Package ‘multivarious’

January 22, 2026

Title Extensible Data Structures for Multivariate Analysis
Version 0.3.1

Description Provides a set of basic and extensible data structures and functions for multivariate analy-
sis, including dimensionality reduction techniques, projection methods, and preprocessing func-
tions. The aim of this package is to offer a flexible and user-friendly framework for multivari-
ate analysis that can be easily extended for custom requirements and specific data analysis tasks.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

Imports rlang, chk, glmnet, corpcor, Matrix, rsvd, svd, pls, irlba,
RSpectra, proxy, matrixStats, ggplot2, ggrepel, future.apply,
tibble, dplyr, crayon, MASS, methods, cli, withr, assertthat,
future, geigen, PRIMME, GPArotation, lifecycle

Suggests covr, randomForest, testthat, magrittr, knitr, rmarkdown

URL https://bbuchsbaum.github.io/multivarious/
VignetteBuilder knitr

Config/Needs/website albersdown

NeedsCompilation no

Author Bradley Buchsbaum [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1108-4866>)

Maintainer Bradley Buchsbaum <brad.buchsbaum@gmail . com>
Depends R (>=4.2.0)

Repository CRAN

Date/Publication 2026-01-21 23:00:03 UTC

Contents
add_ node L e e 4
add_node.prepper e 5
apply_rotation L e e 5

https://bbuchsbaum.github.io/multivarious/
https://orcid.org/0000-0002-1108-4866

Contents

apply_transform L. e e 6
biplot.pca 6
bi_projector e 8
bi_projector_union e 9
block_indices e 9
block_indices.multiblock_projectoro 10
block_lengths L 10
DOOSIIAD . . . o o v o e e e e e e e e e e e e e e e 11
bootStrap_pca e e e e e e 11
bootstrap_plsC 14
CEMIBT . .« v v v vt e e e e e e e e e e e 15
classifier L. 15
classifier.discriminant_projector 16
classifiermultiblock_biprojector Lo 17
coef.composed_projector e e e e 19
coef.cross_projector L. 19
coef.multiblock_projector 20
colscaleo e 20
COMPONENLS . .« « v v v v v et e e e e e e e e e e e e e e e e e e 21
compose_partial_projector 21
COMPOSE_PIOJECIOT . . . o v v v v vt e e et e e e e e e e e e 22
CONCAt_PIE_PIOCESSOTS . v v v v v v v e e e e e e e e e e e e e e e e 22
cPCADplus e 23
CIOSS_PIOJECLOT . . . v v v v ittt it e e e e e e e e e e e e 27
CV o e e e e e e 28
CV_GEMETIC . .« v v vt v i e it e e e e e e e e e e e e 29
discriminant_projector e 30
feature_importance e 32
feature_importance.classifier L 32
it . e 34
fit_transform e 35
fresh o L e 36
GENEIZ L e e e 36
GIOUP_MEANS . « « v v v v v e 38
INVErSE_Projection v v v v vttt e e e e e 39
inverse_projection.composed_projectoro e e 39
INVerse_projection.CroSS_Projector v v v v v bt e e e e e 40
inverse_transform L e e e 41
is_orthogonal e 42
is_orthogonal.projector 42
measure_interblock transfer_erroro e 43
MEASUre_reCONSIrUCtION_EITOT . . . v v v v v v e e e e e e e e e e e e e e e e 43
multiblock_biprojector 44
multiblock_projector 45
nblocks . . . L L e 46
1 7670) 1o J AP 47
NYSITOM_APPTOX « « v v v v v e v e e e e e e e e e e e e e e e e e e 47

partial_inverse_projectiono e 49

Contents

3
partial_inverse_projection.Cross_projectorot v e e 50
partial_inverse_projection.regress e e e e e e e e e e 51
partial_project L e e 52
partial_project.composed_partial_projector L 52
partial_project.CroSS_projector i e e e e e e e e e 53
partial projector. 54
PASS .« o e e 55
PCA . o v e e e e e 55
pca_outliers L. e e e 56
PEIM_CL . . . v ot e e 57
PEIM_teSt e e e e e e e 57
perm_test.plsc L. e e e e e 60
PISC . o e 61
predict.classifier L. 63
predict.discriminant_projector e e 64
predict.rf_classifier 66
PICD - o o o o e e e e e e 67
PIEPIOCESS & v v v v v o e 67
PriNAng L e e e e e e 68
principal_angles L 69
Print.bi_projector e e e 69
print.classifier L e e e 70
Print.concat_pre_ProCessOr v v v v v i it e e e 70
print.multiblock_biprojector 71
PrINLPCA . . . o o o e e e e e e e e e e e 71
Print.perm_test e e e e e e e e e e 72
Print.perm_test_PCa e e e e e e e e e e 72
PIHNLPIEPPEL . . . o o o o i e e e e e e e e e e e e e 73
PIINLPIE_PrOCESSOT . . . v v v v v v e e e e e e e e e e e e e e e e 73
PIINLIEEIESS o o ot i e e e e e e e e e e e 74
print.rf_classifier 74
PIOJECL . o v v e o e e e e e e e e e e 75
PrOject.CrOSS_PrOJECtOr o i v v it e e e e e e 76
ProjeCt.nyStrOM_apPrOX v v v v v e e e e e e e e e e e e e e e e e 76
PIOJECIOL « « . v v v v e e e e e e e e e e e e e e e 77
project_block e 78
project_block.multiblock_projector.o 78
PIOJECE_VALS . . . v v o e i e et e e e e e e e e e e e e 79
TanK_SCOTE v v v o e o e e e e e e e e 80
TECONSLIUCT L vt ot et e e e e e e e e e e 80
reconstruct.composed_projector 81
TECONSIIUCEPCA © v v v v v o e e e i e e e e e e e e e e e e e e e e e 82
TECONSITUCLIEZTESS + & v v v v v e v e e e e e e e e e e e e e e e e e e e 82
TECONSITUCE NEW v v v v e e e e e e e e e e e e e e e e 83
refit . .o 84
TEETESS « « v v v v e 84
TEPIOCESS . o v v v v it e e e e e e e e e e e e e 86

IEPrOCeSS.CIOSS_PIOJECIOT .« . . v v v v v i v v it e e e e et e e e 86

4 add_node
IEProCeSS.NYSIIOM_APPIOX . . v v v o v e v e e v e e e e e e e e e e e 87
residualize oL e 88
residuals L e 88
reverse_transform L L L L e 89
rf_classifier 90
rf_classifier.projector L 90
TOTATE .« o v v et e e e e e e e e e e e 91
TOTALE.PCA © . v v v v e e e e e e e e e e e e e e e e 92
10) 93
SCOES.PISC . . o o o o e 94
SCreeplot L 94
screeplot.pca e e e e e e e 95
sdev . . L e 95
shape e 96
shape.cross_projector 96
standardize L L. 97
SEA_SCOTES . . . v v o o e e e e e e 97
std_scores.svd e e 98
subspace_similarity L e 98
summary.composed_projectoro 99
SVA_WIAPPET o v o i e e e 99
107 o) G 100
transfero L e 101
transfer.cross_projectorl 102
transform L L e e e 103
TrANSPOSE © . v v v e e e e e e e e e e e e e e e e e e 103
TUNCAE o v vt e e e e e e e e 104
truncate.composed_pProjectoro u e e e e e e e e e e 105
variables_used 105
vars_for_component Lol e e e e 106

Index 107

add_node add a pre-processing stage

Description

add a pre-processing stage

Usage

add_node(x, step, ...)

Arguments
X the processing pipeline
step the pre-processing step to add

extra args

add_node.prepper

Value

a new pre-processing pipeline with the added step

add_node.prepper Add a pre-processing node to a pipeline

Description

Add a pre-processing node to a pipeline

Usage

S3 method for class 'prepper'
add_node(x, step, ...)

Arguments
X A prepper pipeline
step The pre-processing step to add
Additional arguments
apply_rotation Apply rotation
Description

Apply a specified rotation to the fitted model

Usage
apply_rotation(x, rotation_matrix, ...)
Arguments
X A model object, possibly created using the pca() function.

rotation_matrix
matrix reprsenting the rotation.

extra args

Value

A modified object with updated components and scores after applying the specified rotation.

6 biplot.pca

apply_transform apply a pre-processing transform

Description

apply a pre-processing transform

Usage

apply_transform(x, X, colind, ...)
Arguments

X the pre_processor

X the data matrix

colind column indices

extra args

Value

the transformed data

biplot.pca Biplot for PCA Objects (Enhanced with ggrepel)

Description

Creates a 2D biplot for a pca object, using ggplot2 and ggrepel to show both sample scores (obser-
vations) and variable loadings (arrows).

Usage

S3 method for class 'pca'

biplot(
X,
y = NULL,
dims = c(1, 2),
scale_arrows = 2,
alpha_points = 0.6,
point_size = 2,
point_labels = NULL,
var_labels = NULL,
arrow_color = "red”,
text_color = "red",

repel_points = TRUE,

biplot.pca 7

repel_vars = FALSE,

Arguments
X A pca object returned by pca.
y (ignored) Placeholder to match biplot(x, y, ...) signature.
dims A length-2 integer vector specifying which principal components to plot on the

x and y axes. Defaults to c(1, 2).
scale_arrows A numeric factor to scale the variable loadings (arrows). Default is 2.
alpha_points Transparency level for the sample points. Default is 0.6.
point_size Size for the sample points. Default is 2.

point_labels Optional character vector of labels for the sample points. If NULL, rownames of
the scores matrix are used if available; otherwise numeric indices.

var_labels Optional character vector of variable names (columns in the original data). If
NULL, rownames of x\$v are used if available; otherwise "Varl", "Var2", etc.

arrow_color Color for the loading arrows. Default is "red".
text_color Color for the variable label text. Default is "red".
repel_points Logical; if TRUE, repel sample labels using geom_text_repel. Default is TRUE.

repel_vars Logical; if TRUE, repel variable labels using geom_text_repel. Default is
FALSE.

Additional arguments passed on to ggplot2 or ggrepel functions (if needed).

Details

This function constructs a scatterplot of the PCA scores (observations) on two chosen compo-
nents and overlays arrows for the loadings (variables). The arrow length and direction indicate
how each variable contributes to those principal components. You can control arrow scaling with
scale_arrows.

If your pca object includes an $explained_variance field (e.g., proportion of variance per compo-
nent), those values will appear in the axis labels. Otherwise, the axes are labeled simply as "PC1",
"PC2", etc.

Note: If you do not have ggrepel installed, you can set repel_points=FALSE and repel_vars=FALSE,
or install ggrepel.

Value

A ggplot object.

8 bi_projector

Examples

data(iris)
X <- as.matrix(iris[,1:4])
pca_res <- pca(X, ncomp=2)

Enhanced biplot with repelled text
biplot(pca_res, repel_points=TRUE, repel_vars=TRUE)

bi_projector Construct a bi_projector instance

Description

A bi_projector offers a two-way mapping from samples (rows) to scores and from variables (columns)
to components. Thus, one can project from D-dimensional input space to d-dimensional subspace.
And one can project (project_vars) from n-dimensional variable space to the d-dimensional compo-
nent space. The singular value decomposition is a canonical example of such a two-way mapping.

Usage
bi_projector(v, s, sdev, preproc = prep(pass()), classes = NULL, ...)
Arguments
Y% A matrix of coefficients with dimensions nrow(v) by ncol (v) (columns = com-
ponents)
s The score matrix
sdev The standard deviations of the score matrix
preproc (optional) A pre-processing pipeline, default is prep(pass())
classes (optional) A character vector specifying the class attributes of the object, default
is NULL
Extra arguments to be stored in the projector object.
Value

A bi_projector object

Examples

X <= matrix(rnorm(200), 10, 20)
svdfit <- svd(X)

p <- bi_projector(svdfit$v, s = svdfit$u %*% diag(svdfit$d), sdev=svdfit$d)

bi_projector_union 9

bi_projector_union A Union of Concatenated bi_projector Fits

Description

This function combines a set of bi_projector fits into a single bi_projector instance. The new
instance’s weights and associated scores are obtained by concatenating the weights and scores of
the input fits.

Usage

bi_projector_union(fits, outer_block_indices = NULL)

Arguments

fits A list of bi_projector instances with the same row space. These instances will
be combined to create a new bi_projector instance.

outer_block_indices
An optional list of indices for the outer blocks. If not provided, the function will
compute the indices based on the dimensions of the input fits.

Value
A new bi_projector instance with concatenated weights, scores, and other properties from the

input bi_projector instances.

Examples

X1 <- matrix(rnorm(5%5), 5, 5)
X2 <- matrix(rnorm(5%5), 5, 5)

bpu <- bi_projector_union(list(pca(X1), pca(X2)))

block_indices get block_indices

Description

extract the list of indices associated with each block in a multiblock object

Usage

block_indices(x, ...)

10

Arguments
X the object
extra args
Value

a list of block indices

block_lengths

block_indices.multiblock_projector

Extract the Block Indices from a Multiblock Projector

Description

Extract the Block Indices from a Multiblock Projector

Usage
S3 method for class 'multiblock_projector'
block_indices(x, i, ...)
Arguments
X A multiblock_projector object.
i Ignored.
Ignored.
Value

The list of block indices.

block_lengths get block_lengths

Description

extract the lengths of each block in a multiblock object

Usage
block_lengths(x)

Arguments

X the object

bootstrap 11

Value

the block lengths

bootstrap Bootstrap Resampling for Multivariate Models

Description

Perform bootstrap resampling on a multivariate model to estimate the variability of components and
scores.

Usage

bootstrap(x, nboot, ...)

S3 method for class 'plsc'

bootstrap(x, nboot = 500, ...)

Arguments
X A fitted model object, such as a projector, that has been fit to a training dataset.
nboot An integer specifying the number of bootstrap resamples to perform.

Additional arguments to be passed to the specific model implementation of
bootstrap.

Value

A list containing the bootstrap resampled components and scores for the model.

bootstrap_pca Fast, Exact Bootstrap for PCA Results from pca function

Description

Performs bootstrap resampling for Principal Component Analysis (PCA) based on the method de-
scribed by Fisher et al. (2016), optimized for high-dimensional data (p » n). This version is specifi-
cally adapted to work with the output object generated by the provided pca function (which returns
abi_projector object of class ’pca’).

12

Usage

bootstrap_pca(

X,

nboot = 100,
k = NULL,

bootstrap_pca

parallel = FALSE,

cores

seed = NULL,

epsilon = le-15,

Arguments

X

nboot

parallel

cores

seed

epsilon

Details

An object of class 'pca’ as returned by the provided pca function. It’s expected
to contain loadings (v), scores (s), singular values (sdev), left singular vectors
(u), and pre-processing info (preproc).

The number of bootstrap resamples to perform. Must be a positive integer (de-
fault: 100).

The number of principal components to bootstrap (default: all components avail-
able in the fitted PCA model x). Must be less than or equal to the number of
components in X.

Logical flag indicating whether to use parallel processing via the future frame-
work (default: FALSE). Requires the future.apply package and a configured
future backend (e.g., future: :plan(future: :multisession)).

The number of cores to use for parallel processing if parallel = TRUE (default:
future::availableCores()). This is used if no future plan is set.

An integer value for the random number generator seed for reproducibility (de-
fault: NULL, no seed is set).

A small positive value added to standard deviations before division to prevent
division by zero or instability (default: le-15).

Additional arguments (currently ignored).

This function implements the fast bootstrap PCA algorithm proposed by Fisher et al. (2016),
adapted for the output structure of the provided pca function. The pca function returns an object

containing:

» v: Loadings (coefficients, p x k) - equivalent to Vin SVD Y = U D V’. Note the transpose
difference from prcomp.

¢ s: Scores (n x k) - calculated as U %*% D.

* sdev: Singular values (vector of length k) - equivalent to d.

* u: Left singular vectors (n x k).

bootstrap_pca 13

The bootstrap algorithm works by resampling the subjects (rows) and recomputing the SVD on
a low-dimensional representation. Specifically, it computes the SVD of the resampled matrix
D U' P*b, whereY = U D V' is the SVD of the original (pre-processed) data, and P*b is a
resampling matrix operating on the subjects (columns of U”).

