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contourmvd Contour Plot of a Bivariate Density

Description

Contour plot of the probability density of a multivariate distribution with 2 variables:

• generalized Gaussian distribution (MGGD) with mean vector mu, dispersion matrix Sigma and
shape parameter beta

• Cauchy distribution (MCD) with location parameter mu and scatter matrix Sigma

• t distribution (MTD) with location parameter mu, scatter matrix Sigma and degrees of freedom
nu

This function uses the contour function.

Usage

contourmvd(mu, Sigma, beta = NULL, nu = NULL,
distribution = c("mggd", "mcd", "mtd"),
xlim = c(mu[1] + c(-10, 10)*Sigma[1, 1]),
ylim = c(mu[2] + c(-10, 10)*Sigma[2, 2]),
zlim = NULL, npt = 30, nx = npt, ny = npt,
main = NULL, sub = NULL, nlevels = 10,
levels = pretty(zlim, nlevels), tol = 1e-6, ...)
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Arguments

mu length 2 numeric vector.
Sigma symmetric, positive-definite square matrix of order 2. The dispersion matrix.
beta numeric. If distribution = "mggd", the shape parameter of the MGGD. NULL

if dist is "mcd" or "mtd".
nu numeric. If distribution = "mtd", the degrees of freedom of the MTD. NULL

if distribution is "mggd" or "mcd".
distribution character string. The probability distribution. It can be "mggd" (multivariate

generalized Gaussian distribution) "mcd" (multivariate Cauchy) or "mtd" (mul-
tivariate t).

xlim, ylim x-and y- limits.
zlim z- limits. If NULL, it is the range of the values of the density on the x and y

values within xlim and ylim.
npt number of points for the discretisation.
nx, ny number of points for the discretisation among the x- and y- axes.
main, sub main and sub title, as for title. If omitted, the main title is set to "Multivariate

generalised Gaussian density", "Multivariate Cauchy density" or "Multivariate
t density".

nlevels, levels arguments to be passed to the contour function.
tol tolerance (relative to largest variance) for numerical lack of positive-definiteness

in Sigma, for the estimation of the density. See dmggd, dmcd or dmtd.
... additional arguments to plot.window, title, Axis and box, typically graphical

parameters such as cex.axis.

Value

Returns invisibly the probability density function.

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential
Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600.
doi:10.1080/03610929808832115

S. Kotz and Saralees Nadarajah (2004), Multivariate t Distributions and Their Applications, Cam-
bridge University Press.

See Also

plotmvd: plot of a bivariate generalised Gaussian, Cauchy or t density.

dmggd: probability density of a multivariate generalised Gaussian distribution.

dmcd: probability density of a multivariate Cauchy distribution.

dmtd: probability density of a multivariate t distribution.

https://doi.org/10.1080/03610929808832115
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Examples

mu <- c(1, 4)
Sigma <- matrix(c(0.8, 0.2, 0.2, 0.2), nrow = 2)

# Bivariate generalized Gaussian distribution
beta <- 0.74
contourmvd(mu, Sigma, beta = beta, distribution = "mggd")

# Bivariate Cauchy distribution
contourmvd(mu, Sigma, distribution = "mcd")

# Bivariate t distribution
nu <- 1
contourmvd(mu, Sigma, nu = nu, distribution = "mtd")

diststudent Distance/Divergence between Centered Multivariate t Distributions

Description

Computes the distance or divergence (Renyi divergence, Bhattacharyya distance or Hellinger dis-
tance) between two random vectors distributed according to multivariate t distributions (MTD) with
zero mean vector.

Usage

diststudent(nu1, Sigma1, nu2, Sigma2,
dist = c("renyi", "bhattacharyya", "hellinger"),
bet = NULL, eps = 1e-06)

Arguments

nu1 numeric. The degrees of freedom of the first distribution.

Sigma1 symmetric, positive-definite matrix. The correlation matrix of the first distribu-
tion.

nu2 numeric. The degrees of freedom of the second distribution.
nu1 and nu2 must not be too small compared to the number of variables. See

Sigma2 symmetric, positive-definite matrix. The correlation matrix of the second distri-
bution.

dist character. The distance or divergence used. One of "renyi" (default), "battacharyya"
or "hellinger".

bet numeric, positive and not equal to 1. Order of the Renyi divergence. Ignored if
distance="bhattacharyya" or distance="hellinger".

eps numeric. Precision for the computation of the partial derivative of the Lauricella
D-hypergeometric function (see Details). Default: 1e-06.



diststudent 5

Details

Given X1, a random vector of Rp distributed according to the MTD with parameters (ν1,0,Σ1)
and X2, a random vector of Rp distributed according to the MTD with parameters (ν2,0,Σ2).

Let δ1 = ν1+p
2 β, δ2 = ν2+p

2 (1 − β) and λ1, . . . , λp the eigenvalues of the square matrix Σ1Σ
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2
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where F (p)
D is the Lauricella D-hypergeometric function defined for p variables:
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Its computation uses the lauricella function.

If δ1 + δ2 − p
2 ≤ 0, diststudent returns NaN.

The Bhattacharyya distance is given by:
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Value

A numeric value: the divergence between the two distributions, with two attributes attr(, "epsilon")
(precision of the result of the Lauricella D-hypergeometric function,see Details) and attr(, "k")
(number of iterations).

