
Package ‘optimflex’
February 7, 2026

Type Package

Title Derivative-Based Optimization with User-Defined Convergence
Criteria

Version 0.1.0

Description Provides a derivative-based optimization framework that allows users
to combine eight convergence criteria. Unlike standard optimization functions, this package in-
cludes a
built-in mechanism to verify the positive definiteness of the Hessian matrix
at the point of convergence. This additional check helps prevent the solver
from falsely identifying non-optimal solutions, such as saddle points, as
valid minima.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Imports numDeriv, utils

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Eunseong Cho [aut, cre]

Maintainer Eunseong Cho <bene@kw.ac.kr>

Repository CRAN

Date/Publication 2026-02-07 12:40:07 UTC

Contents
bfgs . 2
dfp . 3
dogleg . 5
double_dogleg . 7
fast_grad . 8

1

2 bfgs

fast_hess . 9
fast_jac . 10
gauss_newton . 10
is_pd_fast . 12
l_bfgs_b . 12
modified_newton . 14
newton_raphson . 15

Index 17

bfgs Broyden-Fletcher-Goldfarb-Shanno (BFGS) Optimization

Description

Implements the damped BFGS Quasi-Newton algorithm with a Strong Wolfe line search for non-
linear optimization, specifically tailored for SEM.

Usage

bfgs(
start,
objective,
gradient = NULL,
hessian = NULL,
lower = -Inf,
upper = Inf,
control = list(),
...

)

Arguments

start Numeric vector. Starting values for the optimization parameters.

objective Function. The objective function to minimize.

gradient Function (optional). Gradient of the objective function.

hessian Function (optional). Hessian matrix of the objective function.

lower Numeric vector. Lower bounds for box constraints.

upper Numeric vector. Upper bounds for box constraints.

control List. Control parameters including convergence flags:

• use_abs_f: Logical. Use absolute change in objective for convergence.
• use_rel_f: Logical. Use relative change in objective for convergence.
• use_abs_x: Logical. Use absolute change in parameters for convergence.
• use_rel_x: Logical. Use relative change in parameters for convergence.
• use_grad: Logical. Use gradient norm for convergence.

dfp 3

• use_posdef: Logical. Verify positive definiteness at convergence.
• use_pred_f: Logical. Record predicted objective decrease.
• use_pred_f_avg: Logical. Record average predicted decrease.
• diff_method: String. Method for numerical differentiation.

... Additional arguments passed to objective, gradient, and Hessian functions.

Details

bfgs is a Quasi-Newton method that maintains an approximation of the inverse Hessian matrix. It
is widely considered the most robust and efficient member of the Broyden family of optimization
methods.

BFGS vs. DFP: While both bfgs and dfp update the inverse Hessian using rank-two formulas,
BFGS is generally more tolerant of inaccuracies in the line search. This implementation uses the
Sherman-Morrison formula to update the inverse Hessian directly, avoiding the need for matrix
inversion at each step.

Strong Wolfe Line Search: To maintain the positive definiteness of the Hessian approximation
and ensure global convergence, this algorithm employs a Strong Wolfe line search. This search
identifies a step length α that satisfies both sufficient decrease (Armijo condition) and the curvature
condition.

Damping for Non-Convexity: In Structural Equation Modeling (SEM), objective functions often
exhibit non-convex regions. When use_damped = TRUE, Powell’s damping strategy is applied to the
update vectors to preserve the positive definiteness of the Hessian approximation even when the
curvature condition is not naturally met.

Value

A list containing optimization results and iteration metadata.

References

• Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer.

• Fletcher, R. (1987). Practical Methods of Optimization. Wiley.

dfp Davidon-Fletcher-Powell (DFP) Quasi-Newton Optimization

Description

Implements the DFP Quasi-Newton algorithm with a Strong Wolfe line search and optional Powell’s
damping for non-linear optimization.

4 dfp

Usage

dfp(
start,
objective,
gradient = NULL,
hessian = NULL,
lower = -Inf,
upper = Inf,
control = list(),
...

