataset for binary classification (excluding 'setosa')
data(iris)

iris <- iris[iris$Species != "setosa”,] # Binary classification

iris$Species <- factor(iris$Species)

Define a custom tuning grid for the ranger engine
tune <- list(
rand_forest = list(
ranger = list(mtry = c(1, 3))
)
)

Train models with custom tuning
model <- fastml(
data = iris,
label = "Species”,
algorithms = "rand_forest”,
tune_params = tune,
use_default_tuning = TRUE
)

View model summary
summary (model)

fastml_compute_holdout_results
Evaluate Models Function

Description

Evaluates the trained models on the test data and computes performance metrics.

Usage

fastml_compute_holdout_results(
models,
train_data,
test_data,
label,
start_col = NULL,
time_col = NULL,
status_col = NULL,
task,
metric = NULL,

fastml_compute_holdout_results

event_class,

class_threshold = "auto”,

eval_times = NULL,

bootstrap_ci = TRUE,

bootstrap_samples = 500,
bootstrap_seed = 1234,
at_risk_threshold = 0.1,
survival_metric_convention = "fastml”,
precomputed_predictions = NULL,
summaryFunction = NULL,

23

multiclass_auc = "macro”
Arguments
models A list of trained model objects.

train_data Preprocessed training data frame.

test_data Preprocessed test data frame.

label Name of the target variable. For survival analysis this should be a character
vector of length two giving the names of the time and status columns.

start_col Optional string. The name of the column specifying the start time in count-
ing process (e.g., ‘(start, stop, event)) survival data. Only used when task =
"survival”.

time_col String. The name of the column specifying the event or censoring time (the
"stop" time in counting process data). Only used when task = "survival”.

status_col String. The name of the column specifying the event status (e.g., 0 for censored,
1 for event). Only used when task = "survival”.

task Type of task: "classification", "regression", or "survival".

metric The performance metric to optimize (e.g., "accuracy", "rmse").

event_class

class_threshold

eval_times

bootstrap_ci

A single string. Either "first" or "second" to specify which level of truth to
consider as the "event".

For binary classification, controls how class probabilities are converted into hard
class predictions. Numeric values in (0, 1) set a fixed threshold. The default
“"auto"‘ tunes a threshold on the training data to maximize F1; use ‘"model"‘ to
keep the model’s default threshold.

Optional numeric vector of evaluation horizons for survival metrics. Passed
through to process_model.

"e o

Logical indicating whether bootstrap confidence intervals should be computed
for the evaluation metrics.

bootstrap_samples

Number of bootstrap resamples used when bootstrap_ci = TRUE.

bootstrap_seed Optional integer seed for the bootstrap procedure used in metric estimation.
at_risk_threshold

Minimum proportion of subjects that must remain at risk to define ¢,,,, when
computing survival metrics such as the integrated Brier score.

24 fastml_guard_validate_indices

survival_metric_convention
Character string specifying which survival metric conventions to follow. ‘"fastml"*
(default) uses fastml’s internal defaults for evaluation horizons and t_max. ‘"tidy-
models"‘ uses ‘eval_times* as the explicit evaluation grid and applies yardstick-
style Brier/IBS normalization; when ‘eval_times* is ‘NULL’, time-dependent
Brier metrics are omitted.

precomputed_predictions
Optional data frame or nested list of previously generated predictions (per al-
gorithm/engine) to reuse instead of recomputing. This is mainly used when
combining results across engines.

summaryFunction
Optional custom classification metric function passed through to process_model
for holdout evaluation.

multiclass_auc For multiclass ROC AUC, the averaging method to use: “"macro"‘ (default,
tidymodels) or ‘"'macro_weighted"‘. Macro weights each class equally, while
macro_weighted weights by class prevalence and can change model rankings
on imbalanced data.

Value

A list with two elements:

performance A named list of performance metric tibbles for each model.

predictions A named list of data frames with columns including truth, predictions, and probabili-
ties per model.

fastml_guard_validate_indices
Guarded Resampling Utilities

Description
Internal helpers that enforce the Guarded Resampling Principle by fitting preprocessing pipelines
independently within each resampling split. These functions are not exported.

Usage

fastml_guard_validate_indices(indices, label)

Arguments

indices Numeric vector of row indices for a resample split.

label Character string used to identify the index source in errors.

fastml_normalize_survival_status 25

fastml_normalize_survival_status

Internal helpers for survival-specific preprocessing

Description

These utilities standardize survival status indicators so that downstream metrics always receive the
conventional coding (0 = censored, 1 = event). The functions are intentionally unexported and are
used across multiple internal modules. Normalize survival status coding to 0/1 representation

Usage

fastml_normalize_survival_status(status_vec, reference_length = NULL)

Arguments

status_vec A vector containing survival status information. May be numeric, logical, factor,
or character.
reference_length

Optional integer specifying the desired length of the returned vector. When
‘status_vec‘ is ‘NULL’, this value controls the length of the output (defaulting
to 0 when not supplied).

Details

This helper attempts to coerce a status vector into a numeric format where O represents censoring
and 1 represents the event indicator. It accepts a variety of common encodings such as 1/2, logical
values, factors, or character labels. When the supplied values deviate from the canonical coding,
the function records that a recode was performed so callers can communicate this to the user (once).

Value

A list with two elements: ‘status‘, the recoded numeric vector, and ‘recoded’, a logical flag indicat-
ing whether a non-standard encoding was detected.

flatten_and_rename_models
Flatten and Rename Models

Description

Flatten and Rename Models

Usage

flatten_and_rename_models(models)

26 get_best_model_names

Arguments

models A named list of model objects, optionally nested by engine.

get_best_model_idx Get Best Model Indices by Metric and Group

Description

Get Best Model Indices by Metric and Group

Usage

get_best_model_idx(df, metric, group_cols = c("Model”, "Engine"))

Arguments
df Data frame containing model performance metrics.
metric Character string naming the column that holds the metric values.
group_cols Character vector of columns used to group models.

get_best_model_names Get Best Model Names

Description

Extracts and returns the best engine names from a named list of model workflows.