Warning

Let p the dimension (number of variables), let delta1 = bet*(nu1 + p)/2 and delta2 = (1 - bet)*(nu2
+ p)/2.

This computation needs that delta1 + delta2 - p/2 > 0.

If delta1 + delta2 - p/2 <= 0, diststudent returns NaN with a warning

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Mul-
tivariate t-Distributions, IEEE Signal Processing Letters. doi:10.1109/LSP.2023.3324594

Examples

nu1 <- 2
Sigma1 <- matrix(c(2, 1.2, 0.4, 1.2, 2, 0.6, 0.4, 0.6, 2), nrow = 3)
nu2 <- 4
Sigma2 <- matrix(c(1, 0.3, 0.1, 0.3, 1, 0.4, 0.1, 0.4, 1), nrow = 3)

# Renyi divergence
diststudent(nu1, Sigma1, nu2, Sigma2, bet = 0.25)
diststudent(nu2, Sigma2, nu1, Sigma1, bet = 0.25)

# Bhattacharyya distance
diststudent(nu1, Sigma1, nu2, Sigma2, dist = "bhattacharyya")
diststudent(nu2, Sigma2, nu1, Sigma1, dist = "bhattacharyya")

# Hellinger distance
diststudent(nu1, Sigma1, nu2, Sigma2, dist = "hellinger")
diststudent(nu2, Sigma2, nu1, Sigma1, dist = "hellinger")

dmcd Density of a Multivariate Cauchy Distribution

Description

Density of the multivariate (p variables) Cauchy distribution (MCD) with location parameter mu and
scatter matrix Sigma.

https://doi.org/10.1109/LSP.2023.3324594
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Usage

dmcd(x, mu, Sigma, tol = 1e-6)

Arguments

x length p numeric vector.

mu length p numeric vector. The location parameter.

Sigma symmetric, positive-definite square matrix of order p. The scatter matrix.

tol tolerance (relative to largest eigenvalue) for numerical lack of positive-definiteness
in Sigma.

Details

The density function of a multivariate Cauchy distribution is given by:

f(x|µ,Σ) =
Γ
(
1+p
2

)
πp/2Γ

(
1
2

)
|Σ| 12 [1 + (x− µ)TΣ−1(x− µ)]

1+p
2

Value

The value of the density.

Author(s)

Pierre Santagostini, Nizar Bouhlel

See Also

rmcd: random generation from a MCD.

estparmcd: estimation of the parameters of a MCD.

plotmvd, contourmvd: plot of the probability density of a bivariate distribution.

Examples

mu <- c(0, 1, 4)
sigma <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3)
dmcd(c(0, 1, 4), mu, sigma)
dmcd(c(1, 2, 3), mu, sigma)
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dmggd Density of a Multivariate Generalized Gaussian Distribution

Description

Density of the multivariate (p variables) generalized Gaussian distribution (MGGD) with mean
vector mu, dispersion matrix Sigma and shape parameter beta.

Usage

dmggd(x, mu, Sigma, beta, tol = 1e-6)

Arguments

x length p numeric vector.

mu length p numeric vector. The mean vector.

Sigma symmetric, positive-definite square matrix of order p. The dispersion matrix.

beta positive real number. The shape of the distribution.

tol tolerance (relative to largest variance) for numerical lack of positive-definiteness
in Sigma.

Details

The density function of a multivariate generalized Gaussian distribution is given by:

f(x|µ,Σ, β) =
Γ
(
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2

)
π

p
2Γ
(

p
2β

)
2

p
2β

β

|Σ| 12
e−

1
2 ((x−µ)TΣ−1(x−µ))

β

When p = 1 (univariate case) it becomes:

f(x|µ, σ, β) = β

Γ
(

1
2β

)
2

1
2β
√
σ
e
−1

2

(
(x− µ)2

σ

)β

Value

The value of the density.

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential
Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600.
doi:10.1080/03610929808832115

https://doi.org/10.1080/03610929808832115
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See Also

rmggd: random generation from a MGGD.

estparmggd: estimation of the parameters of a MGGD.

plotmvd, contourmvd: plot of the probability density of a bivariate distribution.

Examples

mu <- c(0, 1, 4)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
beta <- 0.74
dmggd(c(0, 1, 4), mu, Sigma, beta)
dmggd(c(1, 2, 3), mu, Sigma, beta)

dmtd Density of a Multivariate t Distribution

Description

Density of the multivariate (p variables) t distribution (MTD) with degrees of freedom nu, mean
vector mu and correlation matrix Sigma.

Usage

dmtd(x, nu, mu, Sigma, tol = 1e-6)

Arguments

x length p numeric vector.

nu numeric. The degrees of freedom.

mu length p numeric vector. The mean vector.

Sigma symmetric, positive-definite square matrix of order p. The correlation matrix.

tol tolerance (relative to largest variance) for numerical lack of positive-definiteness
in Sigma.

Details

The density function of a multivariate t distribution with p variables is given by:

f(x|ν,µ,Σ) =
Γ
(
ν+p
2

)
|Σ|−1/2

Γ
(
ν
2

)
(νπ)p/2

(
1 +

1

ν
(x− µ)TΣ−1(x− µ)

)− ν+p
2

When p = 1 (univariate case) it is the location-scale t distribution, with density function:

f(x|ν, µ, σ2) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
νπσ2

(
1 +

(x− µ)2

νσ2

)− ν+1
2



10 estparmcd

Value

The value of the density.