The SVD of the resampled low-dimensional matrix is svd(D U' P*b) = A*b S*b (R*b)'. The
bootstrap principal components (loadings) are then calculated as V*b = V A*b, and the bootstrap
scores are Scores*b = R*b S*b.

Z-scores are provided as mean / sd.

Important Note: The algorithm assumes the data Y used for the original SVD (Y = U D V')
was appropriately centered (or pre-processed according to x$preproc). The bootstrap samples are
generated based on the components derived from this pre-processed data.

Value

A list object of class bootstrap_pca_result containing:

E_Vb Matrix (p x k) of the estimated bootstrap means of the principal components
(loadings V/b = coefficients).

sd_Vb Matrix (p x k) of the estimated bootstrap standard deviations of the principal
components (loadings V/b).

z_loadings Matrix (p x k) of the bootstrap Z-scores for the loadings, calculated as E_Vb /
sd_Vb.

E_Scores Matrix (n x k) of the estimated bootstrap means of the principal component
scores (S”b).

sd_Scores Matrix (n x k) of the estimated bootstrap standard deviations of the principal
component scores (S"b).

z_scores Matrix (n x k) of the bootstrap Z-scores for the scores, calculated as E_Scores
/ sd_Scores.

E_Ab Matrix (k x k) of the estimated bootstrap means of the internal rotation matrices
A”b.

Ab_array Array (k x k x nboot) containing all the bootstrap rotation matrices A"b.

Scores_array

Array (n x k x nboot) containing all the bootstrap score matrices (Sb, with NAs
for non-sampled subjects).

nboot The number of bootstrap samples used (successful ones).
k The number of components bootstrapped.
call The matched call to the function.

References

Fisher, Aaron, Brian Caffo, Brian Schwartz, and Vadim Zipunnikov. 2016. "Fast, Exact Bootstrap
Principal Component Analysis for P > 1 Million." Journal of the American Statistical Association
111 (514): 846-60. doi:10.1080/01621459.2015.1062383.

https://doi.org/10.1080/01621459.2015.1062383

14 bootstrap_plsc

Examples

Simulate data (p=50, n=20)

set.seed(123)

p_dim <- 50

n_obs <- 20

Y_mat <- matrix(rnorm(p_dim * n_obs), nrow = p_dim, ncol = n_obs)
Transpose for pca function input (n x p)

X_mat <- t(Y_mat)

Perform PCA using the provided pca function
Use center() pre-processing
pca_res <- pca(X_mat, ncomp = 5, preproc = center(), method = "fast")

Run bootstrap on the pca result
boot_res <- bootstrap_pca(pca_res, nboot = 5, k = 5, seed = 456)

Explore results
print(dim(boot_res$z_loadings)) # p x k Z-scores for loadings (coefficients)
print(dim(boot_res$z_scores)) # n x k Z-scores for scores

bootstrap_plsc Bootstrap inference for PLSC loadings

Description

Provides bootstrap ratios (mean / sd) for X and Y loadings to assess stability, mirroring common
practice in Behavior PLSC.

Usage
bootstrap_plsc(

X)

X7

Y)

nboot = 500,
comps = ncomp(x),
seed = NULL,

parallel = FALSE,
epsilon = 1e-09,

Arguments

X A fitted plsc object.
Original X block.
Y Original Y block.

center 15
nboot Number of bootstrap samples (default 500).
comps Number of components to bootstrap (default: ncomp(x)).
seed Optional integer seed for reproducibility.
parallel Use future.apply for parallelization (default FALSE).
epsilon Small positive constant to stabilize division for ratios.
Additional arguments (currently unused).
center center a data matrix
Description

remove mean of all columns in matrix

Usage

center(preproc

Arguments

preproc

cmeans

Value

a prepper list

= prepper(), cmeans = NULL)

the pre-processing pipeline

optional vector of precomputed column means

classifier

Construct a Classifier

Description

Create a classifier from a given model object (e.g., projector). This classifier can generate predic-
tions for new data points.

16

Usage

classifier(x, colind, ...)

S3 method for class 'projector'
classifier(

X,

colind = NULL,

labels,

new_data = NULL,

knn = 1,

global_scores = TRUE,

Arguments

X projector
colind

extra args
labels
new_data
knn

global_scores

Value

classifier.discriminant_projector

A classifier function that can be used to make predictions on new data points.

See Also

Other classifier: classifier.multiblock_biprojector(), rf_classifier.projector()

Examples

Assume proj is a fitted projector object
Assume lbls are labels and dat is new data
classifier(proj, labels = 1lbls, new_data = dat, knn = 3)

classifier.discriminant_projector

Create a k-NN classifier for a discriminant projector

Description

Create a k-NN classifier for a discriminant projector

classifier.multiblock_biprojector

Usage
S3 method for class 'discriminant_projector'
classifier(x, colind = NULL, knn =1, ...)
Arguments
X the discriminant projector object
colind an optional vector specifying the column indices of the components
knn the number of nearest neighbors (default=1)

extra arguments

Value

a classifier object

Examples

Assume dp is a fitted discriminant_projector object
classifier(dp, knn = 5) # Basic example

17

classifier.multiblock_biprojector
Multiblock Bi-Projector Classifier

Description

Constructs a k-Nearest Neighbors (k-NN) classifier based on a fitted multiblock_biprojector

model object. The classifier uses the projected scores as the feature space for k-NN.

Usage

S3 method for class 'multiblock_biprojector'
classifier(

X,

colind = NULL,

labels,

new_data = NULL,

block = NULL,

global_scores = TRUE,

knn = 1,

18 classifier.multiblock_biprojector

Arguments

X A fitted multiblock_biprojector object.

colind An optional numeric vector specifying column indices from the original data
space. If provided when global_scores=FALSE, these indices are used to per-
form a partial projection for the reference scores. If provided when global_scores=TRUE,
this value is stored but does not affect the reference scores (which remain global);
however, it may influence the default projection behavior during prediction un-
less overridden there. See predict.classifier.

labels A factor or vector of class labels for the training data.

new_data An optional data matrix used to generate reference scores when global_scores=FALSE,
or when global_scores=TRUE but colind or block is also provided (overrid-
ing global_scores). Must be provided if global_scores=FALSE.

block An optional integer specifying a predefined block index. Used for partial pro-

jection if global_scores=FALSE or if new_data is also provided. Cannot be
used simultaneously with colind.

global_scores Logical. DEPRECATED This argument is deprecated and its behavior has
changed. Reference scores are now determined automatically:

* Ifnew_datais NULL: Uses the globally projected scores stored in x (scores(x)).

* If new_data is provided: Always projects new_data to generate reference
scores (using partial_project/project_blockif colind/block are given,
project otherwise).

knn The integer number of nearest neighbors (k) for the k-NN algorithm (default:
1).

Additional arguments (currently ignored).

Details

Users can specify whether to use the globally projected scores stored within the model (global_scores
= TRUE) or to generate reference scores by projecting provided new_data (global_scores = FALSE).
Partial projections based on colind or block can be used when global_scores = FALSE or when
new_data is provided alongside colind/block. Prediction behavior is further controlled by argu-
ments passed to predict.classifier.

Value

An object of class multiblock_classifier, which also inherits from classifier.

See Also

Other classifier: classifier(), rf_classifier.projector()

coef.composed_projector 19

coef.composed_projector
Get Coefficients of a Composed Projector

Description

Calculates the effective coefficient matrix that maps from the original input space (of the first pro-
jector) to the final output space (of the last projector). This is done by multiplying the coefficient
matrices of all projectors in the sequence.

Usage
S3 method for class 'composed_projector'
coef(object, ...)

Arguments
object A composed_projector object.

Currently unused.

Value

A matrix representing the combined coefficients.

coef.cross_projector Extract coefficients from a cross_projector object

Description

Extract coefficients from a cross_projector object

Usage
S3 method for class 'cross_projector'
coef(object, source = c("X", "Y"), ...)
Arguments
object the model fit
source the source of the data (X or Y block), either "X" or "Y"
extra args
Value

the coefficients

20 colscale

coef.multiblock_projector
Coefficients for a Multiblock Projector

Description

Extracts the components (loadings) for a given block or the entire projector.

Usage
S3 method for class 'multiblock_projector'’
coef(object, block, ...)
Arguments
object A multiblock_projector object.
block Optional block index. If missing, returns loadings for all variables.

Additional arguments.

Value

A matrix of loadings.

colscale scale a data matrix

Description

normalize each column by a scale factor.

Usage

non

colscale(preproc = prepper(), type = c("unit”, "z", "weights"), weights = NULL)

Arguments
preproc the pre-processing pipeline
type the kind of scaling, unit norm, z-scoring, or precomputed weights
weights optional precomputed weights

Value

a prepper list

components 21

components get the components

Description

Extract the component matrix of a fit.

Usage
components(x, ...)
Arguments
X the model fit
extra args
Value

the component matrix

compose_partial_projector
Compose Multiple Partial Projectors

Description

Creates a composed_partial_projector object that applies partial projections sequentially. If
multiple projectors are composed, the column indices (colind) used at each stage must be consid-
ered.

This infix operator provides syntactic sugar for composing projectors sequentially. It is an alias for
compose_partial_projector.

Usage

compose_partial_projector(...)

lhs %>>% rhs

Arguments
A sequence of projectors that implement partial_project(), optionally named.
lhs The left-hand side projector (or a composed projector).

rhs The right-hand side projector to add to the sequence.

22 concat_pre_processors

Value

A composed_partial_projector object.

A composed_partial_projector object representing the combined sequence.

compose_projector Compose Two Projectors

Description

Combine two projector models into a single projector by sequentially applying the first projector
and then the second projector.

Usage
compose_projector(x, y, ...)
Arguments
X A fitted model object (e.g., projector) that has been fit to a dataset and will be
applied first in the composition.
y A second fitted model object (e.g., projector) that has been fit to a dataset and
will be applied after the first projector.
Additional arguments to be passed to the specific model implementation of
compose_projector.
Value

A new projector object representing the composed projector, which can be used to project data
onto the combined subspace.

concat_pre_processors bind together blockwise pre-processors

Description

concatenate a sequence of pre-processors, each applied to a block of data.

Usage

concat_pre_processors(preprocs, block_indices)

Arguments

preprocs a list of initialized pre_processor objects

block_indices alist of integer vectors specifying the global column indices for each block

cPCAplus 23

Value

anew pre_processor object that applies the correct transformations blockwise

Examples

p1 <- center() |> prep()
p2 <- center() |> prep()

x1 <= rbind(1:10, 2:11)
x2 <= rbind(1:10, 2:11)

pla <- init_transform(p1,x1)
p2a <- init_transform(p2,x2)

clist <- concat_pre_processors(list(pl,p2), list(1:10, 11:20))
t1 <- apply_transform(clist, cbind(x1,x2))

t2 <- apply_transform(clist, cbind(x1,x2[,1:5]), colind=1:15)

cPCAplus Contrastive PCA++ (cPCA++) Performs Contrastive PCA++
(cPCA++) to find directions that capture variation enriched in a "fore-
ground" dataset relative to a "background" dataset. This implementa-
tion follows the cPCA++ approach which directly solves the general-
ized eigenvalue problem Rf v = lambda Rb v, where Rf and Rb are the
covariance matrices of the foreground and background data, centered
using the background mean.

Description

Contrastive PCA++ (cPCA++) Performs Contrastive PCA++ (cPCA++) to find directions that cap-
ture variation enriched in a "foreground" dataset relative to a "background" dataset. This implemen-
tation follows the cPCA++ approach which directly solves the generalized eigenvalue problem Rf
v = lambda Rb v, where Rf and Rb are the covariance matrices of the foreground and background
data, centered using the background mean.

Usage
cPCAplus(
X_f,
X_b,
ncomp = NULL,
center_background = TRUE,
lambda = 0,
method = c("geigen”, "primme"”, "sdiag", "corpcor"),
strategy = c("auto”, "feature"”, "sample"),

verbose = getOption("multivarious.verbose”, TRUE),
sample_rank = NULL,

24 cPCAplus

sample_oversample = 10L,

Arguments
X_f A numeric matrix representing the foreground dataset (samples x features).
X_b A numeric matrix representing the background dataset (samples x features). X_f
and X_b must have the same number of features (columns).
ncomp Integer. The number of contrastive components to compute. Defaults to min(ncol (X_f),

nrow(X_f), nrow(X_b)), and may be further capped by the effective back-
ground rank (especially under the sample-space strategy).

center_background
Logical. If TRUE (default), both X_f and X_b are centered using the column
means of X_b. If FALSE, it assumes data is already appropriately centered.

lambda Shrinkage intensity for covariance estimation (0 <= lambda <= 1). Defaults to 0
(no shrinkage). Uses corpcor: :cov.shrink. Can help stabilize results if Rb is
ill-conditioned or singular.

method A character string specifying the primary computation method. Options include:

» "geigen” (Default): Use geneig from the geigen package.

e "primme”: Use geneig with the PRIMME library backend (requires special
geigen build).

* "sdiag”: Use geneig with a spectral decomposition method.
* "corpcor”: Use a corpcor-based whitening approach followed by standard
PCA.
strategy Controls the GEVD approach when method is not "corpcor”. Options include:

* "auto” (Default): Chooses based on dimensions (feature vs. sample space).
* "feature”: Forces direct computation via p x p covariance matrices.

* "sample": Forces sample-space computation via SVD and a smaller GEVD
(efficient for large p).

verbose Logical; if TRUE (default), prints brief status messages about strategy selection
and defaults. Set to FALSE to silence these messages.

sample_rank Optional integer controlling the background subspace rank used in the sample-
space strategy. If NULL (default), uses the full background rank min(n_b-1, p).
If provided, the solver will target approximately sample_rank + sample_oversample
and will be bounded above by the full background rank.

sample_oversample
Integer oversampling margin (default 10) applied when sample_rank is given.
Ignored when sample_rank is NULL.

Additional arguments passed to the underlying computation functions (geigen: : geneig
or irlba: :irlba based on method and strategy).

cPCAplus 25

Details

Preprocessing: Following the cPCA++ paper, if center_background = TRUE, both X_f and X_b
are centered by subtracting the column means calculated only from the background data X_b. This
is crucial for isolating variance specific to X_f.

"non " on

Core Algorithm (methods ''geigen'’, ''primme"', ''sdiag', strategy=""feature'"):

1. Center X_f and X_b using the mean of X_b.

2. Compute potentially shrunk p x p covariance matrices Rf (from centered X_f) and Rb (from
centered X_b) using corpcor: :cov.shrink.

3. Solve the generalized eigenvalue problem Rf v = lambda Rb v for the top ncomp eigenvec-
tors v using geigen: :geneig. These eigenvectors are the contrastive principal components
(loadings).

4. Compute scores by projecting the centered foreground data onto the eigenvectors: S = X_f_centered
%%% V.

Core Algorithm (Large-D / Sample Space Strategy, strategy="'"sample''): When p > n, form-
ing p X p matrices Rf and Rb is infeasible. The "sample" strategy follows cPCA++ §3.2:

. Center X_f and X_b using the mean of X_b.

. Compute the SVD of centered X;, = UbSbVb” (using irlba for efficiency).

. Project centered X_f into the background’s principal subspace: Zf = X_f_centered %*% Vb.

. Form small » x r matrices: Rf_small = cov(Zf) and Rb_small = (1/(n_b-1)) * Sb*2.

. Solve the small » x » GEVD: Rf__small w = lambda Rb_small wusing geigen::geneig.

. Lift eigenvectors back to feature space: v = Vb %*% w.

~N N L AW =

. Compute scores: S = X_f_centered %*% v.
Alternative Algorithm (method "corpcor'):

. Center X_f and X_b using the mean of X_b.

. Compute Rb and its inverse square root Rb_inv_sqrt.

. Whiten the foreground data: X_f_whitened = X_f_centered %*% Rb_inv_sqrt.
. Perform standard PCA (stats: :prcomp) on X_f_whitened.

wm A W N =

. The returned v and s are the loadings and scores in the whitened space. The loadings are not
the generalized eigenvectors v. A specific class corpcor_pca is added to signal this.

