
Package ‘propertee’
January 23, 2026

Version 1.0.4

Title Standardization-Based Effect Estimation with Optional Prior
Covariance Adjustment

Description The Prognostic Regression Offsets with Propagation of
ERrors (for Treatment Effect Estimation) package facilitates
direct adjustment for experiments and observational studies that
is compatible with a range of study designs and covariance
adjustment strategies. It uses explicit specification of clusters,
blocks and treatment allocations to furnish probability of
assignment-based weights targeting any of several average
treatment effect parameters, and for standard error calculations
reflecting these design parameters. For covariance adjustment of
its Hajek and (one-way) fixed effects estimates, it enables
offsetting the outcome against predictions from a dedicated
covariance model, with standard error calculations propagating
error as appropriate from the covariance model.

License MIT + file LICENSE

License_is_FOSS yes

License_restricts_use no

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat (>= 3.0.0), multcomp, MASS

Config/testthat/edition 3

Imports stats, methods, sandwich

Enhances robustbase

Depends R (>= 4.1.0)

VignetteBuilder knitr

URL https://github.com/benbhansen-stats/propertee

BugReports https://github.com/benbhansen-stats/propertee/issues

1

https://github.com/benbhansen-stats/propertee
https://github.com/benbhansen-stats/propertee/issues

2 Contents

Collate 'StudySpecification.R' 'StudySpecificationAccessors.R'
'SandwichLayer.R' 'block_center_residuals.R'
'SandwichLayerVariance.R' 'StudySpecificationConverters.R'
'StudySpecificationStructure.R' 'StudySpecificationUtilities.R'
'WeightedStudySpecification.R' 'areg.center.R' 'confint_lm.R'
'teeMod.R' 'as.lmitt.R' 'as_data_frame.R' 'assigned.R'
'bread.R' 'c_weightedStudySpecification.R' 'cov_adj.R' 'data.R'
'dichotomy.R' 'expand.model.frame_tee.R' 'get_cov_adj.R'
'get_data_from_model.R' 'get_spec.R' 'glmrobMethods.R'
'lmitt.R' 'lmrob_methods.R' 'merge_preserve_order.R'
'propertee_package.R' 'specification_table.R'
'summary.StudySpecification.R' 'summary.teeMod.R' 'update_by.R'
'validWeights.R' 'weights_internal.R' 'weights_exported.R'

NeedsCompilation no

Author Josh Errickson [cre, aut],
Josh Wasserman [aut],
Mark Fredrickson [ctb],
Adam Sales [ctb],
Xinhe Wang [ctb],
Ben Hansen [aut]

Maintainer Josh Errickson <jerrick@umich.edu>

Repository CRAN

Date/Publication 2026-01-23 18:50:14 UTC

Contents
+,WeightedStudySpecification,numeric-method . 3
as.lmitt . 4
as.SandwichLayer . 5
assigned . 6
as_rct_spec . 7
bread.teeMod . 8
c,WeightedStudySpecification-method . 9
confint.teeMod . 10
cov_adj . 11
estfun.glmrob . 12
estfun.lmrob . 13
estfun.teeMod . 14
ett . 15
get_structure . 17
GV_data . 18
has_binary_treatment . 19
identical_StudySpecifications . 19
identify_small_blocks . 20
lmitt . 20
lsoSynth . 23

+,WeightedStudySpecification,numeric-method 3

michigan_school_pairs . 24
rct_spec . 25
schooldata . 27
show,PreSandwichLayer-method . 28
show,StudySpecification-method . 28
show,teeMod-method . 29
show,WeightedStudySpecification-method . 29
simdata . 30
specification_data_concordance . 30
specification_table . 31
STARplus . 33
subset,PreSandwichLayer-method . 35
subset,WeightedStudySpecification-method . 36
summary.StudySpecification . 36
summary.teeMod . 37
treatment . 38
unit_of_assignment . 41
var_table . 42
vcov.teeMod . 43
weights,WeightedStudySpecification-method . 44

Index 45

+,WeightedStudySpecification,numeric-method

WeightedStudySpecification Operations

Description

Algebraic operators on WeightedStudySpecification objects and numeric vectors. WeightedStudySpecifications
do not support addition or subtraction.

Usage

S4 method for signature 'WeightedStudySpecification,numeric'
e1 + e2

S4 method for signature 'numeric,WeightedStudySpecification'
e1 + e2

S4 method for signature 'WeightedStudySpecification,numeric'
e1 - e2

S4 method for signature 'numeric,WeightedStudySpecification'
e1 - e2

S4 method for signature 'WeightedStudySpecification,numeric'
e1 * e2

4 as.lmitt

S4 method for signature 'numeric,WeightedStudySpecification'
e1 * e2

S4 method for signature 'WeightedStudySpecification,numeric'
e1 / e2

S4 method for signature 'numeric,WeightedStudySpecification'
e1 / e2

Arguments

e1, e2 WeightedStudySpecification or numeric objects

Details

These are primarily used to either combine weights via multiplication, or to invert weights. Addition
and subtraction are not supported and will produce errors.

Value

a WeightedStudySpecification object

as.lmitt Convert lm object into teeMod

Description

Converts the output of lm() into a teeMod object, for standard errors that account for block and
cluster information carried with the lm’s weights, and/or an offset incorporating predictions of the
outcome from a separate model.

Usage

as.lmitt(x, specification = NULL)

as.teeMod(x, specification = NULL)

Arguments

x lm object with weights containing a WeightedStudySpecification, or an off-
set from cov_adj().

specification Optional, explicitly specify the StudySpecification to be used. If the StudySpecification
is specified elsewhere in x (e.g. passed as an argument to any of ate(), ett(),
cov_adj() or assigned()) it will be found automatically and does not need
to be passed here as well. If different StudySpecification objects are passed
(either through the lm in weights or covariance adjustment, or through this argu-
ment), an error will be produced.

as.SandwichLayer 5

Details

The formula with which x was created must include a treatment identifier (e.g. assigned()). If
a model-based offset is incorporated, the model’s predictions would have to have been extracted
using cov_adj() as opposed to predict{} in order for teeMod standard error calculations to reflect
propagation of error from these predictions. This mechanism only supports treatment main effects:
to estimate interactions of treatment assignment with a moderator variable, use lmitt() instead of
lm() followed by as.lmitt().

Value

teeMod object

as.SandwichLayer Convert a PreSandwichLayer to a SandwichLayer with a
StudySpecification object

Description

as.SandwichLayer() uses the StudySpecification object passed to the specification argu-
ment to populate the slots in a SandwichLayer object that a PreSandwichLayer does not have
sufficient information for.

Usage

as.SandwichLayer(x, specification, by = NULL, Q_data = NULL)

Arguments

x a PreSandwichLayer object

specification a StudySpecification object

by optional; a string or named vector of unique identifier columns in the data used to
create specification and the data used to fit the covariance adjustment model.
Default is NULL, in which case unit of assignment columns are used for identi-
fication (even if they do not uniquely identify units of observation). If a named
vector is provided, names should represent variables in the data used to cre-
ate specification, while values should represent variables in the covariance
adjustment data.

Q_data dataframe of direct adjustment sample, which is needed to generate the keys
slot of the SandwichLayer object. Defaults to NULL, in which case if by is
NULL, the data used to create specification is used, and if by is not NULL,
appropriate data further up the call stack (passed as arguments to cov_adj() or
lmitt.formula(), for example) is used.

Value

a SandwichLayer object

6 assigned

assigned Obtain Treatment from StudySpecification

Description

When passing a lm object to lmitt(), extract and use the treatment variable specified in the
StudySpecification.