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

S. Kotz and Saralees Nadarajah (2004), Multivariate t Distributions and Their Applications, Cam-
bridge University Press.

See Also

rmtd: random generation from a MTD.

estparmtd: estimation of the parameters of a MTD.

plotmvd, contourmvd: plot of the probability density of a bivariate distribution.

Examples

nu <- 1
mu <- c(0, 1, 4)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
dmtd(c(0, 1, 4), nu, mu, Sigma)
dmtd(c(1, 2, 3), nu, mu, Sigma)

# Univariate
dmtd(1, 3, 0, 1)
dt(1, 3)

estparmcd Estimation of the Parameters of a Multivariate Cauchy Distribution

Description

Estimation of the mean vector and correlation matrix of a multivariate Cauchy distribution (MCD).

Usage

estparmcd(x, eps = 1e-6)

Arguments

x numeric matrix or data frame.

eps numeric. Precision for the estimation of the parameters.



estparmggd 11

Details

The EM method is used to estimate the parameters.

Value

A list of 2 elements:

• mu the mean vector.

• Sigma: symmetric positive-definite matrix. The correlation matrix.

with two attributes attr(, "epsilon") (precision of the result) and attr(, "k") (number of iter-
ations).

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

Doğru, F., Bulut, Y. M. and Arslan, O. (2018). Doubly reweighted estimators for the parame-
ters of the multivariate t-distribution. Communications in Statistics - Theory and Methods. 47.
doi:10.1080/03610926.2018.1445861.

See Also

dmcd: probability density of a MTD

rmcd: random generation from a MTD.

Examples

mu <- c(0, 1, 4)
Sigma <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3)
x <- rmcd(100, mu, Sigma)

# Estimation of the parameters
estparmcd(x)

estparmggd Estimation of the Parameters of a Multivariate Generalized Gaussian
Distribution

Description

Estimation of the mean vector, dispersion matrix and shape parameter of a multivariate generalized
Gaussian distribution (MGGD).

https://doi.org/10.1080/03610926.2018.1445861
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Usage

estparmggd(x, eps = 1e-6, display = FALSE, plot = display)

Arguments

x numeric matrix or data frame.

eps numeric. Precision for the estimation of the beta parameter.

display logical. When TRUE the value of the beta parameter at each iteration is printed.

plot logical. When TRUE the successive values of the beta parameter are plotted,
allowing to visualise its convergence.

Details

The µ parameter is the mean vector of x.

The dispersion matrix Σ and shape parameter β are computed using the method presented in Pascal
et al., using an iterative algorithm.

The precision for the estimation of beta is given by the eps parameter.

Value

A list of 3 elements:

• mu the mean vector.

• Sigma: symmetric positive-definite matrix. The dispersion matrix.

• beta non-negative numeric value. The shape parameter.

with two attributes attr(, "epsilon") (precision of the result) and attr(, "k") (number of iter-
ations).

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

F. Pascal, L. Bombrun, J.Y. Tourneret, Y. Berthoumieu. Parameter Estimation For Multivariate
Generalized Gaussian Distribution. IEEE Trans. Signal Processing, vol. 61 no. 23, p. 5960-5971,
Dec. 2013. doi:10.1109/TSP.2013.2282909

See Also

dmggd: probability density of a MGGD.

rmggd: random generation from a MGGD.

https://doi.org/10.1109/TSP.2013.2282909
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Examples

mu <- c(0, 1, 4)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
beta <- 0.74
x <- rmggd(100, mu, Sigma, beta)

# Estimation of the parameters
estparmggd(x)

estparmtd Estimation of the Parameters of a Multivariate t Distribution

Description

Estimation of the degrees of freedom, mean vector and correlation matrix of a multivariate t distri-
bution (MTD).

Usage

estparmtd(x, eps = 1e-6, display = FALSE, plot = display)

Arguments

x numeric matrix or data frame.

eps numeric. Precision for the estimation of the parameters.

display logical. When TRUE the value of the nu parameter at each iteration is printed.

plot logical. When TRUE the successive values of the nu parameter are plotted, al-
lowing to visualise its convergence.

Details

The EM method is used to estimate the parameters.

Value

A list of 3 elements:

• nu non-negative numeric value. The degrees of freedom.

• mu the mean vector.

• Sigma: symmetric positive-definite matrix. The correlation matrix.

with two attributes attr(, "epsilon") (precision of the result) and attr(, "k") (number of iter-
ations).

Author(s)

Pierre Santagostini, Nizar Bouhlel
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References

Doğru, F., Bulut, Y. M. and Arslan, O. (2018). Doubly reweighted estimators for the parame-
ters of the multivariate t-distribution. Communications in Statistics - Theory and Methods. 47.
doi:10.1080/03610926.2018.1445861.

See Also

dmtd: probability density of a MTD

rmtd: random generation from a MTD.