)

Arguments

start Numeric vector. Starting values for the optimization parameters.

objective Function. The objective function to minimize.

gradient Function (optional). Gradient of the objective function.

hessian Function (optional). Hessian matrix for final verification.

lower Numeric vector. Lower bounds for box constraints.

upper Numeric vector. Upper bounds for box constraints.

control List. Control parameters including convergence flags:

• use_abs_f: Logical. Use absolute change in objective for convergence.
• use_rel_f: Logical. Use relative change in objective for convergence.
• use_abs_x: Logical. Use absolute change in parameters for convergence.
• use_rel_x: Logical. Use relative change in parameters for convergence.
• use_grad: Logical. Use gradient norm for convergence.
• use_posdef: Logical. Verify positive definiteness at convergence.
• use_pred_f: Logical. Record predicted objective decrease.
• use_pred_f_avg: Logical. Record average predicted decrease.

... Additional arguments passed to objective, gradient, and Hessian functions.

Details

dfp is a Quasi-Newton method that maintains and updates an approximation of the inverse Hessian
matrix. Historically, it was the first Quasi-Newton method discovered (Davidon, 1959) and later
refined by Fletcher and Powell (1963).

DFP vs. BFGS: Both DFP and BFGS belong to the Broyden family of Quasi-Newton methods.
While BFGS is generally preferred for its self-correcting properties regarding inaccuracies in the
line search, DFP remains a fundamental algorithm that can be more sensitive to the local curvature
of the objective function. In certain Structural Equation Modeling (SEM) contexts, DFP can provide
alternative convergence paths when BFGS reaches a plateau.

Strong Wolfe Line Search: To ensure the positive definiteness of the inverse Hessian update and
guarantee global convergence, this implementation employs a Strong Wolfe line search. This iden-
tifies a step length α that satisfies both:

dogleg 5

• Sufficient Decrease (Armijo Rule): f(x+ αp) ≤ f(x) + c1α∇f(x)T p.

• Curvature Condition: |∇f(x+ αp)T p| ≤ c2|∇f(x)T p|.

Powell’s Damping Strategy: Structural Equation Models often involve non-convex fitting func-
tions. When use_damped = TRUE, the algorithm applies Powell’s damping to the y vector used in
the update formula. This ensures that the curvature condition sT y > 0 is maintained even in non-
convex regions, preserving the stability of the inverse Hessian approximation.

Value

A list containing optimization results and iteration metadata.

References

• Davidon, W. C. (1959). Variable Metric Method for Minimization. AEC Research and Devel-
opment Report, ANL-5990.

• Fletcher, R., & Powell, M. J. D. (1963). A Rapidly Convergent Descent Method for Mini-
mization. The Computer Journal, 6(2), 163-168.

• Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer.

dogleg Dogleg Trust-Region Optimization

Description

Implements the standard Powell’s Dogleg Trust-Region algorithm for non-linear optimization.

Usage

dogleg(
start,
objective,
gradient = NULL,
hessian = NULL,
lower = -Inf,
upper = Inf,
control = list(),
...

)

Arguments

start Numeric vector. Starting values for the optimization parameters.

objective Function. The objective function to minimize.

gradient Function (optional). Gradient of the objective function.

hessian Function (optional). Hessian matrix of the objective function.

6 dogleg

lower Numeric vector. Lower bounds for box constraints.

upper Numeric vector. Upper bounds for box constraints.

control List. Control parameters including convergence flags:

• use_abs_f: Logical. Use absolute change in objective for convergence.
• use_rel_f: Logical. Use relative change in objective for convergence.
• use_abs_x: Logical. Use absolute change in parameters for convergence.
• use_rel_x: Logical. Use relative change in parameters for convergence.
• use_grad: Logical. Use gradient norm for convergence.
• use_posdef: Logical. Verify positive definiteness at convergence.
• use_pred_f: Logical. Record predicted objective decrease.
• use_pred_f_avg: Logical. Record average predicted decrease.

... Additional arguments passed to objective, gradient, and Hessian functions.

Details

This function implements the classic Dogleg method within a Trust-Region framework, based on
the strategy proposed by Powell (1970).

Trust-Region vs. Line Search: Trust-Region methods define a neighborhood around the current
point (the trust region with radius ∆) where a local quadratic model is assumed to be reliable.
Unlike Line Search methods that first determine a search direction and then find an appropriate
step length, this approach constrains the step size first and then finds the optimal update within that
boundary.