Usage

get_best_model_names(models)

Arguments
models A named list where each element corresponds to an algorithm and contains a list
of model workflows. Each workflow should be compatible with tune: :extract_fit_parsnip.
Details

For each algorithm, the function extracts the engine names from the model workflows using tune: :extract_fit_parsnip.
It then chooses "randomForest” if it is available; otherwise, it selects the first non-NA engine. If no
engine names can be extracted for an algorithm, NA_character_ is returned.

Value

A named character vector. The names of the vector correspond to the algorithm names, and the
values represent the chosen best engine name for that algorithm.

get_best_workflows 27

get_best_workflows Get Best Workflows

Description

Extracts the best workflows from a nested list of model workflows based on the provided best model
names.

Usage

get_best_workflows(models, best_model_name)

Arguments

models A nested list of model workflows.
best_model_name
A named character vector of chosen best engines.

get_default_differences
Get All Default Differences Summary

Description

Returns a summary of all differences between fastml and parsnip defaults for the specified algo-
rithms.

Usage

get_default_differences(algorithms, task = "classification"”)

Arguments

algorithms Character vector of algorithm names.

task Task type ("classification", "regression", or "survival").

Value

A data frame summarizing the differences.

28 get_default_params

get_default_engine Get Default Engine

Description

Returns the default engine corresponding to the specified algorithm.

Usage

get_default_engine(algo, task = NULL)

Arguments
algo A character string specifying the name of the algorithm. The value should match
one of the supported algorithm names.
task Optional task type (e.g., "classification”, "regression”, or "survival”).
Used to determine defaults that depend on the task.
Details

The function uses a switch statement to select the default engine based on the given algorithm. For
survival random forests, the function defaults to "aorsf”. If the provided algorithm does not have
a defined default engine, the function terminates with an error.

Value

A character string containing the default engine name associated with the provided algorithm.

get_default_params Get Default Parameters for an Algorithm

Description

Returns a list of default tuning parameters for the specified algorithm based on the task type, number
of predictors, and engine.

Usage

get_default_params(algo, task, num_predictors = NULL, engine = NULL)

get_default_tune_params 29

Arguments

algo A character string specifying the algorithm name. Supported values include:

non

"rand_forest”, "C5_rules”, "xgboost”, "lightgbm”, "logistic_reg"”, "multinom_reg",
"decision_tree"”, "svm_linear”, "svm_rbf", "nearest_neighbor”, "naive_Bayes",
"mlp"”, "deep_learning”, "discrim_linear", "discrim_quad”, "bag_tree",

n n n n n n

"elastic_net"”, "bayes_glm”, "pls”, "linear_reg"”, "ridge_reg", "lasso_reg",
and "penalized_cox".

task A character string specifying the task type, typically "classification” or
"regression”.

num_predictors An optional numeric value indicating the number of predictors. This value is
used to compute default values for parameters such as mtry. Defaults to NULL.

engine An optional character string specifying the engine to use. If not provided, a
default engine is chosen where applicable.

Details

The function employs a switch statement to select and return a list of default parameters tailored
for the given algorithm, task, and engine. The defaults vary by algorithm and, in some cases, by
engine. For example:

* For "rand_forest”, if engine is not provided, it defaults to "ranger". The parameters such
as mtry, trees, and min_n are computed based on the task and the number of predictors.

e For "C5_rules”, the defaults include trees, min_n, and sample_size.

* For "xgboost” and "lightgbm"”, default values are provided for parameters like tree depth,
learning rate, and sample size.

* For "logistic_reg” and "multinom_reg"”, the function returns defaults for regularization

parameters (penalty and mixture) that vary with the specified engine.

* For "decision_tree”, the parameters (such as tree_depth, min_n, and cost_complexity)
are set based on the engine (e.g., "rpart”, "C5.0", "partykit"”, "spark").

* Other algorithms, including "svm_linear"”, "svm_rbf", "nearest_neighbor"”, "naive_Bayes",

"mlp"”, "deep_learning”, "elastic_net”, "bayes_glm", "pls"”, "linear_reg", "ridge_reg",
and "lasso_reg", have their respective default parameter lists.

Value

A list of default parameter settings for the specified algorithm. If the algorithm is not recognized,
the function returns NULL.

get_default_tune_params
Get Default Tuning Parameters

Description

Returns a list of default tuning parameter ranges for a specified algorithm based on the provided
training data, outcome label, and engine.

30 get_engine_names

Usage

get_default_tune_params(algo, train_data, label, engine)

Arguments
algo A character string specifying the algorithm name. Supported values include:
"rand_forest"”, "C5_rules”, "xgboost"”, "lightgbm"”, "logistic_reg"”, "multinom_reg",
"decision_tree”, "svm_linear”, "svm_rbf", "nearest_neighbor”, "naive_Bayes",
"mlp"”, "deep_learning”, "discrim_linear", "discrim_quad”, "bag_tree",
"elastic_net"”, "bayes_glm”, "pls”, "linear_reg", "ridge_reg", and "lasso_reg".
train_data A data frame containing the training data.
label A character string specifying the name of the outcome variable in train_data.
This column is excluded when calculating the number of predictors.
engine A character string specifying the engine to be used for the algorithm. Different
engines may have different tuning parameter ranges.
Details

The function first determines the number of predictors by removing the outcome variable (speci-
fied by label) from train_data. It then uses a switch statement to select a list of default tuning
parameter ranges tailored for the specified algorithm and engine. The tuning ranges have been ad-
justed for efficiency and may include parameters such as mtry, trees, min_n, and others depending
on the algorithm.