Examples

nu <- 3
mu <- c(0, 1, 4)
Sigma <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3)
x <- rmtd(100, nu, mu, Sigma)

# Estimation of the parameters
estparmggd(x)

kld Kullback-Leibler Divergence between Centered Multivariate Distribu-
tions

Description

Computes the Kullback-Leibler divergence between two random vectors distributed according to
centered multivariate distributions:

• multivariate generalized Gaussian distribution (MGGD) with zero mean vector, using the
kldggd function

• multivariate Cauchy distribution (MCD) with zero location vector, using the kldcauchy func-
tion

• multivariate t distribution (MTD) with zero mean vector, using the kldstudent function

One can also use one of the kldggd, kldcauchy or kldstudent functions, depending on the prob-
ability distribution.

Usage

kld(Sigma1, Sigma2, distribution = c("mggd", "mcd", "mtd"),
beta1 = NULL, beta2 = NULL, nu1 = NULL, nu2 = NULL, eps = 1e-06)

https://doi.org/10.1080/03610926.2018.1445861
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Arguments

Sigma1 symmetric, positive-definite matrix. The scatter matrix of the first distribution.

Sigma2 symmetric, positive-definite matrix. The scatter matrix of the second distribu-
tion.

distribution the probability distribution. It can be "mggd" (multivariate generalized Gaussian
distribution) "mcd" (multivariate Cauchy) or "mtd" (multivariate t).

beta1, beta2 numeric. If distribution = "mggd", the shape parameters of the first and sec-
ond distributions. NULL if distribution is "mcd" or "mtd".

nu1, nu2 numeric. If distribution = "mtd", the degrees of freedom of the first and
second distributions. NULL if distribution is "mggd" or "mcd".

eps numeric. Precision for the computation of the Lauricella D-hypergeometric
function if distribution is "mggd" (see kldggd) or of its partial derivative if
distribution = "mcd" or distribution = "mtd" (see kldcauchy or kldstudent).
Default: 1e-06.

Value

A numeric value: the Kullback-Leibler divergence between the two distributions, with two attributes
attr(, "epsilon") (precision of the LauricellaD-hypergeometric function or of its partial deriva-
tive) and attr(, "k") (number of iterations).

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel, A. Dziri, Kullback-Leibler Divergence Between Multivariate Generalized Gaussian
Distributions. IEEE Signal Processing Letters, vol. 26 no. 7, July 2019. doi:10.1109/LSP.2019.2915000

N. Bouhlel, D. Rousseau, A Generic Formula and Some Special Cases for the Kullback–Leibler Di-
vergence between Central Multivariate Cauchy Distributions. Entropy, 24, 838, July 2022. doi:10.3390/
e24060838

N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Mul-
tivariate t-Distributions, IEEE Signal Processing Letters. doi:10.1109/LSP.2023.3324594

Examples

# Generalized Gaussian distributions
beta1 <- 0.74
beta2 <- 0.55
Sigma1 <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
Sigma2 <- matrix(c(1, 0.3, 0.2, 0.3, 0.5, 0.1, 0.2, 0.1, 0.7), nrow = 3)
# Kullback-Leibler divergence
kl12 <- kld(Sigma1, Sigma2, "mggd", beta1 = beta1, beta2 = beta2)
kl21 <- kld(Sigma2, Sigma1, "mggd", beta1 = beta2, beta2 = beta1)
print(kl12)
print(kl21)
# Distance (symmetrized Kullback-Leibler divergence)

https://doi.org/10.1109/LSP.2019.2915000
https://doi.org/10.3390/e24060838
https://doi.org/10.3390/e24060838
https://doi.org/10.1109/LSP.2023.3324594
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kldist <- as.numeric(kl12) + as.numeric(kl21)
print(kldist)

# Cauchy distributions
Sigma1 <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3)
Sigma2 <- matrix(c(1, 0.3, 0.1, 0.3, 1, 0.4, 0.1, 0.4, 1), nrow = 3)
kld(Sigma1, Sigma2, "mcd")
kld(Sigma2, Sigma1, "mcd")

Sigma1 <- matrix(c(0.5, 0, 0, 0, 0.4, 0, 0, 0, 0.3), nrow = 3)
Sigma2 <- diag(1, 3)
# Case when all eigenvalues of Sigma1 %*% solve(Sigma2) are < 1
kld(Sigma1, Sigma2, "mcd")
# Case when all eigenvalues of Sigma1 %*% solve(Sigma2) are > 1
kld(Sigma2, Sigma1, "mcd")

# Student distributions
nu1 <- 2
Sigma1 <- matrix(c(2, 1.2, 0.4, 1.2, 2, 0.6, 0.4, 0.6, 2), nrow = 3)
nu2 <- 4
Sigma2 <- matrix(c(1, 0.3, 0.1, 0.3, 1, 0.4, 0.1, 0.4, 1), nrow = 3)
# Kullback-Leibler divergence
kld(Sigma1, Sigma2, "mtd", nu1 = nu1, nu2 = nu2)
kld(Sigma2, Sigma1, "mtd", nu1 = nu2, nu2 = nu1)

kldcauchy Kullback-Leibler Divergence between Centered Multivariate Cauchy
Distributions

Description

Computes the Kullback-Leibler divergence between two random vectors distributed according to
multivariate Cauchy distributions (MCD) with zero location vector.

Usage

kldcauchy(Sigma1, Sigma2, eps = 1e-06)

Arguments

Sigma1 symmetric, positive-definite matrix. The scatter matrix of the first distribution.