Powell’s Dogleg Trajectory: The "Dogleg" trajectory is a piecewise linear path connecting:

1. The current point.

2. The Cauchy Point (pC): The minimizer of the quadratic model along the steepest descent
direction.

3. The Newton Point (pN): The unconstrained minimizer of the quadratic model (B−1g).

The algorithm selects a step along this path such that it minimizes the quadratic model while re-
maining within the radius ∆.

Relationship to Double Dogleg: While the double_dogleg algorithm (Dennis and Mei, 1979)
introduces a bias point to follow the Newton direction more closely, this standard Dogleg follows
the original two-segment trajectory.

Value

A list containing optimization results and iteration metadata.

References

• Powell, M. J. D. (1970). A Hybrid Method for Nonlinear Equations. Numerical Methods for
Nonlinear Algebraic Equations.

• Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer.

double_dogleg 7

double_dogleg Double Dogleg Trust-Region Optimization

Description

Implements the Double Dogleg Trust-Region algorithm for non-linear optimization.

Usage

double_dogleg(
start,
objective,
gradient = NULL,
hessian = NULL,
lower = -Inf,
upper = Inf,
control = list(),
...

)

Arguments

start Numeric vector. Starting values for the optimization parameters.

objective Function. The objective function to minimize.

gradient Function (optional). Gradient of the objective function.

hessian Function (optional). Hessian matrix of the objective function.

lower Numeric vector. Lower bounds for box constraints.

upper Numeric vector. Upper bounds for box constraints.

control List. Control parameters including convergence flags starting with ’use_’.

• use_abs_f: Logical. Use absolute change in objective for convergence.

• use_rel_f: Logical. Use relative change in objective for convergence.

• use_abs_x: Logical. Use absolute change in parameters for convergence.

• use_rel_x: Logical. Use relative change in parameters for convergence.

• use_grad: Logical. Use gradient norm for convergence.

• use_posdef: Logical. Verify positive definiteness at convergence.

• use_pred_f: Logical. Record predicted objective decrease.

• use_pred_f_avg: Logical. Record average predicted decrease.

... Additional arguments passed to objective, gradient, and Hessian functions.

8 fast_grad

Details

This function implements the Double Dogleg method within a Trust-Region framework, primarily
based on the work of Dennis and Mei (1979).

Trust-Region vs. Line Search: While Line Search methods (like BFGS) first determine a search
direction and then find an appropriate step length, Trust-Region methods define a neighborhood
around the current point (the trust region with radius ∆) where a local quadratic model is assumed
to be reliable. The algorithm then finds a step that minimizes this model within the radius. This
approach is generally more robust, especially when the Hessian is not positive definite.

Powell’s Dogleg vs. Double Dogleg: Powell’s original Dogleg method (1970) constructs a trajec-
tory consisting of two line segments: one from the current point to the Cauchy point, and another
from the Cauchy point to the Newton point. The "Double Dogleg" modification by Dennis and Mei
(1979) introduces an intermediate "bias" point (pW) along the Newton direction.

• Cauchy Point (pC): The minimizer of the quadratic model along the steepest descent direc-
tion.

• Newton Point (pN): The minimizer of the quadratic model (B−1g).

• Double Dogleg Point (pW): A point defined as γ · pN , where γ is a scaling factor (bias) that
ensures the path stays closer to the Newton direction while maintaining monotonic descent in
the model.

This modification allows the algorithm to perform more like a Newton method earlier in the opti-
mization process compared to the standard Dogleg.

Value

A list containing optimization results and iteration metadata.

References

• Dennis, J. E., & Mei, H. H. (1979). Two New Unconstrained Optimization Algorithms which
use Function and Gradient Values. Journal of Optimization Theory and Applications, 28(4),
453-482.

• Powell, M. J. D. (1970). A Hybrid Method for Nonlinear Equations. Numerical Methods for
Nonlinear Algebraic Equations.

• Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer.

fast_grad Fast Numerical Gradient

Description

Provides a high-speed numerical gradient using forward or central differences.