Value

A list of tuning parameter ranges for the specified algorithm. If no tuning parameters are defined
for the given algorithm, the function returns NULL.

get_engine_names Get Engine Names from Model Workflows

Description

Extracts and returns a list of unique engine names from a list of model workflows.

Usage

get_engine_names(models)

Arguments

models A list where each element is a list of model workflows. Each workflow is ex-
pected to contain a fitted model that can be processed with tune: :extract_fit_parsnip.

get_model_engine_names 31

Details

The function applies tune: :extract_fit_parsnip to each model workflow to extract the fitted
model object. It then retrieves the engine name from the model specification (spec$engine). If the
extraction fails, NA_character_ is returned for that workflow. Finally, the function removes any
duplicate engine names using unique.

Value

A list of character vectors. Each vector contains the unique engine names extracted from the corre-
sponding element of models.

get_model_engine_names
Get Model Engine Names

Description
Extracts and returns a named vector mapping algorithm names to engine names from a nested list
of model workflows.

Usage

get_model_engine_names(models)

Arguments
models A nested list of model workflows. Each inner list should contain model objects
from which a fitted model can be extracted using tune: :extract_fit_parsnip.
Details

The function iterates over a nested list of model workflows and, for each workflow, attempts to
extract the fitted model object using tune: :extract_fit_parsnip. If successful, it retrieves the
algorithm name from the first element of the class attribute of the model specification and the engine
name from the specification. The results are combined into a named vector.

Value

A named character vector where the names correspond to algorithm names (e.g., "rand_forest”,
"logistic_reg") and the values correspond to the associated engine names (e.g., "ranger”, "glm").

32 get_tuning_complexity

get_tuning_complexity Tuning Complexity Presets

Description

Returns the configuration for a given tuning complexity level, including grid levels, parameter
ranges, and expected computational characteristics.

Usage

get_tuning_complexity(
complexity = c("balanced”, "quick"”, "thorough"”, "exhaustive")

)

Arguments

complexity Character string specifying the tuning complexity level. One of:

"quick” Minimal tuning for fast iteration. 2-3 levels per parameter, narrow
ranges. Best for: initial exploration, prototyping, small datasets, time-
constrained scenarios. Typical grid size: 4-27 points.

"balanced” Moderate tuning balancing speed and thoroughness. 3-4 levels per
parameter, standard ranges. Best for: most production use cases, medium
datasets. Typical grid size: 27-256 points. This is the default.

"thorough” Comprehensive tuning for maximum model quality. 4-5 levels per
parameter, wide ranges. Best for: final model selection, publications, com-
petitions, when compute time is not a constraint. Typical grid size: 256-
3125 points.

"exhaustive” Maximum coverage tuning. 5-7 levels per parameter, very wide
ranges. Best for: research, benchmarking, when you need to be certain
you’ve found the best hyperparameters. Warning: Can be very slow. Typi-
cal grid size: 1000-10000+ points. Consider using Bayesian tuning instead.

Details
Speed-Robustness Trade-offs

Hyperparameter tuning involves a fundamental trade-off between computational cost and the like-
lihood of finding optimal hyperparameters:

Level Grid Size Time Robustness Use Case

quick 4-27 ~1x Low Prototyping, debugging
balanced 27-256 ~10x Medium Most production use
thorough 256-3125 ~100x High Final models, papers

exhaustive 1000-10000+ ~1000x Very High Research, competitions

Recommendations:

get_tuning_params_for_complexity 33

1. **Start with "quick"** during development to iterate fast 2. **Use "balanced"** for most
production pipelines 3. **Switch to "thorough"** for final model selection 4. **Consider Bayesian
tuning** (‘tuning_strategy = "bayes" ‘) for high-dimensional parameter spaces instead of exhaustive
grid search 5. **Use adaptive/racing** (‘adaptive = TRUE®) to early-stop poor configurations

Computational Scaling:

Grid search scales as O(L"P * F * N) where: - L = number of levels per parameter - P = number of
parameters being tuned - F = number of cross-validation folds - N = dataset size

For a model with 5 tunable parameters and 10-fold CV: - quick (L=2): 275 * 10 = 320 model fits -
balanced (L=3): 3”5 * 10 = 2,430 model fits - thorough (L=5): 525 * 10 = 31,250 model fits

Value
A list with components:

grid_levels Integer number of levels per parameter for grid search.
bayes_iterations Integer number of iterations for Bayesian tuning.
description Human-readable description of the complexity level.
speed_estimate Relative speed estimate (1 = baseline).

robustness_estimate Relative robustness estimate (1-5 scale).

Examples

Get configuration for balanced tuning
config <- get_tuning_complexity("balanced")
print(config$grid_levels) # 3

See all available presets
print_tuning_presets()

get_tuning_params_for_complexity
Get Tuning Parameters for Complexity Level

Description

Returns algorithm-specific tuning parameter ranges adjusted for the specified complexity level.

Usage

get_tuning_params_for_complexity(
algo,
train_data,
label,
engine,
complexity = "balanced”

34 interaction_strength

Arguments
algo Character string specifying the algorithm name.
train_data Data frame containing the training data.
label Character string specifying the outcome variable name.
engine Character string specifying the engine.
complexity Character string specifying tuning complexity level.
Details

Parameter ranges are scaled based on the complexity level: - quick: Narrower ranges (70 - balanced:
Standard ranges (100 - thorough: Wider ranges (130 - exhaustive: Very wide ranges (150

Value

A list of tuning parameter ranges.

interaction_strength Compute feature interaction strengths for a fastml model

Description

Uses the ‘iml‘ package to quantify the strength of feature interactions.