Value

A bi_projector-like object with classes c("cPCAplus”, "<method_class>", "bi_projector™)
containing:

v Loadings matrix (features x ncomp). Interpretation depends on method (see Details).

s Scores matrix (samples_f x ncomp).

sdev Vector (length ncomp). Standard deviations (sqrt of generalized eigenvalues for geigen meth-
ods, PCA std devs for corpcor).

26 cPCAplus

values Vector (Ilength ncomp). Generalized eigenvalues (for geigen methods) or PCA eigenvalues
(for corpcor).

strategy The strategy used ("feature" or "sample") if method was not "corpcor".
preproc The initialized preprocessor object used.

method The computation method used.

ncomp The number of components computed.

nfeatures The number of features.

References

Abid, A., Zhang, M. J., Bagaria, V. K., & Zou, J. (2018). Exploring patterns enriched in a dataset
with contrastive principal component analysis. Nature Communications, 9(1), 2134.

Salloum, R., & Kuo, C. C.J. (2022). cPCA++: An efficient method for contrastive feature learning.
Pattern Recognition, 124, 108378.

Wu, M., Sun, Q., & Yang, Y. (2025). PCA++: How Uniformity Induces Robustness to Background
Noise in Contrastive Learning. arXiv preprint arXiv:2511.12278.

Woller, J. P., Menrath, D., & Gharabaghi, A. (2025). Generalized contrastive PCA is equivalent to
generalized eigendecomposition. PLOS Computational Biology, 21(10), e1013555.

Examples

Simulate data where foreground has extra variance in first few dimensions
set.seed(123)

n_f <- 100

n_b <- 150

n_features <- 50

Background: standard normal noise
X_b <- matrix(rnorm(n_b * n_features), nrow=n_b, ncol=n_features)
colnames(X_b) <- paste@("Feat_", 1:n_features)

Foreground: background noise + extra variance in first 5 features

X_f_signal <- matrix(rnorm(n_f * 5, mean=0, sd=2), nrow=n_f, ncol=5)

X_f_noise <- matrix(rnorm(n_f * (n_features-5)), nrow=n_f, ncol=n_features-5)

X_f <- cbind(X_f_signal, X_f_noise) + matrix(rnorm(n_f * n_features), nrow=n_f, ncol=n_features)
colnames(X_f) <- paste@("Feat_", 1:n_features)

rownames(X_f) <- paste@("”SampleF_", 1:n_f)

Apply cPCA++ (requires geigen and corpcor packages)

install.packages(c("geigen”, "corpcor"))

if (requireNamespace("geigen”, quietly = TRUE) && requireNamespace("corpcor”, quietly = TRUE)) {
Assuming helper constructors like bi_projector are available
library(multivarious)

res_cpca_plus <- cPCAplus(X_f, X_b, ncomp = 5, method = "geigen")

Scores for the foreground data (samples x components)
print(head(res_cpca_plus$s))

cross_projector 27

Loadings (contrastive directions) (features x components)
print(head(res_cpca_plus$v))
3

Plot example (slow graphics)
if (requireNamespace("geigen”, quietly = TRUE) && requireNamespace("corpcor”, quietly = TRUE)) {
set.seed(123)
X_b <= matrix(rnorm(150 * 50), nrow=150, ncol=50)
X_f <= cbind(matrix(rnorm(100*5, sd=2), 100, 5), matrix(rnorm(100%x45), 100, 45))
res <- cPCAplus(X_f, X_b, ncomp = 5, method = "geigen")
plot(res$s[, 11, res$s[, 21,

xlab = "Contrastive Component 1", ylab = "Contrastive Component 2",
main = "cPCA++ Scores")
3
cross_projector Two-way (cross) projection to latent components
Description

A projector that reduces two blocks of data, X and Y, yielding a pair of weights for each compo-
nent. This structure can be used, for example, to store weights derived from canonical correlation

analysis.
Usage
cross_projector(
VX,
vy,
preproc_x = prep(pass()),
preproc_y = prep(pass()),

L

classes = NULL

)

Arguments
VX the X coefficients. Must have the same number of columns as vy.
vy the Y coefficients. Must have the same number of columns as vx.
preproc_x the X pre-processor
preproc_y the Y pre-processor

extra parameters or results to store

classes additional class names

28 cv

Details

This class extends projector and therefore basic operations such as project, shape, reprocess,
and coef work, but by default, it is assumed that the X block is primary. To access Y block oper-
ations, an additional argument source must be supplied to the relevant functions, e.g., coef (fit,
source ="Y")

Value

a cross_projector object

Examples

Create two scaled matrices X and Y
X <- scale(matrix(rnorm(1@ * 5), 10, 5))
Y <- scale(matrix(rnorm(1@ * 5), 10, 5))

Perform canonical correlation analysis on X and Y
cres <- cancor(X, Y)

sx <= X %x% cres$xcoef

sy <= Y %*% cres$ycoef

Create a cross_projector object using the canonical correlation analysis results
canfit <- cross_projector(cres$xcoef, cres$ycoef, cor = cres$cor,
sSX = sx, sy = sy, classes = "cancor")

cv Cross-validation Framework

Description
Generic function for performing cross-validation on various objects or data. Specific methods
should be implemented for different data types or model types.

Usage

cv(x, folds, ...)

Arguments
X The object to perform cross-validation on (e.g., data matrix, formula, model
object).
folds A list defining the cross-validation folds, typically containing train and test

indices for each fold.

Additional arguments passed to specific methods.

cv_generic 29

Details

The specific implementation details, default functions, and relevant arguments vary by method.

Bi-Projector Method (cv.bi_projector): Relevant arguments: x, folds, max_comp, fit_fun,
measure, measure_fun, return_models,

This method performs cross-validation specifically for bi_projector models (or models intended
to be used like them, typically from unsupervised methods like PCA or SVD). For each fold, it
fits a single model using the training data with the maximum number of components specified
(max_comp). It then iterates from 1 to max_comp components:

1. It truncates the full model to k components using truncate(). (Requires a truncate method
for the fitted model class).

2. Itreconstructs the held-out test data using the k-component truncated model via reconstruct_new().

3. It calculates reconstruction performance metrics (e.g., MSE, R2) by comparing the original
test data to the reconstruction using the measure argument or a custom measure_fun.

The fit_fun must accept an argument ncomp. Additional arguments in . . . are passed to fit_fun
and measure_fun.

The return value is a cv_fit object (a list with class cv_fit), where the $results element is
a tibble. Each row corresponds to a fold, containing the fold index (fold) and a nested tibble
(component_metrics). The component_metrics tibble has rows for each component evaluated (1
to max_comp) and columns for the component index (comp) plus all calculated metrics (e.g., mse,
r2, mae) or error messages (comp_error). If return_models=TRUE, the full model fitted on the
training data for each fold is included in a list column model_full.

Value

The structure of the return value depends on the specific S3 method. Typically, it will be an object
containing the results of the cross-validation, such as performance metrics per fold or aggregated
metrics.

See Also

cv_generic

cv_generic Generic cross-validation engine

Description
For each fold (train/test indices):
1. Subset data[train,]

2. Fit a model with .fit_fun(train_data, ...)

3. Evaluate with .measure_fun(model, test_data, ...)

30 discriminant_projector

Usage

cv_generic(
data,
folds,
.fit_fun,
.measure_fun,
fit_args = list(),
measure_args = list(),

backend = c("serial”, "future"),
)
Arguments
data A matrix or data.frame of shape (n x p).
folds A list of folds, each a list with $train and $test.
.fit_fun Function: signature function(train_data, ...){}. Returns a fitted model.
.measure_fun Function: signature function(model, test_data, ...){}. Returns a tibble
or named list/vector of metrics.
fit_args A list of additional named arguments passed to . fit_fun.

measure_args A list of additional named arguments passed to .measure_fun.

backend Character string: "serial" (default) or "future" for parallel execution using the
future framework.

Currently ignored (arguments should be passed via fit_args ormeasure_args).

Value

A tibble with columns:

fold integer fold index
model list of fitted models
metrics list of metric tibbles/lists

discriminant_projector
Construct a Discriminant Projector

Description

A discriminant_projector is an instance that extends bi_projector with a projection that max-
imizes class separation. This can be useful for dimensionality reduction techniques that take class
labels into account, such as Linear Discriminant Analysis (LDA).

discriminant_projector 31

Usage

discriminant_projector(
v,
S,
sdev,
preproc
labels,
classes = NULL,

prep(pass()),

)
Arguments
v The projection matrix (often X %*% v). Rows correspond to observations, columns
to components.
s The score matrix (often X %*% v). Rows correspond to observations, columns to
components.
sdev The standard deviations associated with the scores or components (e.g., singular
values from LDA).
preproc A prepper or pre_processor object, or a pre-processing function (e.g., center,
pass).
labels A factor or character vector of class labels corresponding to the rows of X (and
s).
classes Additional S3 classes to prepend.
Extra arguments passed to bi_projector.
Value

A discriminant_projector object.

See Also

bi_projector

Examples

Simulate data and labels
set.seed(123)

X <- matrix(rnorm(100 * 10), 100, 10)
labels <- factor(rep(1:2, each = 50))

Perform LDA and create a discriminant projector
lda_fit <- MASS::1lda(X, labels)

dp <- discriminant_projector(lda_fit$scaling, X %*% lda_fit$scaling, sdev = lda_fit$svd,
labels = labels)

32 feature_importance.classifier

feature_importance Evaluate feature importance

Description

Calculate the importance of features in a model

Usage
feature_importance(x, ...)
Arguments
X the model fit
extra args
Value

the feature importance scores

feature_importance.classifier
Evaluate Feature Importance for a Classifier

Description

Estimates the importance of features or blocks of features for the classification performance using

either a "marginal" (leave-one-block-out) or "standalone" (use-only-one-block) approach.

Usage

S3 method for class 'classifier'
feature_importance(
X,
new_data,
true_labels,
ncomp = NULL,
blocks = NULL,
metric = c("cosine”, "euclidean”, "ejaccard"),
fun = rank_score,
fun_direction = c("lower_is_better”, "higher_is_better"),
approach = c("marginal”, "standalone”),

feature_importance.classifier 33

Arguments

X A fitted classifier object.

new_data The data matrix used for evaluating importance (typically validation or test
data).

true_labels The true class labels corresponding to the rows of new_data.

ncomp Optional integer; the number of components to use from the projector for clas-
sification (default: all components used during classifier creation).

blocks A list where each element is a numeric vector of feature indices (columns in the
original data space) defining a block. If NULL, each feature is treated as its own
block.

metric Character string specifying the similarity or distance metric for k-NN. Choices:
"euclidean", "cosine", "ejaccard".

fun A function to compute the performance metric (e.g., rank_score, topk, or a

custom function). The function should take a probability matrix and observed
labels and return a data frame where the first column is the metric value per
observation.

fun_direction Character string, either "lower_is_better" or "higher_is_better", indicating whether
lower or higher values of the metric calculated by fun signify better perfor-
mance. This is used to interpret the importance score correctly.

approach Character string: "marginal" (calculates importance as change from baseline
when block is removed) or "standalone" (calculates importance as performance
using only the block).

Additional arguments passed to predict.classifier during internal predic-
tions.
Details
Importance is measured by the change in a performance metric (fun) when features are removed
(marginal) or used exclusively (standalone).
Value

A data.frame with columns block (character representation of feature indices in the block) and
importance (numeric importance score). Higher importance values generally indicate more influ-
ential blocks, considering fun_direction.

See Also

rank_score, topk

Examples

Assume clf is a fitted classifier object, dat is new data, true_lbls are correct labels for dat
Assume blocks_list defines feature groups e.g., list(1:5, 6:10)
feature_importance(clf, new_data = dat, true_labels = true_lbls, blocks = blocks_list)

34 fit

fit Fit a preprocessing pipeline

Description

Learn preprocessing parameters from training data. This function fits the preprocessing pipeline to
the provided data matrix, learning parameters such as means, standard deviations, or other transfor-
mation parameters.

Usage
fit(object, X, ...)
Arguments
object A preprocessing object (e.g., prepper or pre_processor)
X A matrix or data frame to fit the preprocessing pipeline to
Additional arguments passed to methods
Value

A fitted preprocessing object that can be used with transform() and inverse_transform()

See Also

fit_transform(), transform(), inverse_transform()

Examples

Fit a centering preprocessor

X <= matrix(rnorm(100), 10, 10)
preproc <- center()
fitted_preproc <- fit(preproc, X)

Transform new data
X_new <- matrix(rnorm(50), 5, 10)
X_transformed <- transform(fitted_preproc, X_new)

fit_transform 35

fit_transform Fit and transform data in one step

Description

Convenience function that fits a preprocessing pipeline to data and immediately applies the trans-
formation. This is equivalent to calling fit() followed by transform() but is more efficient and

convenient.
Usage
fit_transform(object, X, ...)
Arguments
object A preprocessing object (e.g., prepper or pre_processor)
X A matrix or data frame to fit and transform
Additional arguments passed to methods
Value

A list with two elements: preproc (the fitted preprocessor) and transformed (the transformed
data)

See Also

fit(), transform(), inverse_transform()

Examples

Fit and transform in one step

X <= matrix(rnorm(100), 10, 10)
preproc <- center()

result <- fit_transform(preproc, X)
fitted_preproc <- result$preproc
X_transformed <- result$transformed

36 geneig

fresh Get a fresh pre-processing node cleared of any cached data

Description

Get a fresh pre-processing node cleared of any cached data

Usage
fresh(x, ...)
Arguments
X the processing pipeline
extra args
Value

a fresh pre-processing pipeline

geneig Generalized Eigenvalue Decomposition

Description

Computes the generalized eigenvalues and eigenvectors for the problem: A x = lambda B x. Sup-
ports multiple dense and iterative solvers with a unified eigenpair selection interface.

Usage

geneig(
A = NULL,
B = NULL,
ncomp = 2,
preproc = prep(pass()),
method = c("robust”, "sdiag", "geigen"”, "primme", "rspectra”, "subspace"),
which = "LA",

geneig

Arguments

A
B
ncomp

preproc

method

which

Value

37

The left-hand side square matrix.
The right-hand side square matrix, same dimension as A.
Number of eigenpairs to return.

A preprocessing function to apply to the matrices before solving the generalized
eigenvalue problem.

One of:

* "robust": Uses a stable decomposition via a whitening transform (B must
be symmetric PD).

* "sdiag": Uses a spectral decomposition of B (must be symmetric PD). Re-
quires A to be symmetric for meaningful results.

» "geigen": Uses the geigen package for a general solution (A and B can be
non-symmetric).

e "primme": Uses the PRIMME package for large/sparse symmetric prob-
lems (A and B must be symmetric).

* "rspectra": Uses RSpectra; if B is SPD it calls eigs_sym(A, B, ...) di-
rectly, otherwise it applies a reciprocal transform to support all targets.

 "subspace": Block subspace iteration for symmetric pairs with SPD B (it-
erative, no external package required).

Which eigenpairs to return. One of "LA" (largest algebraic), "SA" (smallest
algebraic), "LM" (largest magnitude), or "SM" (smallest magnitude). Aliases:
"top"/"largest"” -> "LA", "bottom"/"smallest” -> "SA". Dense backends
select eigenpairs post hoc; "primme” supports "LA", "SA", "SM" (not "LM");
"rspectra” honors all four options. Default is "LA".

Additional arguments to pass to the underlying solver.

A projector object with generalized eigenvectors and eigenvalues.

References

Golub, G. H. & Van Loan, C. F. (2013) Matrix Computations, 4th ed., Section 8.7 — textbook
derivation for the "robust" (Cholesky) and "sdiag" (spectral) transforms.

Moler, C. & Stewart, G. (1973) "An Algorithm for Generalized Matrix Eigenvalue Problems". SIAM
J. Numer. Anal., 10 (2): 241-256 — the QZ algorithm behind the geigen backend.

Stathopoulos, A. & McCombs, J. R. (2010) "PRIMME: PReconditioned Iterative Multi-Method
Eigensolver". ACM TOMS 37 (2): 21:1-21:30 — the algorithmic core of the primme backend.