Sigma2 symmetric, positive-definite matrix. The scatter matrix of the second distribu-
tion.

eps numeric. Precision for the computation of the partial derivative of the Lauricella
D-hypergeometric function (see Details). Default: 1e-06.
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Details

Given X1, a random vector of Rp distributed according to the MCD with parameters (0,Σ1) and
X2, a random vector of Rp distributed according to the MCD with parameters (0,Σ2).

Let λ1, . . . , λp the eigenvalues of the square matrix Σ1Σ
−1
2 sorted in increasing order:

λ1 < · · · < λp−1 < λp

Depending on the values of these eigenvalues, the computation of the Kullback-Leibler divergence
of X1 from X2 is given by:

KL(X1||X2) = −1

2
ln

p∏
i=1

λi +
1 + p

2
D

where D is given by:

• if λ1 < 1 and λp > 1:

D = lnλp −
∂

∂a

{
F

(p)
D

(
a,

1

2
, . . . ,

1

2
, a+

1

2︸ ︷︷ ︸
p

; a+
1 + p

2
; 1− λ1

λp
, . . . , 1− λp−1

λp
, 1− 1

λp

)}∣∣∣∣
a=0

• if λp < 1:

D =
∂

∂a

{
F

(p)
D

(
a,

1

2
, . . . ,

1

2︸ ︷︷ ︸
p

; a+
1 + p

2
; 1− λ1, . . . , 1− λp

)}∣∣∣∣
a=0

• if λ1 > 1:

D =

p∏
i=1

1√
λi

× ∂

∂a

{
F

(p)
D

(
1 + p

2
,
1

2
, . . . ,

1

2︸ ︷︷ ︸
p

; a+
1 + p

2
; 1− 1

λ1
, . . . , 1− 1

λp

)}∣∣∣∣
a=0

F
(p)
D is the Lauricella D-hypergeometric function defined for p variables:

F
(p)
D (a; b1, ..., bp; g;x1, ..., xp) =

∑
m1≥0

...
∑

mp≥0

(a)m1+...+mp
(b1)m1

...(bp)mp

(g)m1+...+mp

xm1
1

m1!
...
x
mp
p

mp!

Value

A numeric value: the Kullback-Leibler divergence between the two distributions, with two attributes
attr(, "epsilon") (precision of the partial derivative of the Lauricella D-hypergeometric func-
tion,see Details) and attr(, "k") (number of iterations).

Author(s)

Pierre Santagostini, Nizar Bouhlel
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References

N. Bouhlel, D. Rousseau, A Generic Formula and Some Special Cases for the Kullback–Leibler Di-
vergence between Central Multivariate Cauchy Distributions. Entropy, 24, 838, July 2022. doi:10.3390/
e24060838

Examples

Sigma1 <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3)
Sigma2 <- matrix(c(1, 0.3, 0.1, 0.3, 1, 0.4, 0.1, 0.4, 1), nrow = 3)
kldcauchy(Sigma1, Sigma2)
kldcauchy(Sigma2, Sigma1)

Sigma1 <- matrix(c(0.5, 0, 0, 0, 0.4, 0, 0, 0, 0.3), nrow = 3)
Sigma2 <- diag(1, 3)
# Case when all eigenvalues of Sigma1 %*% solve(Sigma2) are < 1
kldcauchy(Sigma1, Sigma2)
# Case when all eigenvalues of Sigma1 %*% solve(Sigma2) are > 1
kldcauchy(Sigma2, Sigma1)

kldggd Kullback-Leibler Divergence between Centered Multivariate general-
ized Gaussian Distributions

Description

Computes the Kullback- Leibler divergence between two random vectors distributed according to
multivariate generalized Gaussian distributions (MGGD) with zero means.

Usage

kldggd(Sigma1, beta1, Sigma2, beta2, eps = 1e-06)

Arguments

Sigma1 symmetric, positive-definite matrix. The dispersion matrix of the first distribu-
tion.

beta1 positive real number. The shape parameter of the first distribution.

Sigma2 symmetric, positive-definite matrix. The dispersion matrix of the second distri-
bution.

beta2 positive real number. The shape parameter of the second distribution.

eps numeric. Precision for the computation of the Lauricella D-hypergeometric
function (see lauricella). Default: 1e-06.

https://doi.org/10.3390/e24060838
https://doi.org/10.3390/e24060838
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Details

Given X1, a random vector of Rp (p > 1) distributed according to the MGGD with parameters
(0,Σ1, β1) and X2, a random vector of Rp distributed according to the MGGD with parameters
(0,Σ2, β2).

The Kullback-Leibler divergence between X1 and X2 is given by:

KL(X1||X2) = ln

β1|Σ1|−1/2Γ
(

p
2β2

)
β2|Σ2|−1/2Γ

(
p

2β1

)
+

p

2

(
1

β2
− 1

β1

)
ln 2− p

2β2
+ 2

β2
β1

−1
Γ
(

β2

β1
+ p

β1

)
Γ
(

p
2β1

) λβ2
p

×F (p−1)
D

−β1;
1

2
, . . . ,

1

2︸ ︷︷ ︸
p−1

;
p

2
; 1− λp−1

λp
, . . . , 1− λ1

λp


where λ1 < ... < λp−1 < λp are the eigenvalues of the matrix Σ1Σ

−1
2

and F (p−1)
D is the Lauricella D-hypergeometric function defined for p variables:

F
(p)
D (a; b1, ..., bp; g;x1, ..., xp) =

∑
m1≥0

...
∑

mp≥0

(a)m1+...+mp(b1)m1 ...(bp)mp

(g)m1+...+mp

xm1
1

m1!
...
x
mp
p

mp!