Usage

fast_grad(f, x, diff_method = c("forward", "central"), ...)

fast_hess 9

Arguments

f Function. The objective function.

x Numeric vector. Parameters at which to evaluate the gradient.

diff_method String. Differentiation method: "forward" or "central".

... Additional arguments passed to f.

Value

A numeric vector of gradients.

fast_hess Fast Numerical Hessian

Description

High-speed numerical Hessian calculation using finite differences.

Usage

fast_hess(f, x, diff_method = c("forward", "central"), ...)

Arguments

f Function. The objective function.

x Numeric vector. Parameters at which to evaluate the Hessian.

diff_method String. Differentiation method: "forward" or "central".

... Additional arguments passed to f.

Value

A symmetric Hessian matrix.

10 gauss_newton

fast_jac Fast Numerical Jacobian

Description

Calculates the Jacobian matrix for a vector-valued function (e.g., residuals).

Usage

fast_jac(f_res, x, diff_method = c("forward", "central"), ...)

Arguments

f_res Function. A function returning a vector of residuals.

x Numeric vector. Parameters at which to evaluate the Jacobian.

diff_method String. Differentiation method: "forward" or "central".

... Additional arguments passed to f_res.

Value

A Jacobian matrix of dimension (m x n).

gauss_newton Gauss-Newton Optimization

Description

Implements a full-featured Gauss-Newton algorithm for non-linear optimization, specifically opti-
mized for Structural Equation Modeling (SEM).

Usage

gauss_newton(
start,
objective,
residual = NULL,
gradient = NULL,
hessian = NULL,
jac = NULL,
lower = -Inf,
upper = Inf,
control = list(),
...

)

gauss_newton 11

Arguments

start Numeric vector. Starting values for the optimization parameters.
objective Function. The objective function to minimize.
residual Function (optional). Function that returns the residuals vector.
gradient Function (optional). Gradient of the objective function.
hessian Function (optional). Hessian matrix of the objective function.
jac Function (optional). Jacobian matrix of the residuals.
lower Numeric vector. Lower bounds for box constraints.
upper Numeric vector. Upper bounds for box constraints.
control List. Control parameters including convergence flags:

• use_abs_f: Logical. Use absolute change in objective for convergence.
• use_rel_f: Logical. Use relative change in objective for convergence.
• use_abs_x: Logical. Use absolute change in parameters for convergence.
• use_rel_x: Logical. Use relative change in parameters for convergence.
• use_grad: Logical. Use gradient norm for convergence.
• use_posdef: Logical. Verify positive definiteness at convergence.
• use_pred_f: Logical. Record predicted objective decrease.
• use_pred_f_avg: Logical. Record average predicted decrease.
• diff_method: String. Method for numerical differentiation.

... Additional arguments passed to objective, gradient, and Hessian functions.

Details

gauss_newton is a specialized optimization algorithm for least-squares and Maximum Likelihood
problems where the objective function can be expressed as a sum of squared residuals.

Scaling and SEM Consistency: To ensure consistent simulation results and standard error (SE) cal-
culations, this implementation adjusts the Gradient (2JT r) and the Approximate Hessian (2JTJ)
to match the scale of the Maximum Likelihood (ML) fitting function FML. This alignment is critical
when calculating asymptotic covariance matrices using the formula 2

nH
−1.

Comparison with Newton-Raphson: Unlike newton_raphson or modified_newton, which re-
quire the full second-order Hessian, Gauss-Newton approximates the Hessian using the Jacobian of
the residuals. This is computationally more efficient and provides a naturally positive-semidefinite
approximation, though a ridge adjustment is still provided for numerical stability.

Ridge Adjustment Strategy: The function includes a "Ridge Rescue" mechanism. If the approx-
imate Hessian is singular or poorly conditioned for Cholesky decomposition, it iteratively adds a
diagonal ridge (τI) until numerical stability is achieved.

Value

A list containing optimization results and iteration metadata.

References

• Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer.
• Bollen, K. A. (1989). Structural Equations with Latent Variables. Wiley.

12 l_bfgs_b

is_pd_fast Fast Positive Definiteness Check

Description

Efficiently checks if a matrix is positive definite using Cholesky decomposition.

Usage

is_pd_fast(M)

Arguments

M Matrix. The matrix to verify.