Usage
interaction_strength(object, data = c("train”, "test"”), ...)
Arguments
object A ‘fastml‘ object.
data Character string specifying which data to use: "train” (default) or "test".
Additional arguments passed to ‘iml::Interaction’.
Value

An ‘iml::Interaction‘ object.

Examples

Not run:

data(iris)

iris <- iris[iris$Species != "setosa”,]
iris$Species <- factor(iris$Species)

model <- fastml(data = iris, label = "Species")
interaction_strength(model)

End(Not run)

load_model 35

load_model Load Model Function

Description

Loads a trained model object from a file.

Usage
load_model (filepath)

Arguments

filepath A string specifying the file path to load the model from.

Value

An object of class fastml.

plot.fastml Plot Methods for fastml Objects

Description

plot.fastml produces visual diagnostics for a trained fastml object.

Usage
S3 method for class 'fastml’
plot(
X,
algorithm = "best",
type = c("all”, "bar"”, "roc", "calibration”, "residual”, "learning_curve"),
)
Arguments
X A fastml object (output of fastml()).
algorithm Character vector specifying which algorithm(s) to include when generating cer-
tain plots (e.g., ROC curves). Defaults to "best”.
type Character vector indicating which plot(s) to produce. Options are:

"bar” Bar plot of performance metrics across all models/engines.
"roc” ROC curve(s) for binary classification models.
"calibration” Calibration plot for the best model(s).

36 plot.fastml_stability

"residual” Residual diagnostics for the best model.
"learning_curve" Learning-curve plot if recorded during training.
"all"” Produce all available plots.

Additional arguments (currently unused).

Details

When type = "all”, plot.fastml will produce a bar plot of metrics, ROC curves (classification),
calibration plot, and residual diagnostics (regression). If you specify a subset of types, only those
will be drawn.

Examples
Create a binary classification dataset from iris
data(iris)
iris <- iris[iris$Species != "setosa"”,]

iris$Species <- factor(iris$Species)

Fit fastml model on binary classification task
model <- fastml(data = iris, label = "Species”, algorithms = c("rand_forest”, "svm_rbf"))

1. Plot all available diagnostics
plot(model, type = "all")

2. Bar plot of performance metrics
plot(model, type = "bar")

3. ROC curves (only for classification models)
plot(model, type = "roc")

4. Calibration plot (requires 'probably' package)
plot(model, type = "calibration”)

5. ROC curves for specific algorithm(s) only
plot(model, type = "roc"”, algorithm = "rand_forest")

6. Residual diagnostics (only available for regression tasks)
model <- fastml(data = mtcars, label = "mpg"”, algorithms = c("linear_reg"”, "xgboost"))
plot(model, type = "residual”)

plot.fastml_stability Plot method for fastml_stability objects

Description

Plot method for fastml_stability objects

plot_ice 37

Usage
S3 method for class 'fastml_stability'
plot(x, top_n = 15, ...)
Arguments
X A fastml_stability object from explain_stability().
top_n Integer. Number of top features to display. Default is 15.

Additional arguments (ignored).

Value

A ggplot object.

plot_ice Plot ICE curves for a fastml model

Description

Generates Individual Conditional Expectation (ICE) plots for selected features using the ‘pdp* pack-
age (ggplot2 engine), and returns both the underlying data and the plot object.

Usage

plot_ice(object, features, data = c("train”, "test"), target_class = NULL, ...)
Arguments

object A ‘fastml® object.

features Character vector of feature names to plot.

data Character string specifying which data to use: "train” (default) or "test".

target_class For classification, which class probability to plot. If NULL (default), uses the
positive class determined by the model settings. For multiclass problems, this
shows the probability of the specified class vs all others.

Additional arguments passed to ‘pdp::partial‘.

Value

A list with two elements: ‘data‘ (the ICE data frame) and ‘plot* (the ggplot object).

38

Examples

Not run:
data(iris)

predict.fastml

iris <- iris[iris$Species != "setosa”, 1]
iris$Species <- factor(iris$Species)

model <- fastml(data = iris, label = "Species”)
plot_ice(model, features = "Sepal.Length")

End(Not run)

predict.fastml

Predict method for fastml objects

Description

Generates predictions from a trained ‘fastml‘ object on new data. Supports both single-model
and multi-model workflows, and handles classification and regression tasks with optional post-
processing and verbosity.

Usage
S3 method for class 'fastml’
predict(
object,
newdata,
type = "auto",
model_name = NULL,
verbose = FALSE,
postprocess_fn = NULL,
eval_time = NULL,
)
Arguments
object A fitted ‘fastml‘ object created by the ‘fastml()‘ function.
newdata A data frame or tibble containing new predictor data for which to generate pre-
dictions.
type Type of prediction to return. One of ‘"auto"* (default), ‘"class", “"prob"*, ‘"nu-

ne n ne,

meric"‘, “"survival"‘, or ‘"risk"‘. - “"auto"‘: chooses ‘"class"‘ for classification,
“"numeric"‘ for regression, and ‘"survival"‘ for survival. - *"prob"‘: returns class
probabilities (only for classification). - ‘"class"‘: returns predicted class labels.
- “"numeric"‘: returns predicted numeric values (for regression). - ‘"survival"*:
returns survival probabilities at the supplied ‘eval_time* horizons (for survival
tasks). - “"risk"‘: returns risk scores on the linear predictor scale (for survival

tasks).

o ne

ne il

o

predict_survival 39

model_name (Optional) Name of a specific model to use when ‘object$best_model* contains
multiple models.

verbose Logical; if “TRUE, prints progress messages showing which models are used
during prediction.

postprocess_fn (Optional) A function to apply to the final predictions (e.g., inverse transforms,
thresholding).

eval_time Optional numeric vector of time points (on the original time scale) at which
to return survival probabilities when ‘type = "survival"‘. Required for survival
tasks when requesting survival curves.