This computation uses the lauricella function.

When p = 1 (univariate case): let X1, a random variable distributed according to the centered
generalized Gaussian distribution with parameters (0, σ1, β1) andX2, a random variable distributed
according to the generalized Gaussian distribution with parameters (0, σ2, β2).

KL(X1||X2) = ln

 β1√
σ1
Γ
(

1
2β2

)
β2√
σ2
Γ
(

1
2β1

)
+

1

2

(
1

β2
− 1

β1

)
ln 2− 1

2β2
+ 2

β2
β1

−1
Γ
(

β2

β1
+ 1

β1

)
Γ
(

1
2β1

) (
σ1
σ2

)β2

Value

A numeric value: the Kullback-Leibler divergence between the two distributions, with two at-
tributes attr(, "epsilon") (precision of the result of the Lauricella D-hypergeometric Function)
and attr(, "k") (number of iterations) except when the distributions are univariate.

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel, A. Dziri, Kullback-Leibler Divergence Between Multivariate Generalized Gaussian
Distributions. IEEE Signal Processing Letters, vol. 26 no. 7, July 2019. doi:10.1109/LSP.2019.2915000

See Also

dmggd: probability density of a MGGD.

https://doi.org/10.1109/LSP.2019.2915000
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Examples

beta1 <- 0.74
beta2 <- 0.55
Sigma1 <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
Sigma2 <- matrix(c(1, 0.3, 0.2, 0.3, 0.5, 0.1, 0.2, 0.1, 0.7), nrow = 3)

# Kullback-Leibler divergence
kl12 <- kldggd(Sigma1, beta1, Sigma2, beta2)
kl21 <- kldggd(Sigma2, beta2, Sigma1, beta1)
print(kl12)
print(kl21)

# Distance (symmetrized Kullback-Leibler divergence)
kldist <- as.numeric(kl12) + as.numeric(kl21)
print(kldist)

kldstudent Kullback-Leibler Divergence between Centered Multivariate t Distri-
butions

Description

Computes the Kullback-Leibler divergence between two random vectors distributed according to
multivariate t distributions (MTD) with zero location vector.

Usage

kldstudent(nu1, Sigma1, nu2, Sigma2, eps = 1e-06)

Arguments

nu1 numeric. The degrees of freedom of the first distribution.

Sigma1 symmetric, positive-definite matrix. The scatter matrix of the first distribution.

nu2 numeric. The degrees of freedom of the second distribution.

Sigma2 symmetric, positive-definite matrix. The scatter matrix of the second distribu-
tion.

eps numeric. Precision for the computation of the partial derivative of the Lauricella
D-hypergeometric function (see Details). Default: 1e-06.

Details

Given X1, a random vector of Rp distributed according to the centered MTD with parameters
(ν1, 0,Σ1) and X2, a random vector of Rp distributed according to the MCD with parameters
(ν2, 0,Σ2).

Let λ1, . . . , λp the eigenvalues of the square matrix Σ1Σ
−1
2 sorted in increasing order:

λ1 < · · · < λp−1 < λp
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The Kullback-Leibler divergence of X1 from X2 is given by:

DKL(X1∥X2) = ln

(
Γ
(
ν1+p

2

)
Γ
(
ν2

2

)
ν

p
2
2

Γ
(
ν2+p

2

)
Γ
(
ν1

2

)
ν

p
2
1

)
+
ν2 − ν1

2

[
ψ

(
ν1 + p

2

)
− ψ

(ν1
2

)]
− 1

2

p∑
i=1

lnλi −
ν2 + p

2
×D

where ψ is the digamma function (see Special) and D is given by:

• If
ν1
ν2
λ1 > 1,

D =

p∏
i=1
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ν2
ν1

1

λi

) 1
2 ∂

∂a

{
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(p)
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2
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1

λp
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a=0

• If
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ν2
λp < 1,

D =
∂
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{
F

(p)
D

(
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2
, . . . ,

1
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; a+
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2
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• If
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λ1 < 1 <
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D = − ln

(
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)
+

∂
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F
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(
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F
(p)
D is the Lauricella D-hypergeometric function defined for p variables:

F
(p)
D (a; b1, . . . , bp; g;x1, . . . , xp) =

∑
m1≥0

· · ·
∑

mp≥0

(a)m1+···+mp
(b1)m1

. . . (bp)mp

(g)m1+···+mp

xm1
1

m1!
. . .

x
mp
p

mp!

Value

A numeric value: the Kullback-Leibler divergence between the two distributions, with two attributes
attr(, "epsilon") (precision of the partial derivative of the Lauricella D-hypergeometric func-
tion,see Details) and attr(, "k") (number of iterations).