Usage

assigned(specification = NULL, data = NULL, dichotomy = NULL)

adopters(specification = NULL, data = NULL, dichotomy = NULL)

a.(specification = NULL, data = NULL, dichotomy = NULL)

z.(specification = NULL, data = NULL, dichotomy = NULL)

Arguments

specification Optional StudySpecification. If the StudySpecification can’t be identified
in the model (usually because neither weights (ate() or ett()) nor a covariate
adjustment model (cov_adj()) are found), the StudySpecification can be
passed diretly.

data Optional data set. By default assigned() will attempt to identify the appropri-
ate data, if this fails (or you want to overwrite it), you can pass the data here.

dichotomy optional; a formula defining the dichotomy of the treatment variable if it isn’t
already 0/1. See details for more information. If ett() or ate() is called within
a lmitt() call that specifies a dichotomy argument, that dichotomy will be
used if the argument here has not been specified.

Details

When passing a lm object to lmitt(), the treatment variable in the formula passed to lm() needs
to be identifiable. Rather than placing the treatment variable directly in the formula, use one of
these functions, to allow lmitt() to identify the treatment variable.

To keep the formula in the lm() call concise, instead of passing specification and data argu-
ments to these functions, one can pass a WeightedStudySpecification object to the weights
argument of the lm() call or a SandwichLayer object to the offset argument.

Alternatively, you can pass the specification and data arguments.

While assigned() can be used in any situation, it is most useful for scenarios where the treatment
variable is non-binary and the StudySpecification contains a Dichotomy. For example, say q is a
3-level ordinal treatment variable, and the binary comparison of interest is captured in dichotomy =
q == 3 ~ q < 3. If you were to fit a model including q as a predictor, e.g. lm(y ~ q, ...), lm would
treat q as the full ordinal variable. On the other hand, by calling lm(y ~ assigned(), weights =

as_rct_spec 7

ate(spec), ...), assigned() will generate the appropriate binary variable to allow estimation of
treatment effects.

If called outside of a model call and without a data argument, this will extract the treatment from
the specification. If this is the goal, the treatment() function is better suited for this purpose.

Value

The treatment variable to be placed in the regression formula.

Examples

data(simdata)
spec <- obs_spec(z ~ uoa(uoa1, uoa2), data = simdata)
mod <- lm(y ~ assigned(), data = simdata, weights = ate(spec))
lmittmod <- lmitt(mod)
summary(lmittmod, vcov.type = "CR0")

as_rct_spec Convert StudySpecification between types

Description

Convert a StudySpecification between a observational study, a randomized control trial, and a
regression discontinuity (created from obs_spec, rct_spec and rd_spec respectively).

Usage

as_rct_spec(StudySpecification, ..., loseforcing = FALSE)

as_obs_spec(StudySpecification, ..., loseforcing = FALSE)

as_rd_spec(StudySpecification, data, ..., forcing)

Arguments

StudySpecification

a StudySpecification to convert

... Ignored.

loseforcing converting from RD to another StudySpecification type will error to avoid
losing the forcing variable. Setting loseforcing = TRUE allows the conversion
to automatically drop the forcing variable. Default FALSE.

data converting to an RD requires adding a forcing variable, which requires access
to the original data.

forcing converting to an RD requires adding a forcing variable. This should be en-
tered as a formula which would be passed to update, e.g. forcing = . ~ . +
forcing(forcevar).

8 bread.teeMod

Value

StudySpecification of the updated type

Examples

spec <- rct_spec(z ~ unit_of_assignment(uoa1, uoa2), data = simdata)
spec
as_obs_spec(spec)
as_rd_spec(spec, simdata, forcing = ~ . + forcing(force))
spec2 <- rd_spec(o ~ uoa(uoa1, uoa2) + forcing(force), data = simdata)
spec2
as_rct_spec(spec2) # this will produce an error
as_rct_spec(spec2, loseforcing = TRUE)

bread.teeMod Extract bread matrix from a teeMod model fit

Description

An S3method for sandwich::bread that extracts the bread of the direct adjustment model sandwich
covariance matrix.

Usage

S3 method for class 'teeMod'
bread(x, ...)

Arguments

x a fitted teeMod model

... arguments passed to methods

Details

This function is a thin wrapper around .get_tilde_a22_inverse().

Value

A variance-covariance matrix with row and column entries for the estimated coefficients in x, the
marginal mean outcome in the control condition, the marginal mean offset in the control condition
(if an offset is provided), and if a moderator variable is specified in the formula for x, the mean
interaction in the control condition of the outcome and offset with the moderator variable

c,WeightedStudySpecification-method 9

c,WeightedStudySpecification-method

Concatenate weights

Description

Given several variations of weights generated from a single StudySpecification, combine into a
single weight.

Usage

S4 method for signature 'WeightedStudySpecification'
c(x, ..., warn_dichotomy_not_equal = FALSE)

Arguments

x .. a WeightedStudySpecification object, typically created from ate() or
ett()

... any number of additional WeightedStudySpecification objects with equiva-
lent StudySpecification to x and eachother

warn_dichotomy_not_equal

if FALSE (default), WeightedStudySpecifications are considered equivalent
even if their dichotomy differs. If TRUE, a warning is produced.

Details

Concatenating WeightedStudySpecification objects with c() requires both individual WeightedStudySpecification
objects to come from the same StudySpecification and have the same target (e.g all created
with ate() or all created with ett(), no mixing-and-matching). All arguments to c() must be
WeightedStudySpecification.

WeightedStudySpecification objects may be concatenated together even without having the
same @dichotomy slot. This procedure only prompts a warning for differing dichotomies if the
argument warn_dichotomy_not_equal is set to TRUE.

Value

A numeric vector with the weights concatenated in the input order.

Examples

data(simdata)
spec <- rct_spec(z ~ unit_of_assignment(uoa1, uoa2), data = simdata)
w1 <- ate(spec, data = simdata[1:30,])
w2 <- ate(spec, data = simdata[31:40,])
w3 <- ate(spec, data = simdata[41:50,])
c_w <- c(w1, w2, w3)
c(length(w1), length(w2), length(w3), length(c_w))

10 confint.teeMod

spec <- rct_spec(dose ~ unit_of_assignment(uoa1, uoa2), data = simdata)
w1 <- ate(spec, data = simdata[1:10,], dichotomy = dose >= 300 ~ .)
w2 <- ate(spec, data = simdata[11:30,], dichotomy = dose >= 200 ~ .)
w3 <- ate(spec, data = simdata[31:50,], dichotomy = dose >= 100 ~ .)
c_w <- c(w1, w2, w3)

confint.teeMod Confidence intervals with standard errors provided by
vcov.teeMod()

Description

An S3method for stats::confint that uses standard errors computed using vcov.teeMod(). Ad-
ditional arguments passed to this function, such as cluster and type, specify the arguments of the
vcov.teeMod() call.

Usage

S3 method for class 'teeMod'
confint(object, parm, level = 0.95, ...)

Arguments

object a fitted teeMod model

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

... additional arguments to pass to vcov.teeMod()

Details

Rather than call stats::confint.lm(), confint.teeMod() calls .confint_lm(), a function in-
ternal to the propertee package that ensures additional arguments in the ... of the confint.teeMod()
call are passed to the internal vcov() call.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.
These will be labelled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and 97.5%)

cov_adj 11

cov_adj Covariance adjustment of teeMod model estimates

Description

cov_adj() takes a fitted covariance model and returns the information necessary for adjusting direct
adjustment model estimates and associated standard errors for covariates. Standard errors will
reflect adjustments made to the outcomes as well as contributions to sampling variability arising
from the estimates of the covariance adjustment model coefficients.

Usage

cov_adj(model, newdata = NULL, specification = NULL, by = NULL)

Arguments

model any model that inherits from a glm, lm, or robustbase::lmrob object

newdata a dataframe of new data. Default is NULL, in which case a dataframe is sought
from higher up the call stack.

specification a StudySpecification object. Default is NULL, in which case a StudySpecification
object is sought from higher up the call stack.

by optional; a string or named vector of unique identifier columns in the data used to
create specification and the data used to fit the covariance adjustment model.
Default is NULL, in which case unit of assignment columns are used for identi-
fication (even if they do not uniquely identify units of observation). If a named
vector is provided, names should represent variables in the data used to cre-
ate specification, while values should represent variables in the covariance
adjustment data.