Additional arguments (currently unused).

Value

A vector of predictions, or a named list of predictions (if multiple models are used). If ‘postpro-
cess_fn‘ is supplied, its output will be returned instead.

predict_survival Predict survival probabilities from a survival model

Description

Predict survival probabilities from a survival model
Usage
predict_survival(fit, newdata, times, ...)

S3 method for class 'fastml_native_survival'
predict_survival(fit, newdata, times, ...)

S3 method for class 'workflow'
predict_survival(fit, newdata, times, ...)

Default S3 method:

predict_survival(fit, newdata, times, ...)
Arguments
fit A fitted survival model.
newdata A data frame of predictors for which to compute survival curves.
times Numeric vector of evaluation times.

Additional arguments passed to methods.

Value

A numeric matrix with one row per observation and one column per time.

40 print_default_differences

print.fastml_stability
Print method for fastml_stability objects

Description

Print method for fastml_stability objects

Usage
S3 method for class 'fastml_stability'
print(x, top_n =10, ...)
Arguments
X A fastml_stability object from explain_stability().
top_n Integer. Number of top features to display. Default is 10.

Additional arguments (ignored).

Value

The input object invisibly.

print_default_differences
Print Default Differences Table

Description

Prints a formatted table showing differences between fastml and parsnip defaults for the specified
task type.

Usage

print_default_differences(task = "classification”, algorithms = NULL)

Arguments
task Task type ("classification”, "regression", or "survival").
algorithms Optional character vector of algorithms to check. If NULL, checks all available
algorithms for the task.
Value

Invisibly returns the differences data frame.

print_tuning_presets 41

print_tuning_presets Print Tuning Presets Summary

Description
Prints a formatted summary of all available tuning complexity presets with their characteristics and
recommended use cases.

Usage

print_tuning_presets()

Value

Invisibly returns a data frame with preset information.

process_model Process and Evaluate a Model Workflow

Description

This function processes a fitted model or a tuning result, finalizes the model if tuning was used,
makes predictions on the test set, and computes performance metrics depending on the task type
(classification or regression). It supports binary and multiclass classification, and handles proba-
bilistic outputs when supported by the modeling engine.

Usage

process_model(
model_obj,
model_id,
task,
test_data,
label,
event_class,
class_threshold = "auto”,
start_col = NULL,
time_col = NULL,
status_col = NULL,
engine,
train_data,
metric,
eval_times_user = NULL,
bootstrap_ci = TRUE,
bootstrap_samples = 500,

42 process_model
bootstrap_seed = 1234,
at_risk_threshold = 0.1,
survival_metric_convention = "fastml”,
metrics = NULL,
summaryFunction = NULL,
precomputed_predictions = NULL,
multiclass_auc = "macro”
)
Arguments
model_obj A fitted model or a tuning result (‘tune_results‘ object).
model_id A character identifier for the model (used in warnings).
task Type of task, either ‘"classification"‘, ‘"regression"*, or ‘"survival"‘.
test_data A data frame containing the test data.
label The name of the outcome variable (as a character string).

event_class

class_threshold

start_col

time_col

status_col

engine

train_data

metric

eval_times_user

bootstrap_ci

For binary classification, specifies which class is considered the positive class:
“"first"‘ or “"second"*.

For binary classification, controls how class probabilities are converted into hard
class predictions. Numeric values in (0, 1) set a fixed threshold. The default
“"auto"* tunes a threshold on the training data to maximize F1; use ‘"model"* to
keep the model’s default threshold.

ne

Optional string. The name of the column specifying the start time in count-
ing process (e.g., ‘(start, stop, event)) survival data. Only used when task =
"survival”.

String. The name of the column specifying the event or censoring time (the
"stop" time in counting process data). Only used when task = "survival”.

String. The name of the column specifying the event status (e.g., O for censored,
1 for event). Only used when task = "survival”.

ne n

A character string indicating the model engine (e.g., ‘"xgboost"‘, ‘"randomFor-
est"‘). Used to determine if class probabilities are supported. If ‘NULL®, prob-
abilities are skipped.

A data frame containing the training data, required to refit finalized workflows.

ne n ne n "e

The name of the metric (e.g., ‘"roc_auc"*, ‘"accuracy"‘, ‘"rmse") used for se-
lecting the best tuning result.

Optional numeric vector of time horizons at which to evaluate survival Brier
scores. When ‘NULL', sensible defaults based on the observed follow-up dis-
tribution are used.

Logical; if ‘TRUE‘, bootstrap confidence intervals are estimated for perfor-
mance metrics.

bootstrap_samples

Integer giving the number of bootstrap resamples used when computing confi-
dence intervals.

process_model 43

bootstrap_seed Optional integer seed applied before bootstrap resampling to make interval esti-
mates reproducible.

at_risk_threshold
Numeric value between 0 and 1 defining the minimum proportion of subjects
required to remain at risk when determining the maximum follow-up time used
in survival metrics.

survival_metric_convention
Character string specifying which survival metric conventions to follow. ‘"fastml"*
(default) uses fastml’s internal defaults for evaluation horizons and t_max. ‘"tidy-
models"‘ uses ‘eval_times_user* as the explicit evaluation grid and applies yardstick-
style Brier/IBS normalization; when ‘eval_times_user* is ‘NULL°, time-dependent
Brier metrics are omitted.

metrics Optional yardstick metric set (e.g., ‘yardstick::metric_set(yardstick::rmse)*) used
for computing regression performance.

summaryFunction
Optional custom classification metric function passed to ‘yardstick::new_class_metric()
and included in holdout evaluation.

precomputed_predictions
Optional data frame or nested list of previously generated predictions (per algo-
rithm/engine) to reuse instead of re-predicting; primarily used when combining
results across engines.