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Mul-
tivariate t-Distributions. IEEE Signal Processing Letters, vol. 30, pp. 1672-1676, October 2023.
doi:10.1109/LSP.2023.3324594

https://doi.org/10.1109/LSP.2023.3324594
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Examples

nu1 <- 2
Sigma1 <- matrix(c(2, 1.2, 0.4, 1.2, 2, 0.6, 0.4, 0.6, 2), nrow = 3)
nu2 <- 4
Sigma2 <- matrix(c(1, 0.3, 0.1, 0.3, 1, 0.4, 0.1, 0.4, 1), nrow = 3)

kldstudent(nu1, Sigma1, nu2, Sigma2)
kldstudent(nu2, Sigma2, nu1, Sigma1)

lauricella Lauricella D-Hypergeometric Function

Description

Computes the Lauricella D-hypergeometric function.

Usage

lauricella(a, b, g, x, eps = 1e-06)

Arguments

a numeric.

b numeric vector.

g numeric.

x numeric vector. x must have the same length as b.

eps numeric. Precision for the nested sums (default 1e-06).

Details

If n is the length of the b and x vectors, the Lauricella D-hypergeometric function is given by:

F
(n)
D (a, b1, ..., bn, g;x1, ..., xn) =

∑
m1≥0

...
∑

mn≥0

(a)m1+...+mn(b1)m1 ...(bn)mn

(g)m1+...+mn

xm1
1

m1!
...
xmn
n

mn!

where (x)p is the Pochhammer symbol (see pochhammer).

If |xi| < 1, i = 1, . . . , n, this sum converges. Otherwise there is an error.

The eps argument gives the required precision for its computation. It is the attr(, "epsilon")
attribute of the returned value.

Value

A numeric value: the value of the Lauricella function, with two attributes attr(, "epsilon")
(precision of the result) and attr(, "k") (number of iterations).
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Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel, A. Dziri, Kullback-Leibler Divergence Between Multivariate Generalized Gaussian
Distributions. IEEE Signal Processing Letters, vol. 26 no. 7, July 2019. doi:10.1109/LSP.2019.2915000

N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Mul-
tivariate t-Distributions. IEEE Signal Processing Letters, vol. 30, pp. 1672-1676, October 2023.
doi:10.1109/LSP.2023.3324594

lnpochhammer Logarithm of the Pochhammer Symbol

Description

Computes the logarithm of the Pochhammer symbol.

Usage

lnpochhammer(x, n)

Arguments

x numeric.

n positive integer.

Details

The Pochhammer symbol is given by:

(x)n =
Γ(x+ n)

Γ(x)
= x(x+ 1)...(x+ n− 1)

So, if n > 0:
log ((x)n) = log(x) + log(x+ 1) + ...+ log(x+ n− 1)

If n = 0, log ((x)n) = log(1) = 0

Value

Numeric value. The logarithm of the Pochhammer symbol.

Author(s)

Pierre Santagostini, Nizar Bouhlel

https://doi.org/10.1109/LSP.2019.2915000
https://doi.org/10.1109/LSP.2023.3324594
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See Also

pochhammer, lauricella

Examples

lnpochhammer(2, 0)
lnpochhammer(2, 1)
lnpochhammer(2, 3)

plotmvd Plot a Bivariate Density

Description

Plots the probability density of a multivariate distribution with 2 variables:

• generalized Gaussian distribution (MGGD) with mean vector mu, dispersion matrix Sigma and
shape parameter beta

• Cauchy distribution (MCD) with location parameter mu and scatter matrix Sigma

• t distribution (MTD) with location parameter mu and scatter matrix Sigma

This function uses the plot3d.function function.

Usage

plotmvd(mu, Sigma, beta = NULL, nu = NULL,
distribution = c("mggd", "mcd", "mtd"),
xlim = c(mu[1] + c(-10, 10)*Sigma[1, 1]),
ylim = c(mu[2] + c(-10, 10)*Sigma[2, 2]), n = 101,
xvals = NULL, yvals = NULL, xlab = "x", ylab = "y",
zlab = "f(x,y)", col = "gray", tol = 1e-6, ...)

Arguments

mu length 2 numeric vector.

Sigma symmetric, positive-definite square matrix of order 2.

beta numeric. If distribution = "mggd", the shape parameter of the MGGD. NULL
if dist is "mcd" or "mtd".

nu numeric. If distribution = "mtd", the degrees of freedom of the MTD. NULL
if distribution is "mggd" or "mcd".

distribution the probability distribution. It can be "mggd" (multivariate generalized Gaussian
distribution) "mcd" (multivariate Cauchy) or "mtd" (multivariate t).

xlim, ylim x-and y- limits.

n A one or two element vector giving the number of steps in the x and y grid,
passed to plot3d.function.
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xvals, yvals The values at which to evaluate x and y. If used, xlim and/or ylim are ignored.

xlab, ylab, zlab The axis labels.

col The color to use for the plot. See plot3d.function.

tol tolerance (relative to largest variance) for numerical lack of positive-definiteness
in Sigma, for the estimation of the density. See dmggd, dmcd or dmtd.

... Additional arguments to pass to plot3d.function.

Value

Returns invisibly the probability density function.

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential
Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600.
doi:10.1080/03610929808832115

S. Kotz and Saralees Nadarajah (2004), Multivariate t Distributions and Their Applications, Cam-
bridge University Press.

See Also

contourmvd: contour plot of a bivariate generalised Gaussian, Cauchy or t density.

dmggd: Probability density of a multivariate generalised Gaussian distribution.

dmcd: Probability density of a multivariate Cauchy distribution.

dmtd: Probability density of a multivariate t distribution.