Value

Logical. TRUE if positive definite, FALSE otherwise.

l_bfgs_b Limited-memory BFGS with Box Constraints (L-BFGS-B)

Description

Performs bound-constrained minimization using the L-BFGS-B algorithm. This implementation
handles box constraints via Generalized Cauchy Point (GCP) estimation and subspace minimiza-
tion, featuring a limited-memory (two-loop recursion) inverse Hessian approximation.

Usage

l_bfgs_b(
start,
objective,
gradient = NULL,
hessian = NULL,
lower = -Inf,
upper = Inf,
control = list(),
...

)

l_bfgs_b 13

Arguments

start Numeric vector. Initial values for the parameters.

objective Function. The scalar objective function to be minimized.

gradient Function (optional). Returns the gradient vector. If NULL, numerical derivatives
are used.

hessian Function (optional). Returns the Hessian matrix. Used for final positive defi-
niteness verification if use_posdef = TRUE.

lower, upper Numeric vectors. Lower and upper bounds for the parameters. Can be scalars if
all parameters share the same bounds.

control A list of control parameters:

• use_abs_f: Logical. Criterion: |fnew − fold| < tol_abs_f.
• use_rel_f: Logical. Criterion: |(fnew − fold)/fold| < tol_rel_f.
• use_abs_x: Logical. Criterion: max |xnew − xold| < tol_abs_x.
• use_rel_x: Logical. Criterion: max |(xnew − xold)/xold| < tol_rel_x.
• use_grad: Logical. Criterion: ∥g∥∞ < tol_grad.
• use_posdef: Logical. Criterion: Positive definiteness of the Hessian.
• max_iter: Maximum number of iterations (default: 10000).
• m: Number of L-BFGS memory updates (default: 5).
• tol_abs_f, tol_rel_f: Tolerances for function value change.
• tol_abs_x, tol_rel_x: Tolerances for parameter change.
• tol_grad: Tolerance for the projected gradient (default: 1e-4).

... Additional arguments passed to objective, gradient, and Hessian functions.

Value

A list containing optimization results and metadata.

Comparison with Existing Functions

This function adds three features for rigorous convergence control. First, it applies an AND rule:
all selected convergence criteria must be satisfied simultaneously. Second, users can choose among
eight distinct criteria (e.g., changes in f , x, gradient, or predicted decrease) instead of relying
on fixed defaults. Third, it provides an optional verification using the Hessian computed from
derivatives (analytically when provided, or via numerical differentiation). Checking the positive
definiteness of this Hessian at the final solution reduces the risk of declaring convergence at non-
minimizing stationary points, such as saddle points.

References

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound con-
strained optimization. SIAM Journal on Scientific Computing, 16(5), 1190-1208.

Morales, J. L., & Nocedal, J. (2011). L-BFGS-B: Remark on algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical
Software, 38(1), 1-4.

14 modified_newton

modified_newton Modified Newton-Raphson Optimization

Description

Implements an optimized Newton-Raphson algorithm for non-linear optimization featuring dy-
namic ridge adjustment and backtracking line search.

Usage

modified_newton(
start,
objective,
gradient = NULL,
hessian = NULL,
lower = -Inf,
upper = Inf,
control = list(),
...

)

Arguments

start Numeric vector. Starting values for the optimization parameters.

objective Function. The objective function to minimize.

gradient Function (optional). Gradient of the objective function.

hessian Function (optional). Hessian matrix of the objective function.

lower Numeric vector. Lower bounds for box constraints.

upper Numeric vector. Upper bounds for box constraints.

control List. Control parameters including convergence flags:

• use_abs_f: Logical. Use absolute change in objective for convergence.
• use_rel_f: Logical. Use relative change in objective for convergence.
• use_abs_x: Logical. Use absolute change in parameters for convergence.
• use_rel_x: Logical. Use relative change in parameters for convergence.
• use_grad: Logical. Use gradient norm for convergence.
• use_posdef: Logical. Verify positive definiteness at convergence.
• use_pred_f: Logical. Record predicted objective decrease.
• use_pred_f_avg: Logical. Record average predicted decrease.
• grad_diff: String. Method for gradient differentiation.
• hess_diff: String. Method for Hessian differentiation.