3

multiclass_auc For multiclass ROC AUC, the averaging method to use: “"'macro"‘ (default,
tidymodels) or ‘"'macro_weighted"‘. Macro weights each class equally, while
macro_weighted weights by class prevalence and can change model rankings
on imbalanced data.

Details

- If the input ‘model_obj‘ is a ‘tune_results‘ object, the function finalizes the model using the best
hyperparameters according to the specified ‘metric‘, and refits the model on the full training data.

- For classification tasks, performance metrics include accuracy, kappa, sensitivity, specificity, pre-
cision, F1-score, and ROC AUC (if probabilities are available).

- For multiclass ROC AUC, the estimator is controlled by ‘multiclass_auc®.
- For regression tasks, RMSE, R-squared, and MAE are returned.

- For models with missing prediction lengths, a helpful imputation error is thrown to guide data
preprocessing.

Value
A list with two elements:

performance A tibble with computed performance metrics.

predictions A tibble with predicted values and corresponding truth values, and probabilities (if
applicable).

44 reset_default_warnings

recommend_tuning_config
Recommend Tuning Configuration

Description

Provides recommendations for tuning configuration based on dataset characteristics and time con-
straints.

Usage

recommend_tuning_config(
n_rows,
n_predictors,
n_algorithms = 1,
max_time_minutes = 30,
tuning_strategy = "grid”

Arguments

N_rows Number of rows in training data.
n_predictors Number of predictor variables.

n_algorithms Number of algorithms to tune.
max_time_minutes

Maximum acceptable tuning time in minutes.
tuning_strategy

Preferred tuning strategy.

Value

A list with recommended configuration.

reset_default_warnings
Reset Default Override Warnings

Description
Resets the tracking of which default override warnings have been shown. Useful for testing or when
starting a new analysis session.

Usage

reset_default_warnings()

sanitize 45

sanitize Clean Column Names or Character Vectors by Removing Special
Characters

Description
This function can operate on either a data frame or a character vector:

* Data frame: Detects columns whose names contain any character that is not a letter, number,
or underscore, removes colons, replaces slashes with underscores, and spaces with under-
scores.

* Character vector: Applies the same cleaning rules to every element of the vector.

Usage
sanitize(x)
Arguments
X A data frame or character vector to be cleaned.
Value
e If x is a data frame: returns a data frame with cleaned column names.
 If x is a character vector: returns a character vector with cleaned elements.
save.fastml Save Model Function
Description

Saves the trained model object to a file.

Usage

save.fastml(model, filepath)

Arguments

model An object of class fastml.

filepath A string specifying the file path to save the model.
Value

No return value, called for its side effect of saving the model object to a file.

46

summary.fastml

summary . fastml

Summary Function for fastml (Using yardstick for ROC Curves)

Description

Summarizes the results of machine learning models trained using the ‘fastml‘ package. Depending
on the task type (classification or regression), it provides customized output such as performance
metrics, best hyperparameter settings, and confusion matrices. It is designed to be informative and
readable, helping users quickly interpret model results.

Usage
S3 method for class 'fastml'
summary (
object,
algorithm = "best",
type = c("all”, "metrics"”, "params”, "conf_mat"),

sort_metric

NULL,

show_ci = FALSE,

brier_times

Arguments

object
algorithm
type

sort_metric

show_ci

brier_times

Details

NULL,

An object of class fastml.
A vector of algorithm names to display summary. Default is "best”.

Character vector indicating which outputs to produce. Options are "all” (all
available outputs), "metrics” (performance metrics), "params” (best hyperpa-
rameters), and "conf_mat" (confusion matrix). Default is "all".

The metric to sort by. Default uses optimized metric.

Logical indicating whether to display 95% confidence intervals for performance
metrics in survival models. Defaults to FALSE.

Optional numeric or character vector that selects which time-specific Brier scores
to display for survival models. When NULL (the default), time-specific Brier
scores are omitted from the summary.

Additional arguments.

For classification tasks, the summary includes metrics such as Accuracy, F1 Score, Kappa, Pre-
cision, ROC AUC, Sensitivity, and Specificity. A confusion matrix is also provided for the best
model(s). For regression tasks, the summary reports RMSE, R-squared, and MAE.

Users can control the type of output with the ‘type‘ argument: ‘metrics‘ displays model performance
metrics. ‘params‘ shows the best hyperparameter settings. ‘conf_mat‘ prints confusion matrices
(only for classification). ‘all‘ includes all of the above.

surrogate_tree 47

If multiple algorithms are trained, the summary highlights the best model based on the optimized
metric. For survival tasks, Harrell’s C-index, Uno’s C-index, the integrated Brier score, and (when
available) the RMST difference are shown by default. Specific Brier(t) horizons can be requested
through the brier_times argument.

Value

Prints summary of fastml models.

surrogate_tree Fit a surrogate decision tree for a fastml model

Description

Builds an interpretable tree approximating the behaviour of the underlying model using the ‘iml*
package.

Usage

surrogate_tree(object, maxdepth = 3, data = c("train”, "test"), ...)
Arguments

object A ‘fastml‘ object.

maxdepth Maximum depth of the surrogate tree. Default 3.

data Character string specifying which data to use: "train” (default) or "test".

Additional arguments passed to ‘iml::TreeSurrogate*.

Value

An ‘iml::TreeSurrogate‘ object.