Details

Prior to generating adjustments, cov_adj() identifies the treatment variable specified in the StudySpecification
object passed to specification and replaces all values with a reference level. If the treatment has
logical type, this reference level is FALSE, and if it has numeric type, this is the smallest non-
negative value (which means 0 for 0/1 binary). Factor treatments are not currently supported for
StudySpecification objects.

The values of the output vector represent adjustments for the outcomes in newdata if newdata
is provided; adjustments for the outcomes in the data used to fit a teeMod model if cov_adj() is
called within the offset argument of the model fit; or they are the fitted values from model if no
relevant dataframe can be extracted from the call stack. The length of the output of cov_adj() will
match the number of rows of the dataframe used.

Value

A SandwichLayer if specification is not NULL or a StudySpecification object is found in
the call stack, otherwise a PreSandwichLayer object

12 estfun.glmrob

Examples

data("STARplus")

##' A prognostic model fitted to experimental + non-experimental controls
y0hat_read <- lm(read_yr1 ~ gender*dob +dobNA + race,

data = STARplus,
subset = cond_at_entry!="small")

STARspec <- rct_spec(cond_at_entry ~ unit_of_assignment(stdntid) +
block(grade_at_entry, school_at_entry),

subset=!is.na(grade_at_entry),# excludes non-experimentals
data = STARplus)

ett_wts <- ett(STARspec, data = STARplus,
dichotomy= cond_at_entry =="small" ~.)

ett_read <- lm(read_yr1 ~ assigned(dichotomy= cond_at_entry =="small" ~.),
offset = cov_adj(y0hat_read),
data = STARplus,
weights = ett_wts)

coef(ett_read)
ett_read |> as.lmitt() # brings in control-group means of outcome, predictions

ate_read <- lmitt(read_yr1 ~ 1, STARspec, STARplus,
dichotomy= cond_at_entry =="small" ~.,
offset = cov_adj(y0hat_read),
weights = "ate")

show(ate_read)
vcov(ate_read, type = "HC0", cov_adj_rcorrect = "HC0") |> unname()

ate_read_loc <-
lmitt(read_yr1 ~ race, STARspec, STARplus,

dichotomy= cond_at_entry =="small" ~.,
offset = cov_adj(y0hat_read, newdata = STARplus),
weights = "ate")

show(ate_read_loc)

estfun.glmrob Extract empirical estimating equations from a glmbrob model fit

Description

Extract empirical estimating equations from a glmbrob model fit

Extract bread matrix from an lmrob() fit

Usage

S3 method for class 'glmrob'
estfun(x, ...)

estfun.lmrob 13

S3 method for class 'glmrob'
bread(x, ...)

Arguments

x a fitted lmrob object

... arguments passed to methods

Value

matrix, estimating functions evaluated at data points and fitted parameters

matrix, inverse Hessian of loss as evaluated at fitted parameters

estfun.lmrob Generate matrix of estimating equations for lmrob() fit

Description

Generate matrix of estimating equations for lmrob() fit

Extract bread matrix from an lmrob() fit

Usage

S3 method for class 'lmrob'
estfun(x, ...)

S3 method for class 'lmrob'
bread(x, ...)

Arguments

x An lmrob object produced using an MM/SM estimator chain

... Additional arguments to be passed to bread

Details

This is part of a workaround for an issue in the robustbase code affecting sandwich covariance
estimation. The issue in question is issue #6471, robustbase project on R-Forge. This function
contributes to providing sandwich estimates of covariance-adjusted standard errors for robust linear
covariance adjustment models.

This is part of a workaround for an issue in the robustbase code affecting sandwich covariance
estimation. The issue in question is issue #6471, robustbase project on R-Forge. This function
contributes to providing sandwich estimates of covariance-adjusted standard errors for robust linear
covariance adjustment models.

14 estfun.teeMod

Value

A n×(p+1) matrix where the first column corresponds to the scale estimate and the remaining p
colums correspond to the coefficients

A p×(p+1) matrix where the first column corresponds to the scale estimate and the remaining p
colums correspond to the coefficients

Author(s)

Ben B. Hansen

estfun.teeMod Extract empirical estimating equations from a teeMod model fit

Description

An S3method for sandwich::estfun for producing a matrix of contributions to the direct adjust-
ment estimating equations.

Usage

S3 method for class 'teeMod'
estfun(x, ...)

Arguments

x a fitted teeMod model

... arguments passed to methods, most importantly those that define the bias cor-
rections for the residuals of x and, if applicable, a fitted_covariance_model
stored in its offset

Details

If a prior covariance adjustment model has been passed to the offset argument of the teeMod
model using cov_adj(), estfun.teeMod() incorporates contributions to the estimating equations
of the covariance adjustment model.

The covariance adjustment sample may not fully overlap with the direct adjustment sample, in
which case estfun.teeMod() returns a matrix with the same number of rows as the number of
unique units of observation used to fit the two models. Uniqueness is determined by matching units
of assignment used to fit the covariance adjustment model to units of assignment in the teeMod
model’s StudySpecification slot; units of observation within units of assignment that do not
match are additional units that add to the row count.

Theby argument in cov_adj() can provide a column or a pair of columns (a named vector where the
name specifies a column in the direct adjustment sample and the value a column in the covariance
adjustment sample) that uniquely specifies units of observation in each sample. This information

ett 15

can be used to align each unit of observation’s contributions to the two sets of estimating equations.
If no by argument is provided and units of observation cannot be uniquely specified, contributions
are aligned up to the unit of assignment level. If standard errors are clustered no finer than that, they
will provide the same result as if each unit of observation’s contributions were aligned exactly.

This method incorporates bias corrections made to the residuals of x and, if applicable, the covari-
ance model stored in its offset. When its crossproduct is taken (perhaps after suitable summing
across rows within clusters), it provides a heteroskedasticity- (or cluster-) robust estimate of the
meat matrix of the variance-covariance of the parameter estimates in x.

Value

An n × k matrix of empirical estimating equations for x. k includes the model intercept, main
effects of treatment and moderator variables, any moderator effects, and marginal and conditional
means of the outcome (and offset, if provided) in the control condition. See Details for definition
of n.

ett Generate Direct Adjusted Weights for Treatment Effect Estimation

Description

These should primarily be used inside models. See Details.

Usage

ett(specification = NULL, dichotomy = NULL, by = NULL, data = NULL)

att(specification = NULL, dichotomy = NULL, by = NULL, data = NULL)

ate(specification = NULL, dichotomy = NULL, by = NULL, data = NULL)

etc(specification = NULL, dichotomy = NULL, by = NULL, data = NULL)

atc(specification = NULL, dichotomy = NULL, by = NULL, data = NULL)

ato(specification = NULL, dichotomy = NULL, by = NULL, data = NULL)

olw(specification = NULL, dichotomy = NULL, by = NULL, data = NULL)

owt(specification = NULL, dichotomy = NULL, by = NULL, data = NULL)

pwt(specification = NULL, dichotomy = NULL, by = NULL, data = NULL)

16 ett

Arguments

specification optional; a StudySpecification object created by one of rct_spec(), rd_spec(),
or obs_spec().

dichotomy optional; a formula defining the dichotomy of the treatment variable if it isn’t
already 0/1. See details for more information. If ett() or ate() is called within
a lmitt() call that specifies a dichotomy argument, that dichotomy will be
used if the argument here has not been specified.

by optional; named vector or list connecting names of unit of assignment/ variables
in specification to unit of assignment/unitid/cluster variables in data. Names
represent variables in the StudySpecification; values represent variables in the
data. Only needed if variable names differ.

data optional; the data for the analysis to be performed on. May be excluded if these
functions are included as the weights argument of a model.

Details

These functions should primarily be used in the weight argument of lmitt() orlm(). All argu-
ments are optional if used within those functions. If used on their own, specification and data
must be provided.

• ate - Average treatment effect. Aliases: ate().

• ett - Effect of treatment on the treated. Aliases: ett(), att().

• etc - Effect of treatment on controls. Aliases: etc(), atc().