... Additional arguments passed to objective, gradient, and Hessian functions.

newton_raphson 15

Details

modified_newton is a line search optimization algorithm that utilizes second-order curvature in-
formation (the Hessian matrix) to find the minimum of an objective function.

Modified Newton vs. Trust-Region: Unlike the dogleg and double_dogleg functions which use a
Trust-Region approach to constrain the step size, this function uses a Line Search approach. It first
determines the Newton direction (the solution to H∆x = −g) and then performs a backtracking
line search to find a step length α that satisfies the sufficient decrease condition (Armijo condition).

Dynamic Ridge Adjustment: If the Hessian matrix H is not positive definite (making it unsuitable
for Cholesky decomposition), the algorithm applies a dynamic ridge adjustment. A diagonal matrix
τI is added to the Hessian, where τ is increased until the matrix becomes positive definite. This
ensures the search direction always remains a descent direction.

Differentiation Methods: The function allows for independent selection of differentiation methods
for the gradient and Hessian:

• forward: Standard forward-difference numerical differentiation.

• central: Central-difference (more accurate but slower).

• complex: Complex-step differentiation (highly accurate for gradients).

• richardson: Richardson extrapolation via the numDeriv package.

Value

A list containing optimization results and iteration metadata.

newton_raphson Pure Newton-Raphson Optimization

Description

Implements the standard Newton-Raphson algorithm for non-linear optimization without Hessian
modifications or ridge adjustments.

Usage

newton_raphson(
start,
objective,
gradient = NULL,
hessian = NULL,
lower = -Inf,
upper = Inf,
control = list(),
...

)

16 newton_raphson

Arguments

start Numeric vector. Starting values for the optimization parameters.

objective Function. The objective function to minimize.

gradient Function (optional). Gradient of the objective function.

hessian Function (optional). Hessian matrix of the objective function.

lower Numeric vector. Lower bounds for box constraints.

upper Numeric vector. Upper bounds for box constraints.

control List. Control parameters including convergence flags:

• use_abs_f: Logical. Use absolute change in objective for convergence.
• use_rel_f: Logical. Use relative change in objective for convergence.
• use_abs_x: Logical. Use absolute change in parameters for convergence.
• use_rel_x: Logical. Use relative change in parameters for convergence.
• use_grad: Logical. Use gradient norm for convergence.
• use_posdef: Logical. Verify positive definiteness at convergence.
• use_pred_f: Logical. Record predicted objective decrease.
• use_pred_f_avg: Logical. Record average predicted decrease.
• diff_method: String. Method for numerical differentiation.

... Additional arguments passed to objective, gradient, and Hessian functions.

Details

newton_raphson provides a classic second-order optimization approach.

Comparison with Modified Newton: Unlike modified_newton, this function does not apply dy-
namic ridge adjustments (Levenberg-Marquardt style) to the Hessian. If the Hessian is singular or
cannot be inverted via solve(), the algorithm will terminate. This "pure" implementation is often
preferred in simulation studies where the behavior of the exact Newton step is of interest.

Predicted Decrease: This function explicitly calculates the Predicted Decrease (pred_dec), which
is the expected reduction in the objective function value based on the local quadratic model:

m(p) = f + gT p+
1

2
pTHp

Stability and Simulations: All return values are explicitly cast to scalars (e.g., as.numeric,
as.logical) to ensure stability when the function is called within large-scale simulation loops
or packaged into data frames.

Value

A list containing optimization results and iteration metadata.

References

• Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer.

• Bollen, K. A. (1989). Structural Equations with Latent Variables. Wiley.

Index

bfgs, 2

dfp, 3
dogleg, 5
double_dogleg, 7

fast_grad, 8
fast_hess, 9
fast_jac, 10

gauss_newton, 10

is_pd_fast, 12

l_bfgs_b, 12

modified_newton, 14

newton_raphson, 15

17

	bfgs
	dfp
	dogleg
	double_dogleg
	fast_grad
	fast_hess
	fast_jac
	gauss_newton
	is_pd_fast
	l_bfgs_b
	modified_newton
	newton_raphson
	Index