Examples
Not run:
data(iris)
iris <- iris[iris$Species != "setosa"”, 1]
iris$Species <- factor(iris$Species)
model <- fastml(data = iris, label = "Species")

surrogate_tree(model)

End(Not run)

48

train_models

train_models

Train Specified Machine Learning Algorithms on the Training Data

Description

Usage

Trains specified machine learning algorithms on the preprocessed training data.

train_models(

train_data,

label,

task,

algorithms,
resampling_method,

folds,

repeats,

group_cols = NULL,
block_col = NULL,
block_size = NULL,
initial_window = NULL,
assess_window = NULL,

skip = 0,

outer_folds = NULL,
resamples = NULL,
tune_params,

engine_params = list(),
metric,

summaryFunction = NULL,
seed = 123,

recipe,

use_default_tuning = FALSE,
tuning_strategy = "grid"”,
tuning_iterations = 10,
tuning_complexity = "balanced”,
grid_levels = 3L,
early_stopping = FALSE,
adaptive = FALSE,
algorithm_engines = NULL,
use_parsnip_defaults = FALSE,
warn_engine_defaults = TRUE,
n_cores = 1,

verbose = FALSE,
event_class = "first”,
class_threshold = "auto”,
start_col = NULL,

time_col = NULL,

train_models

status_col
eval_times

49

NULL,
NULL,

at_risk_threshold = 0.1,

survival_metric_convention = "fastml”,
audit_env = NULL,
multiclass_auc = "macro”,
store_fold_models = FALSE
)
Arguments
train_data Preprocessed training data frame.
label Name of the target variable.
task Type of task: "classification"”, "regression", or "survival".
algorithms Vector of algorithm names to train.

resampling_method

folds

repeats

group_cols

block_col
block_size
initial_windo
assess_window
skip

outer_folds

resamples

tune_params

engine_params

W

Resampling method for cross-validation. Supported options include standard
"cv", "repeatedcv”, and "boot", as well as grouped resampling via "grouped_cv"”,
blocked/rolling schemes via "blocked_cv"” or "rolling_origin”, nested re-

sampling via "nested_cv", and the passthrough "none” option.
Number of folds for cross-validation.

Number of times to repeat cross-validation (only applicable for methods like
"repeatedcv").

Optional character vector of grouping columns used with ‘resampling_method
= "grouped_cv"*. For classification problems the outcome column is used to re-
quest grouped stratification where supported; if class imbalance prevents strati-
fication, grouped folds are still created and a warning is emitted to document the
limitation.

Optional name of the ordering column used with blocked or rolling resampling.
Optional integer specifying the block size for ‘resampling_method = "blocked_cv"*.
Optional integer specifying the initial window size for rolling resampling.
Optional integer specifying the assessment window size for rolling resampling.
Optional integer number of resamples to skip between rolling resamples.

Optional integer specifying the number of outer folds for ‘resampling_method

ne

= "nested_cv"‘.

Optional rsample object. If provided, custom resampling splits will be used
instead of those created internally.

A named list of tuning ranges. For each algorithm, supply a list of engine-
specific parameter values, e.g. list(rand_forest = list(ranger = list(mtry
=c(1,3)))).

A named list of fixed engine-level arguments passed directly to the model fitting
call for each algorithm/engine combination. Use this to control options like ties
= "breslow” for Cox models or importance = "impurity"” for ranger. Unlike
tune_params, these values are not tuned over a grid.

50

train_models
metric The performance metric to optimize. For classification, options include "accuracy”,
"roc_auc”, "logloss”, "brier_score”, and "ece” (plus other class metrics).
summaryFunction
A custom summary function for model evaluation. Default is NULL.
seed An integer value specifying the random seed for reproducibility.
recipe A recipe object for preprocessing.

use_default_tuning
Logical; if TRUE and tune_params is NULL, tuning is performed using default
grids. Tuning also occurs when custom tune_params are supplied. When FALSE
and no custom parameters are given, the model is fitted once with default set-
tings.
tuning_strategy
A string specifying the tuning strategy. Must be one of "grid”, "bayes”, or
"none”. Adaptive methods may be used with "grid”. If "none" is selected, the
workflow is fitted directly without tuning. If custom tune_params are supplied
with tuning_strategy = "none”, they will be ignored with a warning.
tuning_iterations
Number of iterations for Bayesian tuning. Ignored when tuning_strategy is
not "bayes"; validation occurs only for the Bayesian strategy.
tuning_complexity
Character string specifying tuning complexity preset. One of "quick", "bal-
anced", "thorough", or "exhaustive". Controls both grid density and parameter
range width.

grid_levels Integer specifying number of levels per parameter for grid search. Higher val-
ues create denser grids but increase computation exponentially (grid size = lev-
els"n_params).

early_stopping Logical for early stopping in Bayesian tuning.
adaptive Logical indicating whether to use adaptive/racing methods.
algorithm_engines
A named list specifying the engine to use for each algorithm.
use_parsnip_defaults
Logical. If TRUE, use parsnip’s default engines instead of fastml’s optimized
defaults. Default is FALSE.
warn_engine_defaults
Logical. If TRUE (default), warn when fastml’s default engine differs from
parsnip’s default.

n_cores Integer number of cores requested for parallel processing. Used to decide whether
tuning/resampling should run in parallel and to configure engine thread settings
when supported.

verbose Logical. If TRUE, print informational messages about engine selection and pa-
rameter overrides.

event_class Character string identifying the positive class when computing classification
metrics ("first" or "second").

tuning_config

class_threshold

start_col

time_col
status_col

eval_times

51

For binary classification, controls how class probabilities are converted into hard
class predictions during evaluation. Numeric values in (0, 1) set a fixed thresh-
old. The default ‘"auto"* tunes a threshold on the training data to maximize F1;
use ‘"model" to keep the model’s default threshold.