• ato - Overlap-weighted average effect. Aliases: ato(), olw, owt, pwt.

In a StudySpecification with blocks, the weights are generated as a function of the ratio of the
number of treated units in a block versus the total number of units in a block.

In any blocks where that ratio is 0 or 1 (that is, all units in the block have the same treatment status),
the weights will be 0. In effect this removes from the target population any block in which there is
no basis for estimating either means under treatment or means under control.

If block is missing for a given observation, a weight of 0 is applied.

A dichotomy is specified by a formula consisting of a conditional statement on both the left-hand
side (identifying treatment levels associated with "treatment") and the right hand side (identifying
treatment levels associated with "control"). For example, if your treatment variable was called dose
and doses above 250 are considered treatment, you might write:

ate(..., dichotomy = dose > 250 ~ dose <= 250

The period (.) can be used to assign all other units of assignment. For example, we could have
written the same treatment regime as either

etc(..., dichotomy = dose > 250 ~ .

or

olw(..., dichotomy = . ~ dose <= 250

The dichotomy formula supports Relational Operators (see Comparison), Logical Operators (see
Logic), and %in% (see match()).

get_structure 17

The conditionals need not assign all values of treatment to control or treatment, for example, dose
> 300 ~ dose < 200 does not assign 200 <= dose <= 300 to either treatment or control. This would
be equivalent to manually generating a binary variable with NA whenever dose is between 200 and
300. Standard errors will reflect the sizes of the comparison groups specified by the dichotomy.

Tim Lycurgus contributed code for the computation of weights. The ‘overlap weight’ concept is
due to Li, Morgan and Zaslavsky (2018), although the current implementation differs from that
discussed in their paper in that it avoids estimated propensity scores.

Value

a WeightedStudySpecification object, which is a vector of numeric weights

References

Li, Fan, Kari Lock Morgan, and Alan M. Zaslavsky. "Balancing covariates via propensity score
weighting." Journal of the American Statistical Association 113, no. 521 (2018): 390-400.

Examples

data(simdata)
spec <- rct_spec(z ~ unit_of_assignment(uoa1, uoa2), data = simdata)
summary(lmitt(y ~ 1, data = simdata, specification = spec, weights = ate()), vcov.type = "CR0")

get_structure StudySpecification Structure Information

Description

Obtaining a data.frame which encodes the specification information.

Usage

get_structure(specification)

S4 method for signature 'StudySpecificationStructure'
show(object)

Arguments

specification a StudySpecification object

object a StudySpecificationStructure object, typically the output of get_structure

Value

A StudySpecificationStructure object containing the structure of the specification as a
data.frame.

18 GV_data

Examples

data(simdata)
spec <- rct_spec(z ~ uoa(uoa1, uoa2) + block(bid), data = simdata)
get_structure(spec)

GV_data Cluster-randomized experiment data on voter turnout in cable system
markets

Description

This dataset is a toy example derived from a cluster-randomized field experiment that evaluates
the effect of “Rock the Vote” TV advertisements on voter turnout rate. The original study included
23,869 first-time voters across 85 cable television markets in 12 states. These markets were grouped
into matched sets based on their past voter turnout rates and then randomly assigned to either a treat-
ment or control condition. This toy dataset is constructed by randomly sampling 10% of individuals
from selected cable television markets in the original dataset.

Usage

GV_data

Format

A data.frame with 248 rows and 7 columns.

• age Age of participant
• vote_04 Outcome variable indicating whether participant voted
• tv_company Cable system serving participant’s residential area
• treatment Binary variable denoting treatment assignment
• pairs A numeric indicator for the strata or matched pair group to which a cable system belongs

(1-3)
• population_size Total population size of residential area served by cable system
• sample_size Number of individuals sampled from the cable system cluster

Details

The original dataset was drawn from a randomized controlled trial in which 85 cable system areas
were first grouped into 40 matched sets based on historical voter turnout. Within each matched set,
one cable system area was randomly assigned to the treatment condition, while the others served as
controls.

This toy dataset includes a subset of the original replication data, specifically individuals from
matched sets 1–3, which encompass 7 of the 85 cable system areas. Within these selected clusters,
a 10% random sample of individuals was taken.

The fuller Green-Vavreck dataset that this derives from bears a Creative Commons BY-NC-ND
license (v3.0) and is housed in Yale University’s Institution for Social and Policy Studies (ID:
D005).

has_binary_treatment 19

Source

https://isps.yale.edu/research/data/d005

References

Green, Donald P. & Lynn Vavreck (2008) "Analysis of Cluster-Randomized Experiments: A Com-
parison of Alternative Estimation Approaches." Political Analysis 16(2):138-152.

has_binary_treatment Check whether treatment stored in a StudySpecification object is
binary

Description

Check whether treatment stored in a StudySpecification object is binary

Usage

has_binary_treatment(spec)

Arguments

spec StudySpecification object

Value

logical vector of length 1

identical_StudySpecifications

Test equality of two StudySpecification objects

Description

Check whether two StudySpecification objects are identical.

Usage

identical_StudySpecifications(x, y)

Arguments

x A StudySpecification object.
y A StudySpecification object.

Value

Logical, are x and y identical?

https://isps.yale.edu/research/data/d005

20 lmitt

identify_small_blocks Identify fine strata

Description

Identify blocks in a StudySpecification with exactly one treated or one control unit of assign-
ment.

Usage

identify_small_blocks(spec)

Arguments

spec A StudySpecification object.

Value

Logical vector with length given by the number of blocks in StudySpecification

lmitt Linear Model for Intention To Treat

Description

Generates a linear model object to estimate a treatment effect, with proper estimation of variances
accounting for the study specification.

Usage

lmitt(obj, specification, data, ...)

S3 method for class 'formula'
lmitt(
obj,
specification,
data,
absorb = FALSE,
offset = NULL,
weights = NULL,
...

)

S3 method for class 'lm'
lmitt(obj, specification = NULL, ...)

lmitt 21

Arguments

obj A formula or a lm object. See Details.

specification The StudySpecification to be used. Alternatively, a formula creating a speci-
fication. (Of the type of that would be passed as the first argument to rd_spec(),
rct_spec(), or obs_spec(), with the difference that cluster(), uoa() and
unit_of_assignment() terms can be omitted when each row of data repre-
sents a distinct unit of assignment.) If the formula includes a forcing() ele-
ment, an RD specification is created. Otherwise an observational specification
is created. An RCT specification must be created manually using rct_spec().

data A data.frame such as would be passed into lm().

... Additional arguments passed to lm() and other functions. An example of the lat-
ter is dichotomy=, a formula passed to assigned() and, as appropriate, ate(),
att(), atc() or ato(). It is used to dichotomize a non-binary treatment vari-
able in specification. See the Details section of the ate() help page for
examples.

absorb If TRUE, fixed effects are included for blocks identified in the StudySpecification.
Excluded in FALSE. Default is FALSE. The estimates of these fixed effects are
suppressed from the returned object.

offset Offset of the kind which would be passed into lm(). Ideally, this should be the
output of cov_adj().

weights Which weights should be generated? Options are "ate" or "ett". Alternatively,
the output of a manually run ate() or ett() can be used.

Details

The first argument to lmitt() should be a formula specifying the outcome on the left hand side.
The right hand side of the formula can be any of the following:

• 1: Estimates a main treatment effect.

• a subgroup variable: Estimates a treatment effect within each level of your subgrouping vari-
able.

• a continuous moderator: Estimates a main treatment effect as well as a treatment by moderator
interaction. The moderator is not automatically centered.

Alternatively, obj can be a pre-created lm object. No modification is made to the formula of the
object. See the help for as.lmitt() for details of this conversion.

The lmitt() function’s subset= argument governs the subsetting of data prior to model fitting,
just as with lm(). Functions such as rct_spec() that create StudySpecifications also take
an optional subset= argument, but its role differs from that of the subset= argument of lm() or
lmitt(). The subset= argument when creating a StudySpecification restricts the data used
to generate the StudySpecification, but has no direct impact on the future lm() or lmitt()
calls using that StudySpecification. (It can have an indirect impact by excluding particular
units from receiving a treatment assignment or weight. When treatment assignments or weights are
reconstructed from the StudySpecification, these units will receive NAs, and will be excluded
from the lm() or lmitt() fit under typical na.action settings.)