See also the geigen (CRAN) and PRIMME documentation.

See Also

projector for the base class structure.

38 group_means

Examples

Simulate two matrices

set.seed(123)

A <- matrix(rnorm(50 * 50), 50, 50)

B <- matrix(rnorm(50 * 50), 50, 50)

A <= A %*% t(A) # Make A symmetric

B <- B %*% t(B) + diag(50) * 0.1 # Make B symmetric positive definite

Solve generalized eigenvalue problem
result <- geneig(A = A, B = B, ncomp = 3)

group_means Compute column-wise mean in X for each factor level of Y

Description

This function computes group means for each factor level of Y in the provided data matrix X.

Usage

group_means(Y, X)

Arguments
Y a vector of labels to compute means over disjoint sets
X a data matrix from which to compute means

Value

a matrix with row names corresponding to factor levels of Y and column-wise means for each factor
level

Examples

Example data
X <= matrix(rnorm(50), 10, 5)
Y <- factor(rep(1:2, each = 5))

Compute group means
gm <- group_means(Y, X)

inverse_projection 39

inverse_projection Inverse of the Component Matrix

Description

Return the inverse projection matrix, which can be used to map back to data space. If the component
matrix is orthogonal, then the inverse projection is the transpose of the component matrix.

Usage

inverse_projection(x, ...)

S3 method for class 'projector'

inverse_projection(x, ...)
Arguments
X The model fit.

Extra arguments.

Value

The inverse projection matrix.

See Also

project for projecting data onto the subspace.

inverse_projection.composed_projector
Compute the Inverse Projection for a Composed Projector

Description

Calculates the pseudo-inverse of the composed projector, mapping from the final output space back
towards the original input space. This is computed by multiplying the pseudo-inverses of the indi-
vidual projector stages in reverse order: V_k+ %*x% ... %x% V_2+ %*% V_1+.

Usage

S3 method for class 'composed_projector'
inverse_projection(x, ...)

40 inverse_projection.cross_projector

Arguments
X A composed_projector object.
Additional arguments passed to the underlying inverse_projection methods.
Details

Requires that each stage implements the inverse_projection method.

Value

A matrix representing the combined pseudo-inverse.

inverse_projection.cross_projector
Default inverse_projection method for cross_projector

Description

This function obtains the matrix that maps factor scores in the latent space back into the original
domain (X or Y). By default, we assume v_domain is not necessarily orthonormal or invertible, so
we use a pseudoinverse approach (e.g. MASS::ginv).

Usage
S3 method for class 'cross_projector'
inverse_projection(x, domain = c("X", "Y"), ...)
Arguments
X A cross_projector object.
domain Either "X" or "Y", indicating which block’s inverse loading matrix we want (i.e.,

if you want to reconstruct data in the X space or Y space).

Additional arguments (currently unused, but may be used by subclasses).

Value

A matrix that, when multiplied by the factor scores, yields the reconstruction in the specified do-
main’s original space.

Examples

Suppose 'cp' is a cross_projector object. If we want the
inverse for the Y domain:

inv_mat <- inverse_projection(cp, domain="Y")

Then reconstruct: Yhat <- Fscores %*% inv_mat

inverse_transform 41

inverse_transform Inverse transform data using a fitted preprocessing pipeline

Description

Reverse the preprocessing transformation, converting transformed data back to the original scale.
The preprocessing object must have been fitted before calling this function.

Usage
inverse_transform(object, X, ...)
Arguments
object A fitted preprocessing object
X A matrix or data frame of transformed data to reverse
Additional arguments passed to methods
Value

The data matrix in original scale

See Also

fit(), fit_transform(), transform()

Examples

Inverse transform data back to original scale

X <= matrix(rnorm(100), 10, 10)

preproc <- center()

fitted_preproc <- fit(preproc, X)

X_transformed <- transform(fitted_preproc, X)

X_reconstructed <- inverse_transform(fitted_preproc, X_transformed)

X and X_reconstructed should be approximately equal
all.equal(X, X_reconstructed)

42 is_orthogonal.projector

is_orthogonal is it orthogonal

Description

test whether components are orthogonal

Usage

is_orthogonal(x, tol = 1e-06)

Arguments

X the object

tol tolerance for checking orthogonality
Value

a logical value indicating whether the transformation is orthogonal

is_orthogonal.projector
Stricter check for true orthogonality

Description

We test if vAT * v =1 (when rows >= cols) or v * vAT =1 (when cols > rows).

Usage
S3 method for class 'projector'
is_orthogonal(x, tol = 1e-06)
Arguments

X the projector object

tol tolerance for checking orthogonality

measure_interblock_transfer _error 43

measure_interblock_transfer_error
Compute inter-block transfer error metrics for a cross_projector

Description

We measure how well the model can transfer from X->Y or Y->X, e.g. "x2y.mse".

Usage

measure_interblock_transfer_error(Xtrue, Ytrue, model, metrics = c("x2y.mse"))

Arguments

Xtrue The X block test data

Ytrue The Y block test data

model The fitted cross_projector

metrics A character vector like c("x2y.mse"”, "y2x.r2")
Details

"non non

The metric names are of the form "x2y.mse", "x2y.rmse", "y2x.r2", etc.

Value

A 1-row tibble with columns for each requested metric

measure_reconstruction_error
Compute reconstruction-based error metrics

Description

Given two numeric matrices Xtrue and Xrec, compute:

* MSE ("mse")

e RMSE ("rmse")
e RM2 ("r2")

* MAE ("mae")

44 multiblock_biprojector

Usage
measure_reconstruction_error(
Xtrue,
Xrec,
metrics = c("mse”, "rmse”, "r2"),
by_column = FALSE
)
Arguments
Xtrue Original data matrix, shape (n x p).
Xrec Reconstructed data matrix, shape (n x p).
metrics Character vector of metric names, e.g. c("mse”, "rmse"”,"r2", "mae").
by_column Logical, if TRUE calculate R2 metric per column and average (default: FALSE).
Value

A one-row tibble with columns matching metrics.

multiblock_biprojector
Create a Multiblock Bi-Projector

Description

Constructs a multiblock bi-projector using the given component matrix (v), score matrix (s), sin-
gular values (sdev), a preprocessing function, and a list of block indices. This allows for two-way
mapping with multiblock data.

Usage

multiblock_biprojector(
v,
S,
sdev,
preproc = prep(pass()),
block_indices,
classes = NULL

multiblock_projector 45

Arguments
v A matrix of components (nrow = number of variables, ncol = number of com-
ponents).
s A matrix of scores (nrow = samples, ncol = components).
sdev A numeric vector of singular values or standard deviations.
preproc A pre-processing object (default: prep(pass())).

Extra arguments.
block_indices A list of numeric vectors specifying data block variable indices.
classes Additional class attributes (default NULL).
Value

A multiblock_biprojector object.

See Also

bi_projector, multiblock_projector

multiblock_projector Create a Multiblock Projector

Description

Constructs a multiblock projector using the given component matrix (v), a preprocessing function,
and a list of block indices. This allows for the projection of multiblock data, where each block
represents a different set of variables or features.

Usage

multiblock_projector(
V7
preproc = prep(pass()),
block_indices,
classes = NULL

)
Arguments
% A matrix of components with dimensions nrow(v) by ncol(v) (columns =
number of components).
preproc A pre-processing function for the data (default: prep(pass())).

- Extra arguments.
block_indices A list of numeric vectors specifying the indices of each data block.

classes (optional) A character vector specifying additional class attributes of the object,
default is NULL.

46 nblocks

Value

A multiblock_projector object.

See Also

projector

Examples

Generate some example data

X1 <- matrix(rnorm(10 * 5), 10, 5)
X2 <- matrix(rnorm(1@ * 5), 10, 5)
X <= cbind(X1, X2)

Compute PCA on the combined data
pc <- pca(X, ncomp = 8)

Create a multiblock projector using PCA components and block indices
mb_proj <- multiblock_projector(pc$v, block_indices = list(1:5, 6:10))

Project multiblock data using the multiblock projector
mb_scores <- project(mb_proj, X)

nblocks get the number of blocks

Description

The number of data blocks in a multiblock element

Usage

nblocks(x)

Arguments

X the object

Value

the number of blocks

ncomp 47

ncomp Get the number of components

Description

This function returns the total number of components in the fitted model.

Usage

ncomp (x)

Arguments

X A fitted model object.

Value

The number of components in the fitted model.

Examples

Example using the svd_wrapper function

data(iris)
X <- as.matrix(iris[, 1:41)
fit <- svd_wrapper(X, ncomp = 3, preproc = center(), method = "base")

ncomp(fit) # Should return 3

nystrom_approx Nystrom approximation for kernel-based decomposition (Unified Ver-
sion)

Description

Approximate the eigen-decomposition of a large kernel matrix K using either the standard Nystrom
method (Williams & Seeger, 2001) or the Double Nystrém method (Lim et al., 2015, Algorithm 3).

Usage
nystrom_approx(
X,
kernel_func = NULL,
ncomp = NULL,

landmarks = NULL,
nlandmarks = 10,
preproc = pass(),
method = c("standard”, "double"),

48 nystrom_approx

center = FALSE,
1 = NULL,
use_RSpectra = TRUE,

Arguments

X A numeric matrix or data frame of size (N x D), where N is number of samples.

kernel_func A kernel function with signature kernel_func(X, Y, ...). If NULL, defaults
to a linear kernel: X %*% t(Y).

ncomp Number of components (eigenvectors/eigenvalues) to return. Cannot exceed the
number of landmarks. Default capped at 1length(landmarks).

landmarks A vector of row indices (1-based, from X) specifying the landmark points. If
NULL, nlandmarks points are sampled uniformly at random.

nlandmarks The number of landmark points to sample if 1andmarks is NULL. Default is 10.

preproc A pre-processing pipeline object (e.g., from prep()) or a pre-processing func-
tion (default pass()) to apply before computing the kernel.

method Either "standard" (the classic single-stage Nystrom) or "double" (the two-stage
Double Nystrom method).

center Logical. If TRUE, attempts kernel centering. Default FALSE. Note: True kernel

centering (required for equivalence to Kernel PCA) is computationally expen-
sive and not fully implemented. Setting center=TRUE currently only issues a
warning. For results equivalent to standard PCA, use a linear kernel and center
the input data X (e.g., via preproc). See Details.

1 Intermediate rank for the double Nystrom method. Ignored if method="standard".
Typically, 1 < length(landmarks) to reduce complexity.

use_RSpectra Logical. If TRUE, use RSpectra: :svds for partial SVD. Recommended for
large problems.

Additional arguments passed to kernel_func.

Details

The Double Nystrom method introduces an intermediate step that reduces the size of the decompo-
sition problem, potentially improving efficiency and scalability.

Kernel Centering: Standard Kernel PCA requires the kernel matrix K to be centered in the feature
space (Scholkopf et al., 1998). This implementation currently does not perform kernel centering
by default (center=FALSE) due to computational complexity. Consequently, with non-linear ker-
nels, the results approximate the eigen-decomposition of the uncentered kernel matrix, and are not
strictly equivalent to Kernel PCA. If using a linear kernel, centering the input data X (e.g., using
preproc=prep(center())) yields results equivalent to standard PCA, which is often sufficient.

Standard Nystrom: Uses the method from Williams & Seeger (2001), including the sqrt(m/N)
scaling for eigenvectors and N/m for eigenvalues (m landmarks, N samples).

Double Nystrom: Implements Algorithm 3 from Lim et al. (2015).

partial_inverse_projection 49

Value
A bi_projector object with class "nystrom_approx" and additional fields:

v The eigenvectors (N x ncomp) approximating the kernel eigenbasis.

s The scores (N x ncomp) = v * diag(sdev), analogous to principal component scores.
sdev The square roots of the eigenvalues.

preproc The pre-processing pipeline used.

meta A list containing parameters and intermediate results used (method, landmarks, kernel_func,
etc.).

References

Scholkopf, B., Smola, A., & Miiller, K. R. (1998). Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation, 10(5), 1299-1319.

Williams, C. K. L., & Seeger, M. (2001). Using the Nystrom Method to Speed Up Kernel Machines.
In Advances in Neural Information Processing Systems 13 (pp. 682-688).

Lim, D., Jin, R., & Zhang, L. (2015). An Efficient and Accurate Nystrom Scheme for Large-Scale
Data Sets. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 2765-
2771).

Examples

set.seed(123)
Smaller example matrix
X <= matrix(rnorm(1000x300), 1000, 300)

Standard Nystrém
res_std <- nystrom_approx(X, ncomp=5, nlandmarks=50, method="standard")
print(res_std)

Double Nystrom
res_db <- nystrom_approx(X, ncomp=5, nlandmarks=50, method="double", 1=20)
print(res_db)

Projection (using standard result as example)
scores_new <- project(res_std, X[1:10,])
head(scores_new)

partial_inverse_projection
Partial Inverse Projection of a Columnwise Subset of Component Ma-
trix

Description

Compute the inverse projection of a columnwise subset of the component matrix (e.g., a sub-block).
Even when the full component matrix is orthogonal, there is no guarantee that the partial component
matrix is orthogonal.

50 partial_inverse_projection.cross_projector

Usage
partial_inverse_projection(x, colind, ...)
Arguments
X A fitted model object, such as a projector, that has been fit to a dataset.
colind A numeric vector specifying the column indices of the component matrix to
consider for the partial inverse projection.
Additional arguments to be passed to the specific model implementation of
partial_inverse_projection.
Value

A matrix representing the partial inverse projection.

partial_inverse_projection.cross_projector
Partial Inverse Projection of a Subset of the Loading Matrix in
cross_projector

Description

This function obtains the "inverse" mapping for a columnwise subset of the loading matrix in the
specified domain. In practice, if v_mat is not orthonormal or not square, we use a pseudoinverse
approach (via MASS: :ginv).

Usage
S3 method for class 'cross_projector'
partial_inverse_projection(x, colind, domain = c("X", "Y"), ...)
Arguments
X A cross_projector object.
colind A numeric vector specifying the columns (indices) of the latent factors or load-

ings to invert. Typically these correspond to a subset of canonical components
or principal components, etc.

domain Either "X" or "Y", indicating which block’s partial loadings we want to invert.

Additional arguments (unused by default, but may be used by subclasses).

Details

By default, this is a minimal-norm solution for partial columns of v_mat. If you need a different
approach (e.g., ridge, direct solve, etc.), you can override this method in your specific class or code.

partial_inverse_projection.regress 51

Value

A matrix of shape (length(colind) x p_block) that, when multiplied by factor scores restricted
to colind columns, yields an (n x p_block) reconstruction in the original domain block.

Examples

Suppose 'cp' is a cross_projector, and we want only columns 1:3 of

the Y block factors. Then:

inv_mat_sub <- partial_inverse_projection(cp, colind=1:3, domain="Y")

The shape will be (3 x pY), so factor_scores_sub (n x 3) %*% inv_mat_sub => (n x pY).

partial_inverse_projection.regress
Partial Inverse Projection for a regress Object

Description

This function computes a sub-block inversion of the regression coefficients, allowing you to focus
on only certain columns (e.g. partial factors). If your coefficient matrix is not orthonormal or is not
square, we use a pseudoinverse approach (via corpcor: :pseudoinverse) to find a minimal-norm

solution.
Usage
S3 method for class 'regress'
partial_inverse_projection(x, colind, ...)
Arguments
X A regress object (created by regress).
colind A numeric vector specifying which columns of the factor space (i.e., the second

dimension of x$coefficients) you want to invert. Typically these refer to a
subset of canonical / PCA / PLS components.

Further arguments passed to or used by methods (not used here).

Value

A matrix of shape (length(colind) x nrow(x$coefficients)). When multiplied by partial fac-
tor scores (n x length(colind)), it yields an (n x nrow(x$coefficients)) reconstruction in the
original domain.

52 partial_project.composed_partial_projector

partial_project Fartially project a new sample onto subspace

Description

Project a selected subset of column indices (colind) of new_data onto the subspace defined by the
model x. Optionally do a ridge-regularized least-squares solve if columns are non-orthonormal.