Examples

mu <- c(1, 4)
Sigma <- matrix(c(0.8, 0.2, 0.2, 0.2), nrow = 2)

# Bivariate generalised Gaussian distribution
beta <- 0.74
plotmvd(mu, Sigma, beta = beta, distribution = "mggd")

# Bivariate Cauchy distribution
plotmvd(mu, Sigma, distribution = "mcd")

# Bivariate t distribution
nu <- 2
plotmvd(mu, Sigma, nu = nu, distribution = "mtd")

https://doi.org/10.1080/03610929808832115
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pochhammer Pochhammer Symbol

Description

Computes the Pochhammer symbol.

Usage

pochhammer(x, n)

Arguments

x numeric.

n positive integer.

Details

The Pochhammer symbol is given by:

(x)n =
Γ(x+ n)

Γ(x)
= x(x+ 1)...(x+ n− 1)

Value

Numeric value. The value of the Pochhammer symbol.

Author(s)

Pierre Santagostini, Nizar Bouhlel

See Also

lauricella

Examples

pochhammer(2, 0)
pochhammer(2, 1)
pochhammer(2, 3)
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rmcd Simulate from a Multivariate Cauchy Distribution

Description

Produces one or more samples from the multivariate (p variables) Cauchy distribution (MCD) with
location parameter mu and scatter matrix Sigma.

Usage

rmcd(n, mu, Sigma, tol = 1e-6)

Arguments

n integer. Number of observations.

mu length p numeric vector. The location parameter.

Sigma symmetric, positive-definite square matrix of order p. The scatter matrix.

tol tolerance for numerical lack of positive-definiteness in Sigma (for mvrnorm, see
Details).

Details

A sample from a MCD with parameters µ and Σ can be generated using:

X = µ+
Y√
u

where Y is a random vector distributed among a centered Gaussian density with covariance matrix
Σ (generated using mvrnorm) and u is distributed among a Chi-squared distribution with 1 degree
of freedom.

Value

A matrix with p columns and n rows.

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

S. Kotz and Saralees Nadarajah (2004), Multivariate t Distributions and Their Applications, Cam-
bridge University Press.

See Also

dmcd: probability density of a MCD.

estparmcd: estimation of the parameters of a MCD.
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Examples

mu <- c(0, 1, 4)
sigma <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3)
x <- rmcd(100, mu, sigma)
x
apply(x, 2, median)

rmggd Simulate from a Multivariate Generalized Gaussian Distribution

Description

Produces one or more samples from a multivariate (p variables) generalized Gaussian distribution
(MGGD).

Usage

rmggd(n = 1 , mu, Sigma, beta, tol = 1e-6)

Arguments

n integer. Number of observations.

mu length p numeric vector. The mean vector.

Sigma symmetric, positive-definite square matrix of order p. The dispersion matrix.

beta positive real number. The shape of the distribution.

tol tolerance (relative to largest variance) for numerical lack of positive-definiteness
in Sigma.

Details

A sample from a centered MGGD with dispersion matrix Σ and shape parameter β can be generated
using:

X = τ Σ1/2 U

where U is a random vector uniformly distributed on the unit sphere and τ is such that τ2β is
generated from a distribution Gamma with shape parameter

p

2β
and scale parameter 2.

Value

A matrix with p columns and n rows.

Author(s)

Pierre Santagostini, Nizar Bouhlel
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References

E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential
Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600.
doi:10.1080/03610929808832115

See Also

dmggd: probability density of a MGGD..

estparmggd: estimation of the parameters of a MGGD.

Examples

mu <- c(0, 0, 0)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
beta <- 0.74
rmggd(100, mu, Sigma, beta)

rmtd Simulate from a Multivariate t Distribution

Description

Produces one or more samples from the multivariate (p variables) t distribution (MTD) with degrees
of freedom nu, mean vector mu and correlation matrix Sigma.

Usage

rmtd(n, nu, mu, Sigma, tol = 1e-6)

Arguments

n integer. Number of observations.
nu numeric. The degrees of freedom.
mu length p numeric vector. The mean vector
Sigma symmetric, positive-definite square matrix of order p. The correlation matrix.
tol tolerance for numerical lack of positive-definiteness in Sigma (for mvrnorm, see

Details).

Details

A sample from a MTD with parameters ν, µ and Σ can be generated using:

X = µ+Y

√
ν

u

where Y is a random vector distributed among a centered Gaussian density with covariance matrix
Σ (generated using mvrnorm) and u is distributed among a Chi-squared distribution with ν degrees
of freedom.

https://doi.org/10.1080/03610929808832115
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Value

A matrix with p columns and n rows.

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

S. Kotz and Saralees Nadarajah (2004), Multivariate t Distributions and Their Applications, Cam-
bridge University Press.

See Also

dmtd: probability density of a MTD.

estparmtd: estimation of the parameters of a MTD.

Examples

nu <- 3
mu <- c(0, 1, 4)
Sigma <- matrix(c(1, 0.6, 0.2, 0.6, 1, 0.3, 0.2, 0.3, 1), nrow = 3)
x <- rmtd(10000, nu, mu, Sigma)
head(x)
dim(x)
mu; colMeans(x)
nu/(nu-2)*Sigma; var(x)
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