22 lmitt

To avoid variable name collision, the treatment variable defined in the specification will have a
"." appended to it. For example, if you request a main treatment effect (with a formula of ~ 1) with
a treatment variable named "txt", you can obtain its estimate from the returned teeMod object via
$coefficients["txt."].

lmitt() will produce a message if the StudySpecification designates treatment assignment by
block but the blocking structure appears not to be reflected in the weights, nor in a block fixed effect
adjustment (via absorb=TRUE). While not an error, this is at odds with intended uses of propertee,
so lmitt() flags it as a potential oversight on the part of the analyst. To disable this message, run
options("propertee_message_on_unused_blocks" = FALSE).

lmitt() returns objects of class ‘teeMod’, for Treatment Effect Estimate Model, extending the lm
class to add a summary of the response distribution under control (the coefficients of a controls-
only regression of the response on an intercept and any moderator variable). teeMod objects also
record the underlying StudySpecification and information about any externally fitted models
mod that may have been used for covariance adjustment by passing offset=cov_adj(mod). In the
latter case, responses are offsetted by predictions from mod prior to treatment effect estimation, but
estimates of the response variable distribution under control are calculated without reference to mod.

The response distribution under control is also characterized when treatment effects are estimated
with block fixed effects, i.e. for lmitt() with a formula first argument with option absorb=TRUE.
Here as otherwise, the supplementary coefficients describe a regression of the response on an in-
tercept and moderator variables, to which only control observations contribute; but in this case the
weights are modified for this supplementary regression. The treatment effect estimates adjusted
for block fixed effects can be seen to coincide with estimates calculated without block effect but
with weights multiplied by an additional factor specific to the combination of block and treatment
condition. For block s containing units with weights wi and binary treatment assignments zi, define
π̂s by π̂s

∑
s wi =

∑
s ziwi. If π̂s is 0 or 1, the block doesn’t contribute to effect estimation and

the additional weighting factor is 0; if 0 < π̂s < 1, the additional weighting factor is 1 − π̂s for
treatment group members and π̂s for controls. When estimating a main effect only or a main effect
with continuous moderator, supplementary coefficients under option absorb=TRUE reflect regres-
sions with additional weighting factor equal to 0 or π̂s, respectively, for treatment or control group
members of block s. With a categorical moderator and absorb=TRUE, this additional weighting
factor determining supplementary coefficients is calculated separately for each level ℓ of the mod-
erator variable, with the sums defining π̂sℓ restricted not only to block s but also to observations
with moderator equal to ℓ.

Value

teeMod object (see Details)

Examples

data(simdata)
spec <- rct_spec(z ~ cluster(uoa1, uoa2), data = simdata)
mod1 <- lmitt(y ~ 1, data = simdata, specification = spec, weights = "ate")
mod2 <- lmitt(y ~ as.factor(o), data = simdata, specification = spec, weights = "ate")
observational study with treatment z assigned row-wise within blocks:
mod3 <- lmitt(y ~ 1, data=simdata, specification=z ~ block(bid), weights="att")
regression discontinuity study with units of assignment
given by combinations of uoa1, uoa2:
mod4 <- lmitt(y ~ 1, data = simdata,

lsoSynth 23

specification = z ~ uoa(uoa1, uoa2) + forcing(force))

lsoSynth Synthethic Regression Discontinuity Data

Description

The data for this example were randomly simulated using the synthpop package in R based on data
originally collected by Lindo, Sanders, and Oreopoulos (2010).

Usage

lsoSynth

Format

A data.frame with 40,403 rows and 11 columns.

• R

• lhsgrade_pct

• nextGPA

• probation_year1

• totcredits_year1

• male

• loc_campus1

• loc_campus2

• bpl_north_america

• english

• age_at_entry

Details

See the "Regression Discontinuity StudySpecifications" vignette on the propertee website for
more details on the original data, a link to the code used to generate this synthethic data, and a
detailed example.

24 michigan_school_pairs

michigan_school_pairs Intervention data from a pair-matched study of schools in Michigan

Description

Michigan high schools, with a plausible cluster RCT

Usage

michigan_school_pairs

Format

A data.frame with 14 rows and 13 columns.

• schoolid school id

• blk block

• z treatment variable

• MALE_G11_PERC percentage of G11 male students

• FEMALE_G11_PERC percentage of G11 female students

• AM_G11_PERC percentage of G11 American Indian/Alaska Native students

• ASIAN_G11_PERC percentage of G11 Asian students

• HISP_G11_PERC percentage of G11 Hispanic students

• BLACK_G11_PERC percentage of G11 Black students

• WHITE_G11_PERC percentage of G11 White students

• PACIFIC_G11_PERC percentage of G11 Hawaiian Native/Pacific Islander students

• TR_G11_PERC percentage of G11 Two or More Races students

• G11 Number of G11 students

Details

Grade 11 demographics for all Michigan high schools in 2013, with mock block and treatment
assignments for 14 high schools within a large county in the metro Detroit area. These schools were
selected for this demonstration based on their similarity to the 14 high schools from an adjacent
Michigan county that participated in the Pane et al (2013) study. As a result, they serve as an
example of what one might expect to find as the state-specific school-level subsample in a multi-
state paired cluster randomized trial featuring random assignment at the school level.

The mock experimental schools were selected by optimal matching of experimental schools to
adjacent county schools, with substitute schools grouped into the same pairs or triples (‘fine strata’)
as were their experimental counterparts. The original pairs and triples had been selected to reduce
variation in baseline variables predictive of outcomes, and the blocking structure the substitute
sample inherits may be expected to do this as well. The treatment/control distinction is also inherited
from the experimental sample, but there is of course no treatment effect within the mock experiment.

rct_spec 25

The selection of mock experimental schools was based on both demographic and student achieve-
ment variables, but the present data frame includes only the demographic variables (as sourced
from the Common Core of Data [CCD; U.S. Department of Education]). School average outcomes
in student test scores are available separately, from Michigan’s Center for Education Performance
Information. See the vignette ‘Real-data demonstration with a finely stratified cluster RCT and a
broader administrative database’, available on the package website.

References

Pane, John F., et al. "Effectiveness of cognitive tutor algebra I at scale." Educational Evaluation
and Policy Analysis 36.2 (2014): 127-144.

U.S. Department of Education. Public Elementary/Secondary School Universe Survey Data, v.2a.
Institute of Education Sciences, National Center for Education Statistics.

Examples

data(michigan_school_pairs)
mi_spec <- rct_spec(z ~ uoa(schoolid)+block(blk),
data=michigan_school_pairs)
mi_spec
table(is.na(michigan_school_pairs$blk))
specification_table(mi_spec, "block", "treatment")

rct_spec Generates a StudySpecification object with the given specifica-
tions.

Description

Generate a randomized control treatment StudySpecification (rct_spec()), or an observational
StudySpecification (obs_spec()), or a regression discontinuity StudySpecification (rd_spec()).