Usage
partial_project(x, new_data, colind, least_squares = TRUE, lambda = 1e-06, ...)
Arguments
X The fitted model, e.g. bi_projector, that has a partial_project method.
new_data A numeric matrix (n x length(colind)) or vector, representing the observations
to be projected.
colind A numeric vector of column indices in the original data space that correspond

to new_data’s columns.
least_squares Logical; if TRUE (default), do a ridge-regularized solve.
lambda Numeric; ridge penalty (default 1e-6). Ignored if least_squares=FALSE.

Additional arguments passed to class-specific partial_project methods.

Value

A numeric matrix (n x d) of factor scores in the model’s subspace, for those columns only.

partial_project.composed_partial_projector
Partial Project Through a Composed Partial Projector

Description

Applies partial_project() through each projector in the composition. If colind is a single
vector, it applies to the first projector only. Subsequent projectors apply full columns. If colind is
a list, each element specifies the colind for the corresponding projector in the chain.

Usage

S3 method for class 'composed_partial_projector'
partial_project(x, new_data, colind = NULL, ...)

partial_project.cross_projector 53

Arguments
X A composed_partial_projector object.
new_data The input data matrix or vector.
colind A numeric vector or a list of numeric vectors/NULLSs. If a single vector, applies
to the first projector only. If a list, its length should ideally match the number
of projectors. colind[[i]] specifies the column indices (relative to the input
of stage i) to use for the partial projection at stage i. A NULL entry means use
full projection for that stage. If the list is shorter than the number of stages,
NULL (full projection) is assumed for remaining stages. If a single numeric vec-
tor is provided, it is treated as list(colind, NULL, NULL, ...) for backward
compatibility (partial only at first stage).
Additional arguments passed to partial_project() or project() methods.
Value

The partially projected data after all projectors are applied.

partial_project.cross_projector
Partially project data for a cross_projector

Description

Projects new data from either the X or Y domain onto the latent subspace, considering only a
specified subset of original features (colind).

Usage

S3 method for class 'cross_projector'
partial_project(

X,

new_data,

colind,

least_squares = TRUE,

lambda = 1e-06,

source = c("X", "Y"),
)
Arguments
X A cross_projector object.
new_data A numeric matrix (n x length(colind)) or vector, representing the observations
corresponding to the columns specified by colind.
colind A numeric vector of column indices in the original data space (either X or Y

domain, specified by source) that correspond to new_data’s columns.

54 partial_projector

least_squares Logical; if TRUE (default), use ridge-regularized least squares for projection.

lambda Numeric; ridge penalty (default le-6). Ignored if least_squares=FALSE.
source Character, either "X" or "Y", indicating which domain new_data and colind
belong to.

Additional arguments (currently ignored).

Value

A numeric matrix (n x d) of factor scores in the latent subspace.

partial_projector Construct a partial projector

Description

Create a new projector instance restricted to a subset of input columns. This function allows for
the generation of a new projection object that focuses only on the specified columns, enabling the
projection of data using a limited set of variables.

Usage
partial_projector(x, colind, ...)
Arguments
X The original projector instance, typically an object of class bi_projector or
any other class that implements a partial_projector method
colind A numeric vector of column indices to select in the projection matrix. These
indices correspond to the variables used for the partial projector
Additional arguments passed to the underlying partial_projector method
Value

A new projector instance, with the same class as the original object, that is restricted to the
specified subset of input columns

See Also

bi_projector for an example of a class that implements a partial_projector method

pass 55

Examples

Example with the bi_projector class

X <- matrix(rnorm(10%*20), 10, 20)

svdfit <- svd(X)

p <- bi_projector(svdfit$v, s = svdfit$u %*% diag(svdfit$d), sdev=svdfit$d)

Create a partial projector using only the first 1@ variables
colind <- 1:10
partial_p <- partial_projector(p, colind)

pass a no-op pre-processing step

Description

pass simply passes its data through the chain

Usage

pass(preproc = prepper())

Arguments

preproc the pre-processing pipeline

Value

a prepper list

pca Principal Components Analysis (PCA)

Description

Compute the directions of maximal variance in a data matrix using the Singular Value Decomposi-
tion (SVD).

Usage

pca(
X}
ncomp = min(dim(X)),
preproc = center(),
method = c("fast”, "base”, "irlba", "propack"”, "rsvd”, "svds"),

56 pca_outliers

Arguments
X The data matrix.
ncomp The number of requested components to estimate (default is the minimum di-
mension of the data matrix).
preproc The pre-processing function to apply to the data matrix (default is centering).
method The SVD method to use, passed to svd_wrapper (default is "fast").
Extra arguments to send to svd_wrapper.
Value

A bi_projector object containing the PCA results.

See Also

svd_wrapper for details on SVD methods.

Examples

data(iris)

X <- as.matrix(iris[, 1:4])
res <- pca(X, ncomp = 4)
tres <- truncate(res, 3)

pca_outliers PCA Outlier Diagnostics

Description
Calculates Hotelling T2 (score distance) and Q-residual (orthogonal distance) for each observation,
given a chosen number of components.

Usage

pca_outliers(x, X, ncomp, cutoff = FALSE)

Arguments
X A pca object.
X The original data matrix used for PCA.
ncomp Number of components to consider.
cutoff Logical or numeric specifying threshold for labeling outliers. If TRUE, uses some
typical statistical threshold (F-dist) for T2, or sets an arbitrary Q limit. If nu-
meric, treat it as a cutoff. Default is FALSE (no labeling).
Value

A data frame with columns T2 and Q, and optionally an outlier flag.

perm_ci 57

perm_ci Permutation Confidence Intervals

Description

Estimate confidence intervals for model parameters using permutation testing.

Usage

perm_ci(x, X, nperm, ...)

S3 method for class 'pca'

perm_ci(x, X, nperm = 100, k = 4, distr = "gamma”, parallel = FALSE, ...)
Arguments

X A model fit object.

X The original data matrix used to fit the model.

nperm The number of permutations to perform for the confidence interval estimation.

Additional arguments to be passed to the specific model implementation of

perm_ci.
k Number of components to test (default 4).
distr Distribution assumption (default "gamma"); currently ignored in forwarding.
parallel Logical; if TRUE, use parallel processing.

Value

A list containing the estimated lower and upper bounds of the confidence intervals for model pa-
rameters.

perm_test Generic Permutation-Based Test

Description

This generic function implements a permutation-based test to assess the significance of components
or statistics in a fitted model. The actual procedure depends on the method defined for the specific
model class. Typical usage:

58 perm_test

Arguments

X A fitted model object (e.g. pca, cross_projector, discriminant_projector,
multiblock_biprojector).
Additional arguments passed down to shuffle_fun or measure_fun (if applica-
ble). Note: For multiblock methods, X1ist, comps, alpha, and use_rspectra
(for biprojector) are handled as direct named arguments, not via

X (Used by pca, cross_projector, discriminant_projector) The original pri-
mary data matrix used to fit x. Ignored by the multiblock_biprojector method.

Y (Used by cross_projector) The secondary data block (n x pY). Ignored by
other methods.

Xlist (Used by multiblock_biprojector [optional, default NULL] and multiblock_projector
[required]) List of data blocks.

nperm Integer number of permutations (Default: 1000 for PCA, 500 for multiblock
methods, 100 otherwise).

measure_fun (Optional; Used by pca, cross_projector,discriminant_projector,multiblock_projector)

A function for computing the statistic(s) of interest. Ignored by multiblock_biprojector.
Signature/default varies by method (see Details).

shuffle_fun (Optional; Used by all methods) A function for permuting the data appropriately.
Signature/default varies by method (see Details).

fit_fun (Optional; Used by cross_projector, discriminant_projector) A function
for re-fitting a new model. Ignored by PCA and multiblock methods. Signa-
ture/default varies by method (see Details).

stepwise (Used by pca) Logical indicating if sequential testing (P3 projection) should
be performed. Default TRUE. (The multiblock methods also perform sequential
testing based on alpha and comps, but this argument is ignored). Ignored by
other methods.

parallel (Used by all methods) Logical; if TRUE, attempt parallel execution via future.apply: : future_lapply.

alternative (Used by all methods) Character string for the alternative hypothesis: "greater"
(default), "less", or "two.sided".

alpha (Used by pca, multiblock_biprojector, multiblock_projector) Signifi-
cance level for sequential stopping rule (default 0.05). Passed directly as a
named argument to these methods.

comps (Used by pca, multiblock_biprojector,multiblock_projector) Maximum
number of components to test sequentially (default 4). Passed directly as a
named argument to these methods.

use_svd_solver (Used by pca) Optional string specifying the SVD solver (default "fast").

use_rspectra (Used by multiblock_biprojector) Logical indicating whether to use RSpec-
tra for eigenvalue calculation (default TRUE). Passed directly as a named argu-
ment.

predict_method (Used by discriminant_projector) Prediction method ("1da” or "euclid")
used by the default measure function (default "lda").

perm_test 59

Details

1. Shuffle or permute the data in a way that breaks the structure of interest (e.g., shuffle labels
for supervised methods, shuffle columns/rows for unsupervised).

2. Re-fit or re-project the model on the permuted data. Depending on the class, this can be done
via a fit_fun or a class-specific approach.

3. Measure the statistic of interest (e.g., variance explained, classification accuracy, canonical
correlation).

4. Compare the distribution of permuted statistics to the observed statistic to compute an empir-
ical p-value.

S3 methods define the specific defaults and required signatures for the functions involved in shuf-
fling, fitting, and measuring.

This function provides a framework for permutation testing in various multivariate models. The
specific implementation details, default functions, and relevant arguments vary by method.

PCA Method (perm_test.pca): Relevant arguments: X, nperm, measure_fun, shuffle_fun,
stepwise, parallel, alternative, alpha, comps, use_svd_solver, Assesses significance
of variance explained by each PC (Vitale et al., 2017). Default statistic: F_a. Default shuffie:
column-wise. Default uses P3 projection and sequential stopping with alpha.

Cross Projector Method (perm_test.cross_projector): Relevant arguments: X, Y, nperm, measure_fun,
shuffle_fun, fit_fun, parallel, alternative, Tests the X-Y relationship. Default statis-
tic: x2y.mse. Default shuffle: rows of Y. Default fit: stats::cancor.

Discriminant Projector Method (perm_test.discriminant_projector): Relevant arguments:
X, nperm, measure_fun, shuffle_fun, fit_fun, predict_method, parallel, alternative,
Tests class separation. Default statistic: prediction accuracy. Default shuffle: labels. Default fit:
MASS: : 1da.

Multiblock Bi-Projector Method (perm_test.multiblock_biprojector): Relevant arguments:
Xlist (optional), nperm, shuffle_fun, parallel, alternative, alpha, comps, use_rspectra,
.. .. Tests consensus using fixed internal statistic (eigenvalue) on scores for each component. The
statistic is the leading eigenvalue of the covariance matrix of block scores for a given component
(TAT, where T columns are scores of block b on component k). By default, it shuffles rows within
each block independently (either from X1ist if provided via ..., or using the internally stored
scores). It performs sequential testing for components specified by comps using the stopping rule
defined by alpha (both passed via . . .).

Multiblock Projector Method (perm_test.multiblock_projector): Relevant arguments: X1ist
(required), nperm, measure_fun, shuffle_fun, parallel, alternative, alpha, comps,
Tests consensus using measure_fun (default: mean abs corr) on scores projected from X1ist using
the original model x. Does not refit.

Value

The structure of the return value depends on the method:
cross_projector and discriminant_projector: Returns an object of class perm_test, a list
containing: statistic, perm_values, p.value, alternative, method, nperm, call.

pca, multiblock_biprojector, and multiblock_projector: Returns an object inheriting from
perm_test (classes perm_test_pca, perm_test_multiblock, or perm_test respectively for

60 perm_test.plsc

multiblock_projector), a list containing: component_results (data frame with observed stat,
pval, CIs per component), perm_values (matrix of permuted stats), alpha (if applicable),
alternative, method, nperm (vector of successful permutations per component), call.

References

Buja, A., & Eyuboglu, N. (1992). Remarks on parallel analysis. Multivariate Behavioral Research,
27(4), 509-540. (Relevant for PCA permutation concepts)

Vitale, R., Westerhuis, J. A., Nas, T., Smilde, A. K., de Noord, O. E., & Ferrer, A. (2017). Selecting
the number of factors in principal component analysis by permutation testing— Numerical and
practical aspects. Journal of Chemometrics, 31(10), €2937. doi:10.1002/cem.2937 (Specific to
perm_test.pca)

See Also

pca, cross_projector,discriminant_projector,multiblock_biprojector, measure_interblock_transfer_error

Examples

PCA Example

data(iris)

X_iris <- as.matrix(iris[,1:4])

mod_pca <- pca(X_iris, ncomp=4, preproc=center()) # Ensure centering

Test first 3 components sequentially (faster with more nperm)

Ensure a future plan is set for parallel=TRUE, e.g., future::plan("multisession”)
res_pca <- perm_test(mod_pca, X_iris, nperm=50, comps=3, parallel=FALSE)
print(res_pca)

PCA Example with row shuffling (tests different null hypothesis)
row_shuffle <- function(dat, ...) dat[sample(nrow(dat)), 1]
res_pca_row <- perm_test(mod_pca, X_iris, nperm=50, comps=3,

shuffle_fun=row_shuffle, parallel=FALSE)
print(res_pca_row)

perm_test.plsc Permutation test for PLSC latent variables

Description

Uses row-wise permutation of the Y block to assess the significance of each latent variable (LV) in

a fitted plsc model. The test statistic is the singular value of the cross-covariance matrix for each
LV.

https://doi.org/10.1002/cem.2937

plsc

Usage

61

S3 method for class 'plsc'

perm_test(

nperm = 1000,
comps = ncomp(x),
stepwise = TRUE,
shuffle_fun = NULL,
parallel = FALSE,

alternative = c("greater”, "less"”, "two.sided"),
alpha = 0.05,
)
Arguments
X A fitted plsc model object.
X Original X block used to fit x.
Y Original Y block used to fit x.
nperm Number of permutations to perform (default 1000).
comps Number of components (LVs) to test. Defaults to ncomp(x).
stepwise Logical; if TRUE (default), perform sequential testing with deflation.

shuffle_fun

Optional function to permute Y; defaults to shuffling rows.

parallel Logical; if TRUE, use parallel processing via future.apply.

alternative Character string for the alternative hypothesis: "greater" (default), "less", or
"two.sided".

alpha Significance level used to report n_significant; not used directly in p-value
calculation.
Additional arguments (currently unused).

plsc Partial Least Squares Correlation (PLSC)
Description

Reference implementation of symmetric brain-behavior PLS (a.k.a. Behavior PLSC). It finds paired
weight vectors for X and Y that maximize their cross-block covariance, obtained from the SVD of
the cross-covariance (or correlation) matrix Cxy = X 'Y/(n — 1).

62 plsc

Usage

plsc(
X,
Y,
ncomp = NULL,
preproc_x = standardize(),
preproc_y = standardize(),

)
Arguments
X Numeric matrix of predictors (n X p_x).
Y Numeric matrix of outcomes/behaviors (n x p_y). Must have the same number
of rows as X.
ncomp Number of latent variables to return. Defaults tomin(nrow(X), ncol(X), ncol(Y)).
preproc_x Preprocessor for the X block (default: standardize()). Use center() if you
want covariance-based PLSC instead of correlation.
preproc_y Preprocessor for the Y block (default: standardize()).
Extra arguments stored on the returned object.
Value

A cross_projector with class "plsc” containing

* vx, vy: X and Y loading/weight matrices.

* sx, sy: subject scores for X and Y blocks.

* singvals: singular values of C'xy (strength of each LV).

* explained_cov: proportion of cross-block covariance per LV.

* preproc_x, preproc_y: fitted preprocessors for reuse.

Examples

set.seed(1)
X <- matrix(rnorm(80), 20, 4)
Y <- matrix(rnorm(60), 20, 3)
fit <- plsc(X, Y, ncomp = 3)
fit$singvals

predict.classifier 63

predict.classifier Predict Class Labels using a Classifier Object

Description

Predicts class labels and probabilities for new data using a fitted classifier object. It performs
k-Nearest Neighbors (k-NN) classification in the projected component space.