Optional name of the survival start time column passed through to downstream
evaluation helpers.

Optional name of the survival stop time column.
Optional name of the survival status/event column.

Optional numeric vector of time horizons for survival metrics.

at_risk_threshold

Numeric cutoff used to determine the evaluation window for survival metrics
within guarded resampling.

survival_metric_convention

audit_env

multiclass_auc

Character string specifying which survival metric conventions to follow. ‘"fastml"*
(default) uses fastml’s internal defaults for evaluation horizons and t_max. ‘"tidy-
models"‘ uses ‘eval_times* as the explicit evaluation grid and applies yardstick-
style Brier/IBS normalization; when ‘eval_times* is ‘NULL’, time-dependent
Brier metrics are omitted.

Internal environment that tracks security audit findings when custom prepro-
cessing hooks are executed. Typically supplied by fastml() and should be left
as NULL when calling train_models() directly.

For multiclass ROC AUC, the averaging method to use: ‘"macro"‘ (default,
tidymodels) or ‘"macro_weighted"‘. Macro weights each class equally, while
macro_weighted weights by class prevalence and can change model rankings
on imbalanced data.

store_fold_models

Value

Logical. If TRUE, store the fitted fold models during resampling for later inspec-
tion or stability analysis.

A list of trained model objects.

tuning_config

Tuning Configuration and Complexity Presets

Description

Functions and presets for configuring hyperparameter tuning grids with explicit speed-robustness

trade-offs.

52 validate_defaults_registry

validate_defaults_registry
Validate Defaults Registry Against Parsnip

Description

Compares the hardcoded parsnip default engines in fastml’s registry against the actual defaults re-
ported by parsnip: : show_engines(). Returns a list of any mismatches found, which may indicate
that parsnip has updated its defaults since fastml’s registry was last updated.

Usage

validate_defaults_registry()

Details

This function queries parsnip for model specifications and compares against the hardcoded parsnip_defaults
list in get_parsnip_default_engine(). Mismatches may occur when:

* Parsnip updates its default engine for a model type
* New engines are added to parsnip that become the new default

« fastml’s registry has not been updated after a parsnip release

This validation is intended for package maintenance and testing purposes.

Value

A list of mismatches. Each element is a list with components:

algorithm The algorithm name.
fastml_default The default engine recorded in fastml’s registry.

parsnip_default The actual default engine from parsnip.

Returns an empty list if no mismatches are found.

Examples

Not run:
mismatches <- validate_defaults_registry()
if (length(mismatches) > @) {
message("Found ", length(mismatches), " mismatch(es) with parsnip defaults”)

}

End(Not run)

warn_default_override 53

warn_default_override Warn About Default Overrides

Description

Issues a warning if fastml defaults differ from parsnip defaults and the warning hasn’t been shown
yet in this session.

Usage

warn_default_override(
algo,
task,
fastml_engine,
fastml_params = NULL,
verbose = FALSE,
warn_once = TRUE

)

Arguments
algo Algorithm name.
task Task type.

fastml_engine fastml’s default engine for this algorithm.

fastml_params fastml’s default parameters (optional).

verbose If TRUE, always show the message (as a message, not warning).
warn_once If TRUE (default), only warn once per algorithm per session.
Value

Invisibly returns the comparison result.

Index

availableMethods, 3
counterfactual_explain, 4
defaults_registry, 5

estimate_tuning_time, 5, 21
explain_ale, 6
explain_dalex, 7
explain_lime, 8
explain_stability, 9, 20

fastexplain, 10

fastexplore, 12

fastml, 14, 35
fastml_compute_holdout_results, 22
fastml_guard_validate_indices, 24
fastml_normalize_survival_status, 25
flatten_and_rename_models, 25

get_best_model_idx, 26
get_best_model_names, 26
get_best_workflows, 27
get_default_differences, 27
get_default_engine, 28
get_default_params, 28
get_default_tune_params, 29
get_engine_names, 30
get_model_engine_names, 31
get_tuning_complexity, 32
get_tuning_params_for_complexity, 33

interaction_strength, 34
load_model, 35
match.arg, 3

plot.fastml, 35
plot.fastml_stability, 36
plot_ice, 37

54

predict.fastml, 38
predict_survival, 39
print.fastml_stability, 40
print_default_differences, 40
print_tuning_presets, 19, 21, 41
process_model, 41

recommend_tuning_config, 44
reset_default_warnings, 44

sanitize, 45
save.fastml, 45
summary . fastml, 46
surrogate_tree, 47

train_models, 48
tuning_config, 51

validate_defaults_registry, 52

warn_default_override, 53

	availableMethods
	counterfactual_explain
	defaults_registry
	estimate_tuning_time
	explain_ale
	explain_dalex
	explain_lime
	explain_stability
	fastexplain
	fastexplore
	fastml
	fastml_compute_holdout_results
	fastml_guard_validate_indices
	fastml_normalize_survival_status
	flatten_and_rename_models
	get_best_model_idx
	get_best_model_names
	get_best_workflows
	get_default_differences
	get_default_engine
	get_default_params
	get_default_tune_params
	get_engine_names
	get_model_engine_names
	get_tuning_complexity
	get_tuning_params_for_complexity
	interaction_strength
	load_model
	plot.fastml
	plot.fastml_stability
	plot_ice
	predict.fastml
	predict_survival
	print.fastml_stability
	print_default_differences
	print_tuning_presets
	process_model
	recommend_tuning_config
	reset_default_warnings
	sanitize
	save.fastml
	summary.fastml
	surrogate_tree
	train_models
	tuning_config
	validate_defaults_registry
	warn_default_override
	Index