Usage

rct_spec(formula, data, subset = NULL, na.fail = TRUE)

rd_spec(formula, data, subset = NULL, na.fail = TRUE)

obs_spec(formula, data, subset = NULL, na.fail = TRUE)

rct_specification(formula, data, subset = NULL, na.fail = TRUE)

rd_specification(formula, data, subset = NULL, na.fail = TRUE)

obs_specification(formula, data, subset = NULL, na.fail = TRUE)

obsstudy_spec(formula, data, subset = NULL, na.fail = TRUE)

obsstudy_specification(formula, data, subset = NULL, na.fail = TRUE)

26 rct_spec

Arguments

formula a formula defining the StudySpecification components. See Details for
specification.

data the data set from which to build the StudySpecification. Note that this data need
not be the same as used to estimate the treatment effect; rather the data passed
should contain information about the units of treatment assignment (as opposed
to the units of analysis).

subset optional, subset the data before creating the StudySpecification object

na.fail If TRUE (default), any missing data found in the variables specified in formula
(excluding treatment) will trigger an error. If FALSE, non-complete cases will be
dropped before the creation of the StudySpecification

Details

The formula should include exactly one unit_of_assignment() to identify the units of assignment
(one or more variables). (uoa, cluster, or unitid are synonyms for unit_of_assignment; the
choice of which has no impact on the analysis. See below for a limited exception in which the
unit_of_assignment specification may be omitted.) If defining an rd_spec, the formula must
also include a forcing() entry. The formula may optionally include a block() as well. Each of
these can take in multiple variables, e.g. to pass both a household ID and individual ID as unit of
assignment, use uoa(hhid, iid) and not uoa(hhid) + uoa(iid).

The treatment variable passed into the left-hand side of formula can either be logical, numeric, or
character. If it is anything else, it attempts conversion to one of those types (for example, factor
and ordered are converted to numeric if the levels are numeric, otherwise to character). If the
treatment is not logical or numeric with only values 0 and 1, in order to generate weights with
ate() or ett(), the dichotomy argument must be used in those functions to identify the treatment
and control groups. See ett() for more details on specifying a dichotomy.

There are a few aliases for each version.

If the formula excludes a unit_of_assignment(), data merges are performed on row order. Such
formulas can also be passed as the specification argument to lmitt(), and that is their primary in-
tended use case. It is recommended that each formula argument passed to *_specification() include
a unit_of_assignment(), uoa() or cluster() term identifying the key variable(s) with which
StudySpecification data is to be merged with analysis data. Exceptions to this rule will be met
with a warning. To disable the warning, run options("propertee_warn_on_no_unit_of_assignment"
= FALSE).

The units of assignment, blocks, and forcing variables must be numeric or character. If they are
otherwise, an attempt is made to cast them into character.

Value

a StudySpecification object of the requested type for use in further analysis.

Examples

data(simdata)
spec <- rct_spec(z ~ unit_of_assignment(uoa1, uoa2) + block(bid),

data = simdata)

schooldata 27

data(schooldata)
spec <- obs_spec(treatment ~ unit_of_assignment(schoolid) + block(state),

data = schooldata)

schooldata Student data

Description

An example of data sets stored at two levels.

Usage

schooldata

studentdata

Format

Two data.frames, one with school-level data (schooldata) including treatment assignment and a
second with student-level data (studentdata). schoolata:

• schoolid Unique school ID variable.

• treatment Was this school in the intervention group?

• state State which the school is in.

• pct_disadvantage Percent of student body flagged as "disadvantaged".

studentdata:

• id Unique student ID.

• schoolid Unique school ID variable.

• grade Student’s grade, 3-5.

• gpa Student GPA in prior year.

• math Standarized math score (out of 100).

An object of class data.frame with 8713 rows and 5 columns.

Details

In this hypothetical data, schools were randomly assignment to treatment status, but the unit of
analysis is students. Thus the two data sets, one encoding school information (including treatment
status) and one encoding student information (which does not include treatment status).

28 show,StudySpecification-method

Examples

soec <- obs_spec(treatment ~ uoa(schoolid), data = schooldata)

Treatment effect
mod1 <- lmitt(math ~ 1, specification = soec, data = studentdata)

Treatment effect by grade
mod2 <- lmitt(math ~ as.factor(grade), specification = soec, data = studentdata)

show,PreSandwichLayer-method

Show a PreSandwichLayer or SandwichLayer

Description

Display information about a PreSandwichLayer or SandwichLayer object

Usage

S4 method for signature 'PreSandwichLayer'
show(object)

Arguments

object PreSandwichLayer or SandwichLayer object

Value

an invisible copy of object

show,StudySpecification-method

Show a StudySpecification

Description

Display information about a StudySpecification object

Usage

S4 method for signature 'StudySpecification'
show(object)

Arguments

object StudySpecification object, usually a result of a call to rct_spec(), obs_spec(),
or rd_spec().

show,teeMod-method 29

Value

object, invisibly.

show,teeMod-method Show a teeMod

Description

Display information about a teeMod object

Usage

S4 method for signature 'teeMod'
show(object)

Arguments

object teeMod object, usually a result of a call to lmitt().

Value

object, invisibly.

show,WeightedStudySpecification-method

Show a WeightedStudySpecification

Description

Prints out the weights from a WeightedStudySpecification

Usage

S4 method for signature 'WeightedStudySpecification'
show(object)

Arguments

object a WeightedStudySpecification object

Value

an invisible copy of object

30 specification_data_concordance

simdata Simulated data

Description

Simulated data to use with the propertee package with unit of assignment level treatment assign-
ment

Usage

simdata

Format

A data.frame with 100 rows and 7 columns.

• uoa1 First level unit of assignment ID

• uoa2 Second level unit of assignment ID

• bid Block ID

• force Forcing variable

• z Binary treatment indicator

• o 4-level ordered treatment variable

• dose Dose treatment variable

• x Some predictor

• y Some outcome

specification_data_concordance

Check for variable agreement within units of assignment

Description

Useful for debugging purposes to ensure that there is concordance between variables in the StudySpecification
and data.

Usage

specification_data_concordance(
specification,
data,
by = NULL,
warn_on_nonexistence = TRUE

)

specification_table 31

Arguments

specification a StudySpecification object

data a new data set, presumably not the same used to create specification.

by optional; named vector or list connecting names of variables in specification
to variables in data. Names represent variables in specification; values rep-
resent variables in data. Only needed if variable names differ.

warn_on_nonexistence

default TRUE. If a variable does not exist in data, should this be flagged? If
FALSE, silently move on if a variable doesn’t exist in data.

Details

Consider the following scenario: A StudySpecification is generated from some dataset, "data1",
which includes a block variable "b1". Within each unique unit of assignment/unitid/cluster of
"data1", it must be the case that "b1" is constant. (Otherwise the creation of the StudySpecification
will fail.)

Next, a model is fit which includes weights generated from the StudySpecification, but on
dataset "data2". In "data2", the block variable "b1" also exists, but due to some issue with data
cleaning, does not agree with "b1" in "data1".

This could cause errors, either directly (via actual error messages) or simply produce nonsense
results. specification_data_concordance() is specificationed to help debug these scenarios by
providing information on whether variables in both the data used in the creation of specification
("data1" in the above example) and some new dataset, data, ("data2" in the above example) have
any inconsistencies.

Value

invisibly TRUE if no warnings are produced, FALSE if any warnings are produced.

specification_table Table of elements from a StudySpecification

Description

Produces a table (1-dimensional, or 2-dimensional if y is specified) of the elements of the StudySpecification.

Usage

specification_table(
specification,
x,
y = NULL,
sort = FALSE,
decreasing = TRUE,
use_var_names = FALSE,

32 specification_table

...
)

stable(
specification,
x,
y = NULL,
sort = FALSE,
decreasing = TRUE,
use_var_names = FALSE,
...

)

Arguments

specification A StudySpecification object

x One of "treatment", "unit of assignment", (synonym "uoa"), "block". Abbrevia-
tions are accepted. "unit of assignment" can be replaced by "unitid" or "cluster"
if the StudySpecification was created with that element.

y Optionally, another string similar to x. A 1-dimensional table is produced if y is
left at its default, NULL.

sort Ignored if y is not NULL. If FALSE (default), one-way table is sorted according to
"names" of levels. If set to TRUE, one-way table is sorted according to values.

decreasing If sort is TRUE, choose whether to sort descending (TRUE, default) or ascending
(FALSE).

use_var_names If TRUE, name dimensions of table returned by variable names. If FALSE (de-
fault), name by their function (e.g. "treatment" or "blocks"). Passing the dnn
argument in ... (an argument of table()) overrides whatever is requested here.

... additional arguments table()

Value

A table of the requested variables.