Usage
S3 method for class 'classifier'’
predict(
object,
new_data,
ncomp = NULL,
colind = NULL,
metric = c("euclidean”, "cosine"”, "ejaccard"),
normalize_probs = FALSE,
prob_type = c("knn_proportion”, "avg_similarity"),
)
Arguments
object A fitted object of class classifier.
new_data A numeric matrix or vector of new observations to classify. Rows are observa-
tions, columns are variables matching the original data space used by the pro-
jector OR matching colind if provided.
ncomp Optional integer; the number of components to use from the projector for clas-
sification (default: all components used during classifier creation).
colind Optional numeric vector specifying column indices from the original data space.
If provided, new_data is projected using only these features (partial_project).
This overrides any colind stored default in the object. The resulting projec-
tion is compared against the reference scores (object$scores) stored in the
classifier.
metric Character string specifying the similarity or distance metric for k-NN. Choices:

"non non

"euclidean", "cosine", "ejaccard".
normalize_probs
Logical; DEPRECATED Normalization behavior is now implicit in prob_type="avg_similarity".
prob_type Character string; method for calculating probabilities:
* "knn_proportion" (default): Calculates the proportion of each class among
the k nearest neighbors.

e "avg_similarity": Calculates average similarity to all training points per
class (uses avg_probs helper).

64 predict.discriminant_projector

Extra arguments passed down to projection methods (project, partial_project)
or potentially to distance/similarity calculations (e.g., for proxy: :simil if used
with ejaccard).

Details

The function first projects the new_data into the component space defined by the classifier’s inter-
nal projector. If colind is specified, a partial projection using only those features is performed.
This projection is then compared to the reference scores stored within the classifier object
(object$scores) using the specified metric. The k-NN algorithm identifies the k nearest refer-
ence samples (based on similarity or distance) and predicts the class via majority vote. Probabilities
are estimated based on the average similarity/distance to each class among the neighbors or all
reference points.

Value
A list containing:

class A factor vector of predicted class labels for new_data.

prob A numeric matrix (rows corresponding to new_data, columns to classes) of es-
timated class probabilities.

See Also

classifier.projector, classifier.multiblock_biprojector, partial_project

Other classifier predict: predict.rf_classifier()

Examples

Assume clf is a fitted classifier object (e.g., from classifier.projector)
Assume new_dat is a matrix of new observations

preds <- predict(clf, new_data = new_dat, metric = "cosine")

print(preds$class)

print(preds$prob)

predict.discriminant_projector

Predict method for a discriminant_projector, supporting LDA or Eu-
clid

Description

This produces class predictions or posterior-like scores for new data. We first project the data into
the subspace defined by x$v, then either:

1. LDA approach (method="1da"), which uses a (simplified) linear discriminant formula or
distance to class means in the subspace combined with prior probabilities.

predict.discriminant_projector 65

2. Euclid approach (method="euclid”), which uses plain Euclidean distance to each class
mean in the subspace.

We return either a type="class" label or type="prob" posterior-like matrix.

Usage

S3 method for class 'discriminant_projector'
predict(

object,

new_data,

method = c("lda", "euclid"),

type = c("class”, "prob"),

colind = NULL,

)
Arguments
object A discriminant_projector object.
new_data A numeric matrix (or vector) with the same # of columns as the original data
(unless partial usage). Rows=observations, columns=features.
method Either "1da" (the default) or "euclid” (nearest-mean).
type "class" (default) for predicted class labels, or "prob” for posterior-like proba-
bilities.
colind (optional) if partial columns are used, specify which columns map to the sub-
space. If NULL, assume full columns.
further arguments (not used or for future expansions).
Value

If type="class", a factor vector of length n (predicted classes). If type="prob”, an (n x #classes)
numeric matrix of posterior-like values, with row names matching new_data if available.

Predict method for a discriminant_projector
This produces class predictions or posterior-like scores for new data, based on:
* LDA approach (method="1da"), which uses a linear discriminant formula with a pooled co-

variance matrix if x\$Sigma is given, or the identity matrix if Sigma=NULL. If that covariance
matrix is not invertible, a pseudo-inverse is used and a warning is emitted.

* Euclid approach (method="euclid"), which uses plain Euclidean distance to each class
mean in the subspace.
We return either a type="class" label or type="prob" posterior-like matrix.

If type="class", a factor vector of length n (predicted classes). If type="prob", an (n x #classes)
numeric matrix of posterior-like values.

66 predict.rf_classifier

predict.rf_classifier Predict Class Labels using a Random Forest Classifier Object

Description

Predicts class labels and probabilities for new data using a fitted rf_classifier object. This
method projects the new_data into the component space and then uses the stored randomForest
model to predict outcomes.

Usage
S3 method for class 'rf_classifier'’
predict(object, new_data, ncomp = NULL, colind = NULL, ...)
Arguments
object A fitted object of class rf_classifier.
new_data A numeric matrix or vector of new observations to classify. Rows are observa-

tions, columns are variables matching the original data space used by the pro-
jector OR matching colind if provided.

ncomp Optional integer; the number of components to use from the projector for clas-
sification (default: all components used during classifier creation).

colind Optional numeric vector specifying column indices from the original data space.
If provided, new_data is projected using only these features (partial_project).
This overrides any colind stored default in the object. The resulting projec-
tion is compared against the reference scores (object$scores) stored in the
classifier.

Extra arguments passed to predict.randomForest.

Value

A list containing:

class Predicted class labels (typically factor) from the random forest model.
prob A numeric matrix of predicted class probabilities from the random forest model.
See Also

rf_classifier.projector, predict.randomForest

Other classifier predict: predict.classifier()

prep 67

prep prepare a dataset by applying a pre-processing pipeline

Description

prepare a dataset by applying a pre-processing pipeline

Usage
prep(x, ...)
Arguments
X the pipeline
extra args
Value

the pre-processed data

preprocess Convenience function for preprocessing workflow

Description

This helper function provides a simple interface for the common preprocessing workflow: fit a
preprocessor to data and return both the fitted preprocessor and the transformed data.

Usage
preprocess(preproc, X, ...)
Arguments
preproc A preprocessing object (e.g., created with center (), standardize(), etc.)
X A matrix or data frame to preprocess
Additional arguments passed to methods
Value

A list with two elements:

preproc The fitted preprocessing object

transformed The transformed data matrix

68 prinang

See Also

fit(), fit_transform(), transform(), inverse_transform()

Examples

Simple preprocessing workflow
X <- matrix(rnorm(100), 10, 10)
result <- preprocess(center(), X)
fitted_preproc <- result$preproc
X_centered <- result$transformed

Equivalent to:
fitted_preproc <- fit(center(), X)
X_centered <- transform(fitted_preproc, X)

prinang Calculate Principal Angles Between Subspaces

Description
Computes the principal angles between two subspaces defined by the columns of two orthonormal
matrices Q1 and Q2.

Usage

prinang(Q1, Q2)

Arguments
Q1 An n x p matrix whose columns form an orthonormal basis for the first subspace.
Q2 An n x q matrix whose columns form an orthonormal basis for the second sub-
space.
Value

A numeric vector containing the principal angles in radians, sorted in ascending order. The number
of angles is min(p, q).

Examples

Example: Angle between xy-plane and a plane rotated 45 degrees around x-axis

Q1 <- cbind(c(1,0,0), c(0,1,0)) # xy-plane basis

theta <- pi/4

R <- matrix(c(1, @, @, @, cos(theta), sin(theta), @, -sin(theta), cos(theta)), 3, 3)
Q2 <- R %*% Q1 # Rotated basis

angles_rad <- prinang(Q1, Q2)

angles_deg <- angles_rad * 180 / pi

print(angles_deg) # Should be approximately @ and 45 degrees

principal_angles 69

Example with PCA loadings (after ensuring orthonormality if needed)

Assuming pcal$v and pca2$v are loading matrices (variables x components)

Orthonormalize them first if they are not already (e.g., from standard SVD)
Q1 <- gr.Q(gr(pcals$vl, 1:31))

Q2 <- gr.Q(gr(pca2s$vl, 1:31))

prinang(Q1, Q2)

principal_angles Principal angles (two sub-spaces)

Description

Principal angles (two sub-spaces)

Usage
principal_angles(fit1, fit2, k = NULL)

Arguments

fit1, fit2 bi_projector objects (or any object with $v loadings)

k number of dimensions to compare (default: min(ncomp))
Value

numeric vector of principal angles (radians, length = k)

print.bi_projector Pretty Print S3 Method for bi_projector Class

Description

Pretty Print S3 Method for bi_projector Class

Usage
S3 method for class 'bi_projector'
print(x, ...)
Arguments
X A bi_projector object
Additional arguments passed to the print function
Value

Invisible bi_projector object

70 print.concat_pre_processor

print.classifier Pretty Print Method for classifier Objects

Description

Display a human-readable summary of a classifier object.

Usage
S3 method for class 'classifier'
print(x, ...)
Arguments
X A classifier object.
Additional arguments.
Value

classifier object.

Examples

Assume clf is a fitted classifier object
print(clf)

print.concat_pre_processor
Print a concat_pre_processor object

Description

Print a concat_pre_processor object

Usage
S3 method for class 'concat_pre_processor'
print(x, ...)

Arguments
X A concat_pre_processor object.

Additional arguments (ignored).

print.multiblock_biprojector 71

print.multiblock_biprojector
Pretty Print Method for multiblock_biprojector Objects

Description

Display a summary of amultiblock_biprojector object.

Usage
S3 method for class 'multiblock_biprojector'
print(x, ...)
Arguments
X A multiblock_biprojector object.
Additional arguments passed to print().
Value

Invisible multiblock_biprojector object.

print.pca Print Method for PCA Objects

Description

Provide a color-enhanced summary of the PCA object, including dimensions, variance explained,
and a quick component breakdown.

Usage
S3 method for class 'pca'
print(x, ...)

Arguments
X A pca object.

Ignored (for compatibility).

72

print.perm_test_pca

print.perm_test Print Method for perm_test Objects

Description

Provides a concise summary of the permutation test results.

Usage
S3 method for class 'perm_test'
print(x, ...)
Arguments
X An object of class perm_test.
Additional arguments passed to printing methods.
Value

Invisibly returns the input object x.

print.perm_test_pca Print Method for perm_test_pca Objects

Description

Provides a concise summary of the PCA permutation test results.

Usage
S3 method for class 'perm_test_pca'
print(x, ...)
Arguments
X An object of class perm_test_pca.
Additional arguments passed to printing methods.
Value

Invisibly returns the input object x.

print.prepper

73

print.prepper Print a prepper pipeline

Description

Uses crayon to produce a colorful and readable representation of the pipeline steps.

Usage
S3 method for class 'prepper'
print(x, ...)

Arguments
X A prepper object.

Additional arguments (ignored).

print.pre_processor Print a pre_processor object

Description

Display information about a pre_processor using crayon-based formatting.

Usage
S3 method for class 'pre_processor'
print(x, ...)

Arguments
X A pre_processor object.

Additional arguments (ignored).

74 print.rf_classifier

print.regress Pretty Print Method for regress Objects

Description

Display a human-readable summary of a regress object using crayon formatting, including infor-
mation about the method and dimensions.

Usage
S3 method for class 'regress'
print(x, ...)
Arguments
X A regress object (a bi_projector with regression info).

Additional arguments passed to print().

print.rf_classifier Pretty Print Method for rf_classifier Objects

Description

Display a human-readable summary of an rf_classifier object.

Usage
S3 method for class 'rf_classifier'’
print(x, ...)
Arguments
X An rf_classifier object.
Additional arguments passed to print.randomForest.
Value

rf_classifier object.

Examples

Assume rf_clf is a fitted rf_classifier object
print(rf_clf)

project 75

project New sample projection

Description

Project one or more samples onto a subspace. This function takes a model fit and new observations,
and projects them onto the subspace defined by the model. This allows for the transformation of
new data into the same lower-dimensional space as the original data.

Usage
project(x, new_data, ...)
Arguments
X The model fit, typically an object of class bi_projector or any other class that
implements a project method
new_data A matrix or vector of new observations with the same number of columns as the
original data. Rows represent observations and columns represent variables
Extra arguments to be passed to the specific project method for the object’s class
Value

A matrix or vector of the projected observations, where rows represent observations and columns
represent the lower-dimensional space

See Also

bi_projector for an example of a class that implements a project method

Other project: project.cross_projector(), project_block(), project_vars()

Examples

Example with the bi_projector class

X <- matrix(rnorm(10%20), 10, 20)

svdfit <- svd(X)

p <- bi_projector(svdfit$v, s = svdfit$u %*% diag(svdfit$d), sdev=svdfit$d)

Project new_data onto the same subspace as the original data
new_data <- matrix(rnorm(5%20), 5, 20)
projected_data <- project(p, new_data)

76 project.nystrom_approx

project.cross_projector
project a cross_projector instance

Description

project a cross_projector instance

Usage
S3 method for class 'cross_projector'
project(x, new_data, source = c("X", "Y"), ...)
Arguments
X The model fit, typically an object of class bi_projector or any other class that

implements a project method

new_data A matrix or vector of new observations with the same number of columns as the
original data. Rows represent observations and columns represent variables

source the source of the data (X or Y block)

Extra arguments to be passed to the specific project method for the object’s class

Value

the projected data

See Also

Other project: project(), project_block(), project_vars()

project.nystrom_approx
Project new data using a Nystrom approximation model

Description

Project new data using a Nystrém approximation model

Usage

S3 method for class 'nystrom_approx'
project(x, new_data, ...)

projector 77

Arguments
X A nystrom_approx object (inheriting from bi_projector).
new_data New data matrix to project.
Additional arguments (currently ignored).
Value

A matrix of projected scores.

projector Construct a projector instance

Description

A projector maps a matrix from an N-dimensional space to d-dimensional space, where d may
be less than N. The projection matrix, v, is not necessarily orthogonal. This function constructs a
projector instance which can be used for various dimensionality reduction techniques like PCA,
LDA, etc.

Usage
projector(v, preproc = prep(pass()), ..., classes = NULL)
Arguments
v A matrix of coefficients with dimensions nrow(v) by ncol(v) (columns = com-
ponents)
preproc A prepped pre-processing object (S3 class pre_processor). Default is the no-
op pass() preprocessor.
Extra arguments to be stored in the projector object.
classes Additional class information used for creating subtypes of projector. Default
is NULL.
Value

An instance of type projector.

78 project_block.multiblock_projector

project_block Project a single "block" of data onto the subspace

Description

When observations are concatenated into "blocks", it may be useful to project one block from
the set. This function facilitates the projection of a specific block of data onto a subspace. It is a
convenience method for multi-block fits and is equivalent to a "partial projection" where the column
indices are associated with a given block.

Usage
project_block(x, new_data, block, least_squares, ...)
Arguments
X The model fit, typically an object of a class that implements a project_block
method
new_data A matrix or vector of new observation(s) with the same number of columns as
the original data
block An integer representing the block ID to select in the block projection matrix.

This ID corresponds to the specific block of data to be projected
least_squares Logical. If TRUE use least squares projection.

Additional arguments passed to the underlying project_block method

Value

A matrix or vector of the projected data for the specified block

See Also

project for the generic projection function

Other project: project(), project.cross_projector(), project_vars()

project_block.multiblock_projector
Project Data onto a Specific Block

Description

Projects the new data onto the subspace defined by a specific block of variables.

project_vars 79

Usage
S3 method for class 'multiblock_projector'
project_block(x, new_data, block, least_squares = TRUE, ...)
Arguments
X A multiblock_projector object.
new_data The new data to be projected.
block The block index (1-based) to project onto.

least_squares Logical. If TRUE (default), use least squares projection.

Additional arguments passed to partial_project.

Value

The projected scores for the specified block.

project_vars Project one or more variables onto a subspace

Description

This function projects one or more variables onto a subspace. It is often called supplementary
variable projection and can be computed for a biorthogonal decomposition, such as Singular Value
Decomposition (SVD).