Examples

data(simdata)
spec <- obs_spec(z ~ unit_of_assignment(uoa1, uoa2) + block(bid),

data = simdata)
specification_table(spec, "treatment")
specification_table(spec, "treatment", "block", sort = TRUE, use_var_names = TRUE)

STARplus 33

STARplus STAR participants plus nonexperimental controls

Description

Data from Tennessee’s Project STAR study. This data frame describes student participants in the
Project STAR (Student-Teacher Achievement Ratio) field experiment conducted in Tennessee, USA
beginning in the mid-1980s, as well as an external control group consisting of the contemporaneous
cohort of students attending a matched sample of Tennessee schools that did not participate in the
STAR experiment. Variables are as described in Project STAR data documentation (see references),
with five exceptions. Three *_at_entry variables were constructed as follows: grade_at_entry
indicates the grade of student’s first participation, while school_at_entry and cond_at_entry
reflect the school ID and classroom type corresponding to the student’s grade at entry to the study.
Additionally, read_yr1 and math_yr1 capture a student’s scaled scores on the Scholastic Assess-
ment Test (SAT) administered to them during their grade_of_entry, i.e. their earliest available
post-treatment SAT measurements.

Usage

STARplus

Format

A data.frame with 13,382 rows and 56 columns.

• stdnid Student ID

• gender Student gender

• race Student race

• birthmonth Student month of birth

• birthday Student day of birth

• birthyear Student year of birth

• read_yr1 SAT reading scaled score from grade at which student entered the study

• math_yr1 SAT math scaled score from grade at which student entered the study

• gktreadss Kindergarten reading scaled score (RCT participants only)

• gktmathss Kindergarten math scaled score (RCT participants only)

• gktlistss Kindergarten listening scaled score (RCT participants only)

• gkwordskillss Kindergarten word study skills scaled score (RCT participants only)

• g1schid Grade 1 School ID

• g1tchid Grade 1 Teacher ID

• g1classsize Class size of Grade 1

• g1treadss Grade 1 SAT reading scaled score

• g1tmathss Grade 1 SAT math scaled score

34 STARplus

• g1tlistss Grade 1 total listening scale score in SAT

• g1wordskillss Grade 1 word study skills scale score in SAT

• g1readbsraw Grade 1 reading raw score in Basic Skills First (BSF) tests

• g1mathbsraw Grade 1 math raw score in BSF

• g1readbsobjpct Grade 1 reading percent objectives mastered in BSF tests

• g1mathbsobjpct Grade 1 math percent objectives mastered in BSF tests

• g2schid Grade 2 School ID

• g2tchid Grade 2 Teacher ID

• g2classsize Class size of Grade 2

• g2treadss Grade 2 total reading scale score in SAT

• g2tmathss Grade 2 total math scale score in SAT

• g2tlistss Grade 2 total listening scale score in SAT

• g2wordskillss Grade 2 word study skills scale score in SAT

• g2readbsraw Grade 2 reading raw score in BSF tests

• g2mathbsraw Grade 2 math raw score in BSF test

• g2readbsobjpct Grade 2 reading percent objectives mastered in BSF tests

• g3schid Grade 3 School ID

• g3tchid Grade 3 Teacher ID

• g3classsize Class size of Grade 3

• g3treadss Grade 3 total reading scale score in SAT

• g3tmathss Grade 3 total math scale score in SAT

• g3langss Grade 3 total language scale score in SAT

• g3tlistss Grade 3 total listening scale score in SAT

• g3socialsciss Grade 3 social science scale score in SAT

• g3spellss Grade 3 spelling scale score in SAT

• g3vocabss Grade 3 vocabulary scale score in SAT

• g3mathcomputss Grade 3 math computation scale score in SAT

• g3mathnumconcss Grade 3 concept of numbers scale score in SAT

• g3mathapplss Grade 3 math applications scale score in SAT

• g3wordskillss Grade 3 word study skills scale score in SAT

• g3readbsraw Grade 3 reading raw score in BSF tests

• g3mathbsraw Grade 3 math raw score in BSF tests

• g3readbsobjpct Grade 3 reading percent objectives mastered in BSF tests

• g3mathbsobjpct Grade 3 math percent objectives mastered in BSF tests

• dob Date of birth (with NAs imputed RCT participant median)

• dobNA Dat of birth not recorded

• grade_at_entry Grade at which each student first entered the study

• school_at_entry School ID corresponding to the student’s grade at entry into the study

• cond_at_entry Classroom type corresponding to the student’s grade at entry into the study

subset,PreSandwichLayer-method 35

Details

Note: This dataset bears a Creative Commons Zero license (v1.0).

Source

doi:10.7910/DVN/SIWH9F

References

C.M. Achilles; Helen Pate Bain; Fred Bellott; Jayne Boyd-Zaharias; Jeremy Finn; John Folger;
John Johnston; Elizabeth Word, 2008, "Tennessee’s Student Teacher Achievement Ratio (STAR)
project", Harvard Dataverse, V1, https://doi.org/10.7910/DVN/SIWH9F UNF:3:Ji2Q+9HCCZAbw3csOdMNdA

subset,PreSandwichLayer-method

PreSandwichLayer and SandwichLayer subsetting

Description

Return subset of a PreSandwichLayer or SandwichLayer which meets conditions.

Usage

S4 method for signature 'PreSandwichLayer'
subset(x, subset)

S4 method for signature 'PreSandwichLayer'
x[i]

Arguments

x PreSandwichLayer or SandwichLayer object

subset Logical vector identifying values to keep or drop

i indices specifying elements to extract or replace. See help("[") for further
details.

Value

x subset by subset or i

https://doi.org/10.7910/DVN/SIWH9F

36 summary.StudySpecification

subset,WeightedStudySpecification-method

WeightedStudySpecification subsetting

Description

Provides functionality to subset the weights of a WeightedStudySpecification object.

Usage

S4 method for signature 'WeightedStudySpecification'
subset(x, subset)

S4 method for signature 'WeightedStudySpecification'
x[i]

Arguments

x WeightedStudySpecification object

subset Logical vector identifying values to keep or drop

i indices specifying elements to extract or replace. See help("[") for further
details.

Value

A WeightedStudySpecification object which is a subsetted version of x.

summary.StudySpecification

Summarizing StudySpecification objects

Description

summary() method for class StudySpecification.

Usage

S3 method for class 'StudySpecification'
summary(object, ..., treatment_binary = TRUE)

S3 method for class 'summary.StudySpecification'
print(x, ..., max_unit_print = 3)

summary.teeMod 37

Arguments

object StudySpecification object, usually a result of a call to rct_spec(), obs_spec(),
or rd_spec().

... Ignored
treatment_binary

Should the treatment be dichotomized if object contains a dichotomy? Ignored
if object does not contain a dichotomy.

x summary.StudySpecification object, usually as a result of a call to summary.StudySpecification()

max_unit_print Maximum number of treatment levels to print in treatment table

Value

The StudySpecification or summary.StudySpecificationobject, invisibly

summary.teeMod Summarizing teeMod objects

Description

summary() method for class teeMod

Usage

S3 method for class 'teeMod'
summary(object, vcov.type = "HC0", ...)

S3 method for class 'summary.teeMod'
print(
x,
digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"),
...

)

Arguments

object teeMod object

vcov.type A string indicating the desired variance estimator. See vcov_tee() for details
on accepted types.

... Additional arguments to vcov_tee(), such as the desired finite sample heteroskedasticity-
robust standard error adjustment.

x summary.teeMod object

digits the number of significant digits to use when printing.

signif.stars logical. If ‘TRUE’, ‘significance stars’ are printed for each coefficient.

38 treatment

Details

If a teeMod object is fit with a SandwichLayer offset, then the usual stats::summary.lm() output
is enhanced by the use of covariance-adjusted sandwich standard errors, with t-test values recalcu-
lated to reflect the new standard errors.

Value

object of class summary.teeMod

treatment Accessors and Replacers for StudySpecification objects

Description

Allows access to the elements which define a StudySpecification, enabling their extraction or
replacement.