Usage
project_vars(x, new_data, ...)
Arguments
X The model fit, typically an object of a class that implements a project_vars
method
new_data A matrix or vector of new observation(s) with the same number of rows as the
original data
Additional arguments passed to the underlying project_vars method
Value

A matrix or vector of the projected variables in the subspace

See Also

project for the generic projection function for samples

Other project: project(), project.cross_projector(), project_block()

80 reconstruct

rank_score Calculate Rank Score for Predictions

Description
Computes the rank score (normalized rank of the true class probability) for each observation. Lower
rank scores indicate better predictions (true class has higher probability).

Usage

rank_score(prob, observed)

Arguments
prob Numeric matrix of predicted probabilities (observations x classes). Column
names must correspond to class labels.
observed Factor or vector of observed class labels. Must be present in colnames(prob).
Value

A data. frame with columns prank (the normalized rank score) and observed (the input labels).

See Also

Other classifier evaluation: topk ()

Examples

probs <- matrix(c(@.1, 0.9, 0.8, 0.2), 2, 2, byrow=TRUE,
dimnames = list(NULL, c("A", "B")))

obs <- factor(c("B", "A"))

rank_score(probs, obs)

reconstruct Reconstruct the data

Description

Reconstruct a data set from its (possibly) low-rank representation. This can be useful when ana-
lyzing the impact of dimensionality reduction or when visualizing approximations of the original
data.

Usage

reconstruct(x, ...)

reconstruct.composed_projector 81

Arguments
X The model fit, typically an object of a class that implements a reconstruct
method
Additional arguments passed to specific methods. Common parameters include:

comp A vector of component indices to use in the reconstruction
rowind The row indices to reconstruct (optional)
colind The column indices to reconstruct (optional)

scores (For composed_projector only) A numeric matrix of scores to recon-
struct from

Value

A reconstructed data set based on the selected components, rows, and columns

See Also

bi_projector for an example of a two-way mapping model that can be reconstructed

Other reconstruct: reconstruct_new()

reconstruct.composed_projector
Reconstruct Data from Scores using a Composed Projector

Description

Maps scores from the final latent space back towards the original input space using the composed
projector’s combined inverse projection. Requires scores to be provided explicitly.

Usage
S3 method for class 'composed_projector'
reconstruct(x, scores, comp = NULL, rowind = NULL, colind = NULL, ...)
Arguments
X A composed_projector object.
scores A numeric matrix of scores (observations x components) in the final latent space
of the composed projector.
comp Numeric vector of component indices (columns of scores, rows of inverse_projection)
to use for reconstruction. Defaults to all components.
rowind Numeric vector of row indices (observations in scores) to reconstruct. Defaults
to all rows.
colind Numeric vector of original variable indices (columns of the final reconstructed

matrix) to return. Defaults to all original variables.

Additional arguments (currently unused).

82 reconstruct.regress

Details

Attempts to apply the reverse_transform of the first stage’s preprocessor to return data in the
original units. If the first stage preprocessor is unavailable or invalid, a warning is issued, and data
is returned in the (potentially) preprocessed space of the first stage.

Value

A matrix representing the reconstructed data, ideally in the original data space.

reconstruct.pca Reconstruct Data from PCA Results

Description

Reconstructs the original (centered) data matrix from the PCA scores and loadings.

Usage
S3 method for class 'pca'
reconstruct(x, comp = 1:ncomp(x), ...)
Arguments
X A pca object.
comp Integer vector specifying which components to use for reconstruction (default:

all components in x).

Extra arguments (ignored).

Value

A matrix representing the reconstructed data in the original scale (preprocessing reversed).

reconstruct.regress Reconstruct fitted or subsetted outputs for a regress object

Description

For regression-based bi_projectors, reconstruction should map from the design matrix side (scores)
to the output space using the regression coefficients, without applying any reverse preprocessing
(which belongs to the input/basis side).

reconstruct_new 83

Usage

S3 method for class 'regress'
reconstruct(
X,
comp = 1:ncol(x$coefficients),
rowind = T:nrow(scores(x)),

colind = 1:nrow(x$coefficients),
)
Arguments
X A regress object produced by regress().
comp Integer vector of component indices (columns of the design matrix / predictors)
to use.
rowind Integer vector of row indices in the design matrix (observations) to reconstruct.
colind Integer vector of output indices (columns of Y) to reconstruct.
Ignored.
reconstruct_new Reconstruct new data in a model’s subspace
Description

This function takes a model (e.g., projector or bi_projector) and a new dataset, and computes
the rank-d approximation of the new data in the same subspace that was defined by the model. In
other words, we project the new data into the fitted subspace and then map it back to the original

dimensionality.
Usage
reconstruct_new(x, new_data, ...)
Arguments
X The fitted model object (e.g., bi_projector) that defines a subspace or factor-
ization.
new_data A numeric matrix (or data frame) of shape (n x p_full) or possibly fewer
columns if you allow partial reconstruction.
Additional arguments passed to the specific reconstruct_new method for the
class of x.
Details

Similar to reconstruct but operates on an external new_data rather than the original fitted data.
Often used to see how well the model’s subspace explains unseen data.

84 regress

Value
A numeric matrix (same number of rows as new_data, and typically the same number of columns
if you’re reconstructing fully) representing the rank-d approximation in the model’s subspace.

See Also

reconstruct for reconstructing the original data in the model.

Other reconstruct: reconstruct()

refit refit a model

Description

refit a model given new data or new parameter(s)

Usage
refit(x, new_data, ...)
Arguments
X the original model fit object
new_data the new data to process
extra args
Value

a refit model object

regress Multi-output linear regression

Description

Fit a multivariate regression model for a matrix of basis functions, X, and a response matrix Y. The
goal is to find a projection matrix that can be used for mapping and reconstruction.

regress 85

Usage

regress(
X,
Y,
preproc = pass(),
method = c("1m", "enet”, "mridge"”, "pls"),
intercept = FALSE,
lambda = 0.001,
alpha = 0,
ncomp = ceiling(ncol(X)/2),

)
Arguments
X the set of independent (basis) variables
Y the response matrix
preproc A preprocessing pipeline applied to X before fitting the model
method the regression method: 1m, enet, mridge, or pls
intercept whether to include an intercept term
lambda ridge shrinkage parameter (for methods mridge and enet)
alpha the elastic net mixing parameter if method is enet
ncomp number of PLS components if method is pls
extra arguments sent to the underlying fitting function
Value

a bi-projector of type regress. The sdev component of this object stores the standard deviations
of the columns of the design matrix (X potentially including an intercept) used in the fit, not the
standard deviations of latent components as might be typical in other bi_projector contexts (e.g.,
SVD).

Examples

Generate synthetic data
set.seed(123) # for reproducibility
Y <- matrix(rnorm(10 * 100), 10, 100)
X <= matrix(rnorm(1@ *x 9), 10, 9)

Fit regression models and reconstruct the fitted response matrix
r_lm <- regress(X, Y, intercept = FALSE, method = "1m")

recon_lm <- reconstruct(r_lm) # Reconstructs fitted Y

r_mridge <- regress(X, Y, intercept = TRUE, method = "mridge"”, lambda = 0.001)
recon_mridge <- reconstruct(r_mridge)

r_enet <- regress(X, Y, intercept = TRUE, method = "enet”, lambda = 0.001, alpha = 0.5)

86 reprocess.cross_projector

recon_enet <- reconstruct(r_enet)

r_pls <- regress(X, Y, intercept = TRUE, method = "pls”, ncomp = 5)
recon_pls <- reconstruct(r_pls)

reprocess apply pre-processing parameters to a new data matrix

Description

Given a new dataset, process it in the same way the original data was processed (e.g. centering,
scaling, etc.)

Usage

reprocess(x, new_data, colind, ...)
Arguments

X the model fit object

new_data the new data to process

colind the column indices of the new data

extra args

Value

the reprocessed data

reprocess.cross_projector
reprocess a cross_projector instance

Description

reprocess a cross_projector instance

Usage

S3 method for class 'cross_projector'
reprocess(x, new_data, colind = NULL, source = c("X", "Y"), ...)

reprocess.nystrom_approx 87

Arguments
X the model fit object
new_data the new data to process
colind the column indices of the new data
source the source of the data (X or Y block)
extra args
Details

When colind is provided, each index is validated to be within the available coefficient rows using
chk: :chk_subset.

Value

the re(pre-)processed data

reprocess.nystrom_approx
Reprocess data for Nystrom approximation

Description

Apply preprocessing to new data for projection using a Nystrom approximation. This method over-
rides the default reprocess.projector to handle the fact that Nystrom components are in kernel
space (not feature space).

Usage
S3 method for class 'nystrom_approx'
reprocess(x, new_data, colind = NULL, ...)
Arguments
X A nystrom_approx object
new_data A matrix with the same number of columns as the original training data
colind Optional column indices (not typically used for Nystrom)

Additional arguments (ignored)

Value

Preprocessed data matrix

88 residuals

residualize Compute a regression model for each column in a matrix and return
residual matrix

Description

Compute a regression model for each column in a matrix and return residual matrix

Usage

residualize(form, X, design, intercept = FALSE)

Arguments
form the formula defining the model to fit for residuals
X the response matrix
design the data. frame containing the design variables specified in form argument.
intercept add an intercept term (default is FALSE)
Value

amatrix of residuals

Examples

X <= matrix(rnorm(20%10), 20, 10)
des <- data.frame(a=rep(letters[1:4], 5), b=factor(rep(1:5, each=4)))
xresid <- residualize(~ atb, X, design=des)

design is saturated, residuals should be zero
xresid2 <- residualize(~ axb, X, design=des)
sum(xresid2) == 0

residuals Obtain residuals of a component model fit

Description

Calculate the residuals of a model after removing the effect of the first ncomp components. This
function is useful to assess the quality of the fit or to identify patterns that are not captured by the
model.

Usage

residuals(x, ncomp, xorig, ...)

reverse_transform

Arguments

X
ncomp

xorig

Value

The model fit object.

The number of components to factor out before calculating residuals.

The original data matrix (X) used to fit the model.

Additional arguments passed to the method.

A matrix of residuals, with the same dimensions as the original data matrix.

89

reverse_transform

reverse a pre-processing transform

Description

reverse a pre-processing transform

Usage

reverse_transform(x, X, colind, ...)
Arguments

X the pre_processor

X the data matrix

colind column indices

extra args

Value

the reverse-transformed data

90 rf_classifier.projector

rf_classifier construct a random forest wrapper classifier

Description

Given a model object (e.g. projector construct a random forest classifier that can generate predic-
tions for new data points.

Usage
rf_classifier(x, colind, ...)
Arguments
X the model object
colind the (optional) column indices used for prediction
extra arguments to randomForest function
Value

a random forest classifier

rf_classifier.projector
Create a random forest classifier

Description

Uses randomForest to train a random forest on the provided scores and labels.

Usage

S3 method for class 'projector'

rf_classifier(x, colind = NULL, labels, scores, ...)
Arguments

X a projector object

colind optional col indices

labels class labels

scores reference scores

passed to randomForest

rotate 91

Value

arf_classifier object with rfres (rf model), labels, scores

See Also

randomForest

Other classifier: classifier(), classifier.multiblock_biprojector()

Examples

Assume proj is a fitted projector object

Assume lbls are labels and sc are scores

if (requireNamespace("randomForest”, quietly = TRUE)) {
rf_classifier(proj, labels = lbls, scores = sc)

3

rotate Rotate a Component Solution

Description

Perform a rotation of the component loadings to improve interpretability.

Usage
rotate(x, ncomp, type, ...)
Arguments
X The model fit, typically a result from a dimensionality reduction method like
PCA.
ncomp The number of components to rotate.
type The type of rotation to apply (e.g., "varimax", "quartimax", "promax").
extra args
Value

A modified model fit with the rotated components.

92 rotate.pca

rotate.pca Rotate PCA Loadings

Description

Apply a specified rotation to the component loadings of a PCA model. This function leverages the
GPArotation package to apply orthogonal or oblique rotations.

Usage
S3 method for class 'pca'
rotate(
X’
ncomp,
type = c("varimax", "quartimax", "promax"),
loadings_type = c("pattern”, "structure"),
score_method = c("auto”, "recompute”, "original"”),
)
Arguments
X A PCA model object, typically created using the pca() function.
ncomp The number of components to rotate. Must be <= ncomp(X).
type The type of rotation to apply. Supported rotation types:

"varimax' Orthogonal Varimax rotation
"quartimax' Orthogonal Quartimax rotation

"promax'’ Oblique Promax rotation
loadings_type For oblique rotations, which loadings to use:

""pattern’ Use pattern loadings as v
"structure' Use structure loadings (pattern_loadings %*% Phi) as v

Ignored for orthogonal rotations.
score_method How to recompute scores after rotation:

"auto" For orthogonal rotations, use scores_new = scores_original %*% t(R)
For oblique rotations, recompute from the pseudoinverse.

""recompute'’ Always recompute scores from X_proc and the pseudoinverse of
rotated loadings.

"original" For orth rotations, same as auto, but may not work for oblique ro-
tations.

Additional arguments passed to GPArotation functions.

scores 93

Value
A modified PCA object with class rotated_pca and additional fields:

v Rotated loadings

s Rotated scores

sdev Updated standard deviations of rotated components

explained_variance Proportion of explained variance for each rotated component

rotation A list with rotation details: type, R (orth) or Phi (oblique), and loadings_type

Examples

Perform PCA on the iris dataset
data(iris)

X <- as.matrix(iris[,1:4])

res <- pca(X, ncomp=4)

Apply varimax rotation to the first 3 components
rotated_res <- rotate(res, ncomp=3, type="varimax")

scores Retrieve the component scores

Description

Extract the factor score matrix from a fitted model. The factor scores represent the projections of
the data onto the components, which can be used for further analysis or visualization.

Usage
scores(x, ...)
Arguments
X The model fit object.
Additional arguments passed to the method.
Value

A matrix of factor scores, with rows corresponding to samples and columns to components.

See Also

project for projecting new data onto the components.

94

screeplot

scores.plsc Extract scores from a PLSC fit

Description

Extract scores from a PLSC fit

Usage
S3 method for class 'plsc'
scores(x, block = c("X", "Y"), ...)
Arguments
X A plsc object.
block Which block to return scores for: "X" (default) or "Y".
Ignored.
Value

Numeric matrix of scores for the chosen block.

screeplot Screeplot for PCA

Description

Displays the variance explained by each principal component as a bar or line plot.

Usage

screeplot(x, ...)
Arguments

X A pca object.

extra args

screeplot.pca

screeplot.pca Screeplot for PCA

Description

Displays the variance explained by each principal component as a bar or line plot.

Usage

S3 method for class 'pca'

screeplot(x, type = "barplot”, main = "Screeplot”, ...)
Arguments

X A pca object.

type "barplot" or "lines".

main Plot title.

Additional args to pass to base R plotting.

sdev standard deviations

Description

The standard deviations of the projected data matrix

Usage

sdev(x)

Arguments

X the model fit

Value

the standard deviations

96 shape.cross_projector

shape Shape of the Projector

Description

Get the input/output shape of the projector.

Usage
shape(x, ...)
Arguments
X The model fit.
Extra arguments.
Details

This function retrieves the dimensions of the sample loadings matrix v in the form of a vector with
two elements. The first element is the number of rows in the v matrix, and the second element is
the number of columns.

Value

A vector containing the dimensions of the sample loadings matrix v (number of rows and columns).

shape.cross_projector shape of a cross_projector instance

Description

shape of a cross_projector instance

Usage
S3 method for class 'cross_projector'
shape(x, source = c("X", "Y"), ...)
Arguments
X The model fit.
source the source of the data (X or Y block)

Extra arguments.

Value

the shape of the data

standardize 97

standardize center and scale each vector of a matrix

Description

center and scale each vector of a matrix

Usage
standardize(preproc = prepper(), cmeans = NULL, sds = NULL)

Arguments
preproc the pre-processing pipeline
cmeans an optional vector of column means
sds an optional vector of sds

Value

a prepper list

std_scores Compute standardized component scores

Description

Calculate standardized factor scores from a fitted model. Standardized scores are useful for com-
paring the contributions of different components on the same scale, which can help in interpreting
the results.

Usage
std_scores(x, ...)
Arguments
X The model fit object.
Additional arguments passed to the method.
Value

A matrix of standardized factor scores, with rows corresponding to samples and columns to com-
ponents.

See Also

scores for retrieving the original component scores.

98 subspace_similarity

std_scores.svd Calculate Standardized Scores for SVD results

Description

Computes standardized scores from an SVD result performed by svd_wrapper. These scores are
scaled to have approximately unit variance, assuming the original data used for SVD was centered.
They differ from the s component of the svd object, which contains scores scaled by singular values.

Usage
S3 method for class 'svd'
std_scores(x, ...)
Arguments
X An object of class svd, typically from svd_wrapper.

Extra arguments (ignored).

Value

A matrix of standardized scores (N x k) with columns having variance close to 1.

subspace_similarity Compute subspace similarity

Description

Compute subspace similarity

Usage
subspace_similarity(
fits,
method = c("avg_pair"”, "grassmann"”, "worst_case"),
)
Arguments
fits a list of bi_projector objects
method the method to use for computing subspace similarity
additional arguments to pass to the method
Value

a numeric value representing the subspace similarity

summary.composed_projector 99

summary . composed_projector
Summarize a Composed Projector

Description

Provides a summary of the stages within a composed projector, including stage names, input/output
dimensions, and the primary class of each stage.

Usage
S3 method for class 'composed_projector'
summary (object, ...)

Arguments
object A composed_projector object.

Currently unused.

Value

A tibble summarizing the pipeline stages.

svd_wrapper Singular Value Decomposition (SVD) Wrapper

Description

Computes the singular value decomposition of a matrix using one of the specified methods. It is
designed to be an easy-to-use wrapper for various SVD methods available in R.

Usage

svd_wrapper(
X,
ncomp = min(dim(X)),
preproc = pass(),

method = c("fast”, "base”, "irlba", "propack”, "rsvd", "svds"),
q =2,
p =10,

tol = .Machine$double.eps,

100 topk

Arguments
X the input matrix
ncomp the number of components to estimate (default: min(dim(X)))
preproc the pre-processor to apply on the input matrix (e.g., center(), standardize(),
pass()) Can be a prepper object or a pre-processing function.
method the SVD method to use: ’base’, *fast’, ’irlba’, "propack’, 'rsvd’, or ’svds’
q parameter passed to method rsvd (default: 2)
p parameter passed to method rsvd (default: 10)
tol minimum relative tolerance for dropping singular values (compared to the largest).
Default: .Machine$double.eps.
extra arguments passed to the selected SVD function
Value

an SVD object that extends bi_projector

Examples

Load iris dataset and select the first four columns
data(iris)
X <- as.matrix(iris[, 1:41)

Compute SVD using the base method and 3 components

fit <- svd_wrapper(X, ncomp = 3, preproc = center(), method = "base")
topk top-k accuracy indicator
Description

Determines if the true class label is among the top k predicted probabilities for each observation.

Usage

topk(prob, observed, k)

Arguments
prob Numeric matrix of predicted probabilities (observations x classes). Column
names must correspond to class labels.
observed Factor or vector of observed class labels. Must be present in colnames(prob).

k Integer; the number of top probabilities to consider.

transfer

Value

101

A data.frame with columns topk (logical indicator: TRUE if observed class is in top-k) and

observed.

See Also

Other classifier evaluation: rank_score()

Examples

probs <- matrix(c(0.1, 0.9, 0.8, 0.2, 0.3, 0.7), 3, 2, byrow=TRUE,

dimnames = list(NULL, c("A", "B")))

obs <- factor(c("B", "A", "B"))
topk(probs, obs, k=1)
topk(probs, obs, k=2)

transfer

Transfer data from one domain/block to another via a latent space

Description

Convert between data representations in a multiblock or cross-decomposition model by projecting
the input new_data from the from domain/block onto a latent space and then reconstructing it in
the to domain/block.

Usage
transfer(x, new_data, from, to, opts = list(), ...)
Arguments
X The model fit, typically an object that implements a transfer method and ide-
ally a block_names method.
new_data The data to transfer, typically matching the dimension of the from domain.
from Character string or index identifying the source domain/block. Must be present
in block_names(x) if that method exists.
to Character string or index identifying the target domain/block. Must be present
in block_names(x) if that method exists.
opts A list of optional arguments controlling the transfer process:

cols Optional numeric vector specifying column indices of the target domain
to reconstruct. If NULL (default), reconstructs all columns.

comps Optional numeric vector specifying which latent components to use for
the projection/reconstruction. If NULL (default), uses all components.

1s_rr Logical; if TRUE, use a ridge-regularized LS approach for the initial
projection from the from domain. Default FALSE.

lambda Numeric ridge penalty (if 1s_rr=TRUE). Default 1e-6.

Additional arguments passed to specific methods (discouraged, prefer opts).

102 transfer.cross_projector

Value

A matrix or data frame representing the transferred data in the to domain/block (or a subset of
columns/components if specified in opts).

transfer.cross_projector
Transfer from X domain to Y domain (or vice versa) in a
cross_projector

Description

Convert between data representations in a multiblock or cross-decomposition model by projecting
the input new_data from the from domain/block onto a latent space and then reconstructing it in
the to domain/block.

Usage
S3 method for class 'cross_projector'
transfer(x, new_data, from, to, opts = list(), ...)
Arguments
X A cross_projector object.
new_data The data to transfer.
from Source domain ("X" or "Y").
to Target domain ("X" or "Y").
opts A list of options (see transfer generic).
Ignored.
Details

When opts$ls_rris TRUE, the forward projection from the from domain is computed using a ridge-
regularized least squares approach. The penalty parameter is taken from opts$lambda. Component
subsetting via opts$comps is applied after computing these ridge-based scores.

Value

Transferred data matrix.

transform 103

transform Transform data using a fitted preprocessing pipeline

Description

Apply a fitted preprocessing pipeline to new data. The preprocessing object must have been fitted
using fit() or fit_transform() before calling this function.

Usage
transform(object, X, ...)
Arguments
object A fitted preprocessing object
X A matrix or data frame to transform
Additional arguments passed to methods
Value

The transformed data matrix

See Also

fit(), fit_transform(), inverse_transform()

Examples

Transform new data with fitted preprocessor
X_train <- matrix(rnorm(100), 10, 10)
X_test <- matrix(rnorm(50), 5, 10)

preproc <- center()
fitted_preproc <- fit(preproc, X_train)
X_test_transformed <- transform(fitted_preproc, X_test)

transpose Transpose a model

Description

This function transposes a model by switching coefficients and scores. It is useful when you want
to reverse the roles of samples and variables in a model, especially in the context of dimensionality
reduction methods.

104 truncate

Usage
transpose(x, ...)
Arguments
X The model fit, typically an object of a class that implements a transpose method
Additional arguments passed to the underlying transpose method
Value

A transposed model with coefficients and scores switched

See Also

bi_projector for an example of a two-way mapping model that can be transposed

truncate truncate a component fit

Description

take the first n components of a decomposition

Usage

truncate(x, ncomp)

Arguments

X the object to truncate

ncomp number of components to retain
Value

a truncated object (e.g. PCA with 'ncomp’ components)

truncate.composed_projector 105

truncate.composed_projector
Truncate a Composed Projector

Description

Reduces the number of output components of the composed projector by truncating the last stage
in the sequence.

Usage
S3 method for class 'composed_projector'
truncate(x, ncomp, ...)
Arguments
X A composed_projector object.
ncomp The desired number of final output components.

Currently unused.

Details

Note: This implementation currently only supports truncating the final stage. Truncating interme-
diate stages would require re-computing subsequent stages or combined attributes and is not yet
implemented.

Value

A new composed_projector object with the last stage truncated.

variables_used Identify Original Variables Used by a Projector

Description
Determines which columns from the original input space contribute (have non-zero influence) to
any of the output components of the projector.

Usage

variables_used(x, ...)

S3 method for class 'composed_projector'
variables_used(x, tol = 1e-08, ...)

106 vars_for_component

Arguments
X A projector object (e.g., projector, composed_projector).
Additional arguments passed to specific methods.
tol Numeric tolerance for determining non-zero coefficients. Default is le-8 for
some methods. Passed via
Value

A sorted numeric vector of unique indices corresponding to the original input variables.

vars_for_component Identify Original Variables for a Specific Component

Description

Determines which columns from the original input space contribute (have non-zero influence) to a
specific output component of the projector.

Usage

vars_for_component(x, k, ...)

S3 method for class 'composed_projector'

vars_for_component(x, k, tol = 1e-08, ...)

Arguments
X A projector object (e.g., projector, composed_projector).
k The index of the output component to query.

Additional arguments passed to specific methods.

tol Numeric tolerance for determining non-zero coefficients. Default is le-8 for
some methods. Passed via

Value

A sorted numeric vector of unique indices corresponding to the original input variables.

Index

x classifier evaluation add_node.prepper, 5
rank_score, 80 apply_rotation, 5
topk, 100 apply_transform, 6

x classifier predict
predict.classifier, 63 bi_projector, 8, 54,75, 81, 104
predict.rf_classifier, 66 bi_projector_union, 9

x classifier biplot.pca, 6
classifier, 15 block_indices, 9
classifier.multiblock_biprojector, block_indices.multiblock_projector, 10

17 block_lengths, 10

rf_classifier.projector, 90 bootstrap, 11

* CV bootstrap_pca, 11
cv, 28 bootstrap_plsc, 14

* feature_importance classifier
feature_importance.classifier, 32 center, 15

* pca bootstrap classifier, 15, 18, 91
bootstrap_pca, 11 classifier.discriminant_projector, 16

* perm_test classifier.multiblock_biprojector, /6,
perm_test, 57 17,64, 91

* project classifier.projector, 64
project, 75 coef. composed_projector, 19
project.cross_projector, 76 coef.cross_projector, 19
project_block, 78 coef.multiblock_projector, 20
project_vars, 79 colscale, 20

* reconstruct components, 21
reconstruct, 80 compose_partial_projector, 21, 21
reconstruct_new, 83 compose_projector, 22

* reprocess concat_pre_processors, 22
reprocess.cross_projector, 86 cPCAplus, 23

* residuals cross_projector, 27, 60
residuals, 88 cv, 28

* Scores cv_generic, 29, 29
scores, 93

x shape discriminant_projector, 30, 60
shape.cross_projector, 96

* transpose feature_importance, 32
transpose, 103 feature_importance.classifier, 32

%»% (compose_partial_projector), 21 fit, 34

fit(), 35,41, 68, 103
add_node, 4 fit_transform, 35

107

108

fit_transform(), 34,41, 68, 103
fresh, 36

geneig, 36
group_means, 38

inverse_projection, 39
inverse_projection.composed_projector,
39
inverse_projection.cross_projector, 40
inverse_transform, 41
inverse_transform(), 34, 35, 68, 103
is_orthogonal, 42
is_orthogonal.projector, 42

measure_interblock_transfer_error, 43,
60
measure_reconstruction_error, 43
multiblock_biprojector, 44, 60
multiblock_projector, 45

nblocks, 46
ncomp, 47
nystrom_approx, 47

partial_inverse_projection, 49

partial_inverse_projection.cross_projector,

50
partial_inverse_projection.regress, 51
partial_project, 52, 64

partial_project.composed_partial_projector,

52
partial_project.cross_projector, 53
partial_projector, 54
pass, 55
pca, 7, 55, 60
pca_outliers, 56
perm_ci, 57
perm_test, 57
perm_test.plsc, 60
plsc, 61
predict.classifier, 63, 66
predict.discriminant_projector, 64
predict.randomForest, 66
predict.rf_classifier, 64, 66
prep, 67
preprocess, 67
prinang, 68
principal_angles, 69

INDEX

print.bi_projector, 69
print.classifier, 70
print.concat_pre_processor, 70
print.multiblock_biprojector, 71
print.pca, 71

print.perm_test, 72
print.perm_test_pca, 72
print.pre_processor, 73
print.prepper, 73

print.regress, 74
print.rf_classifier, 74

project, 39,75,76,78, 79, 93
project.cross_projector, 75,76, 78, 79
project.nystrom_approx, 76
project_block, 75, 76,78, 79
project_block.multiblock_projector, 78
project_vars, 75, 76, 78, 79

projector, 37,77

randomForest, 91
rank_score, 33, 80, 101
reconstruct, 80, 83, 84
reconstruct.composed_projector, 81
reconstruct.pca, 82
reconstruct.regress, 82
reconstruct_new, 8/, 83

refit, 84

regress, 51, 84

reprocess, 86
reprocess.cross_projector, 86
reprocess.nystrom_approx, 87
residualize, 88

residuals, 88

reverse_transform, 89
rf_classifier, 90
rf_classifier.projector, 16, 18, 66, 90
rotate, 91

rotate.pca, 92

scores, 93, 97
scores.plsc, 94
screeplot, 94
screeplot.pca, 95

sdev, 95

shape, 96
shape.cross_projector, 96
standardize, 97
std_scores, 97
std_scores.svd, 98

INDEX

subspace_similarity, 98
summary . composed_projector, 99
svd_wrapper, 56, 99

topk, 33, 80, 100

transfer, 101
transfer.cross_projector, 102
transform, 103
transform(), 34, 35, 41, 68
transpose, 103

truncate, 104
truncate.composed_projector, 105

variables_used, 105
vars_for_component, 106

109

	add_node
	add_node.prepper
	apply_rotation
	apply_transform
	biplot.pca
	bi_projector
	bi_projector_union
	block_indices
	block_indices.multiblock_projector
	block_lengths
	bootstrap
	bootstrap_pca
	bootstrap_plsc
	center
	classifier
	classifier.discriminant_projector
	classifier.multiblock_biprojector
	coef.composed_projector
	coef.cross_projector
	coef.multiblock_projector
	colscale
	components
	compose_partial_projector
	compose_projector
	concat_pre_processors
	cPCAplus
	cross_projector
	cv
	cv_generic
	discriminant_projector
	feature_importance
	feature_importance.classifier
	fit
	fit_transform
	fresh
	geneig
	group_means
	inverse_projection
	inverse_projection.composed_projector
	inverse_projection.cross_projector
	inverse_transform
	is_orthogonal
	is_orthogonal.projector
	measure_interblock_transfer_error
	measure_reconstruction_error
	multiblock_biprojector
	multiblock_projector
	nblocks
	ncomp
	nystrom_approx
	partial_inverse_projection
	partial_inverse_projection.cross_projector
	partial_inverse_projection.regress
	partial_project
	partial_project.composed_partial_projector
	partial_project.cross_projector
	partial_projector
	pass
	pca
	pca_outliers
	perm_ci
	perm_test
	perm_test.plsc
	plsc
	predict.classifier
	predict.discriminant_projector
	predict.rf_classifier
	prep
	preprocess
	prinang
	principal_angles
	print.bi_projector
	print.classifier
	print.concat_pre_processor
	print.multiblock_biprojector
	print.pca
	print.perm_test
	print.perm_test_pca
	print.prepper
	print.pre_processor
	print.regress
	print.rf_classifier
	project
	project.cross_projector
	project.nystrom_approx
	projector
	project_block
	project_block.multiblock_projector
	project_vars
	rank_score
	reconstruct
	reconstruct.composed_projector
	reconstruct.pca
	reconstruct.regress
	reconstruct_new
	refit
	regress
	reprocess
	reprocess.cross_projector
	reprocess.nystrom_approx
	residualize
	residuals
	reverse_transform
	rf_classifier
	rf_classifier.projector
	rotate
	rotate.pca
	scores
	scores.plsc
	screeplot
	screeplot.pca
	sdev
	shape
	shape.cross_projector
	standardize
	std_scores
	std_scores.svd
	subspace_similarity
	summary.composed_projector
	svd_wrapper
	topk
	transfer
	transfer.cross_projector
	transform
	transpose
	truncate
	truncate.composed_projector
	variables_used
	vars_for_component
	Index