Usage

treatment(x, newdata = NULL, dichotomy = NULL, by = NULL, ...)

S4 method for signature 'StudySpecification'
treatment(x, newdata = NULL, dichotomy = NULL, by = NULL, ...)

treatment(x) <- value

S4 replacement method for signature 'StudySpecification'
treatment(x) <- value

units_of_assignment(x, newdata = NULL, by = NULL)

S4 method for signature 'StudySpecification'
units_of_assignment(x, newdata = NULL, by = NULL)

units_of_assignment(x) <- value

S4 replacement method for signature 'StudySpecification'
units_of_assignment(x) <- value

clusters(x, newdata = NULL, by = NULL)

S4 method for signature 'StudySpecification'
clusters(x, newdata = NULL, by = NULL)

clusters(x) <- value

S4 replacement method for signature 'StudySpecification'

treatment 39

clusters(x) <- value

unitids(x)

S4 method for signature 'StudySpecification'
unitids(x)

unitids(x) <- value

S4 replacement method for signature 'StudySpecification'
unitids(x) <- value

blocks(x, newdata = NULL, by = NULL, ...)

S4 method for signature 'StudySpecification'
blocks(x, newdata = NULL, by = NULL, ..., implicit = FALSE)

blocks(x) <- value

S4 replacement method for signature 'StudySpecification'
blocks(x) <- value

has_blocks(x)

forcings(x, newdata = NULL, by = NULL)

S4 method for signature 'StudySpecification'
forcings(x, newdata = NULL, by = NULL)

forcings(x) <- value

S4 replacement method for signature 'StudySpecification'
forcings(x) <- value

Arguments

x a StudySpecification object

newdata optional; an additional data.frame. If passed, and the unit of assignment vari-
able is found in newdata, then the requested variable type for each unit of
newdata is returned. See by argument if the name of the unit of assignment
differs.

dichotomy optional; a formula specifying how to dichotomize a non-binary treatment vari-
able. See the Details section of the ett() or att() help pages for information
on specifying this formula

by optional; named vector or list connecting names of unit of assignment/unitid/cluster
variables in x to unit of assignment/unitid/cluster variables in data. Names rep-
resent variables in x; values represent variables in newdata. Only needed if
variable names differ.

40 treatment

... ignored.

value replacement. Either a vector/matrix of appropriate dimension, or a named
data.frame if renaming variable as well. See Details.

implicit Should a block-less StudySpecification return a constant 1 when extracting
blocks?

Details

For treatment(), when argument binary is FALSE, the treatment variable passed into the StudySpecification
is returned as a one-column data.frame regardless of whether it is binary or x has a dichotomy

If a dichotomy is passed, a binary one-column data.frame will be returned. If not and binary is
TRUE, unless the StudySpecification has a binary treatment, treatment() will error. If binary
is "ifany", it will return the original treatment in this case.

The one-column data.frame returned by treatment() is named as entered in the StudySpecification
creation, but if a dichotomy is passed, the column name is "__z" to try and avoid any name con-
flicts.

For the value when using replacers, the replacement must have the same number of rows as the
StudySpecification (the same number of units of assignment). The number of columns can differ
(e.g. if the StudySpecification were defined with two variable uniquely identifying blocks, you
can replace that with a single variable uniquely identifying blocks, as long as it respects other
restrictions.)

If the replacement value is a data.frame, the name of the columns is used as the new variable
names. If the replacement is a matrix or vector, the original names are retained. If reducing the
number of variables (e.g., moving from two variables uniquely identifying to a single variable),
the appropriate number of variable names are retained. If increasing the number of variables, a
data.frame with names must be provided.

Value

data.frame containing requested variable, or an updated StudySpecification. treatment()
works slightly differently, see Details.

Examples

data(simdata)
spec <- obs_spec(z ~ unit_of_assignment(uoa1, uoa2), data = simdata)
blocks(spec) # empty
blocks(spec) <- data.frame(blks = c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5))
blocks(spec)
blocks(spec) <- c(5, 5, 4, 4, 3, 3, 2, 2, 1, 1)
blocks(spec) # notice that variable is not renamed

unit_of_assignment 41

unit_of_assignment Special terms in StudySpecification creation formula

Description

These are special functions used only in the definition of StudySpecification objects. They
identify the units of assignment, blocks and forcing variables. They should never be used outside
of the formula argument to obs_spec, rct_spec, or rd_spec.

Usage

unit_of_assignment(...)

unitid(...)

cluster(...)

uoa(...)

block(...)

forcing(...)

Arguments

... any number of variables of the same length.

Details

These functions have no use outside of the formula in creating a StudySpecification.

unit_of_assignment, uoa, cluster and unitid are synonyms; you must include one and only
one in each StudySpecification. The choice of which to use will have no impact on any analysis,
only on some output and the name of the stored element in the StudySpecification. Accessors/
replacers (units_of_assignment, unitids, clusters) respect the choice made at the point of
creation of the StudySpecification, and only the appropriate function will work.

See rct_spec, obs_spec, or rd_spec for examples of their usage.

Value

the variables with appropriate labels. No use outside of their inclusion in the formula argument to
obs_spec, rct_spec, or rd_spec

42 var_table

var_table Extract Variable Names from StudySpecification

Description

Methods to extract the variable names to the elements of the structure of the StudySpecification
(e.g. treatment, unit of analysis, etc)

Usage

var_table(specification, compress = TRUE, report_all = FALSE)

var_names(specification, type, implicitBlocks = FALSE)

Arguments

specification a StudySpecification object

compress should multiple variables be compressed into a comma-separated string? De-
fault TRUE. If FALSE, multiple columns can be created instead.

report_all should we report all possible structures even if they don’t exist in the StudySpecification?
Default FALSE.

type one of "t", "u", "b", "f"; for "treatment", "unit_of_assignment", "block", and
"forcing" respectively

implicitBlocks If the StudySpecification is created without blocks, setting this to TRUE will
return ".blocks_internal" as the variable name corresponding to the blocks.

Details

When compress is TRUE, the result will always have two columns. When FALSE, the result will have
number of columns equal to the largest number of variables in a particular role, plus one. E.g., a
call such as rct_spec(z ~ unitid(a, b, c, d) ... will have 4+1=5 columns in the output matrix
with compress = FALSE.

When report_all is TRUE, the matrix is guaranteed to have 3 rows (when the specification
is an RCT or Obs) or 4 rows (when the specification is a RD), with empty variable entries
as appropriate. When FALSE, the matrix will have minimum 2 rows (treatment and unit of assign-
ment/unitid/cluster), with additional rows for blocks and forcing if included in the StudySpecification.

Value

var_table returns the requested table. var_names returns a vector of variable names.

vcov.teeMod 43

Examples

spec <- rct_spec(z ~ uoa(uoa1, uoa2) + block(bid), data = simdata)
var_table(spec)
var_table(spec, compress = FALSE)
var_names(spec, "t")
var_names(spec, "u")
var_names(spec, "b")

vcov.teeMod Compute variance-covariance matrix for fitted teeMod model

Description

An S3method for stats::vcov that computes standard errors for teeMod models using vcov_tee().

Usage

S3 method for class 'teeMod'
vcov(object, ...)

Arguments

object a fitted teeMod model

... additional arguments to vcov_tee().

Details

vcov.teeMod() wraps around vcov_tee(), so additional arguments passed to ... will be passed
to the vcov_tee() call. See documentation for vcov_tee() for information about necessary argu-
ments.

Value

A variance-covariance matrix with row and column entries for the estimated coefficients in x, the
marginal mean outcome in the control condition, the marginal mean offset in the control condition
(if an offset is provided), and if a moderator variable is specified in the formula for x, the mean
interaction in the control condition of the outcome and offset with the moderator variable

44 weights,WeightedStudySpecification-method

weights,WeightedStudySpecification-method

Extract Weights from WeightedStudySpecification

Description

A WeightedStudySpecification object contains a numeric vector with a few additional slots, this
extracts only the numeric vector.

Usage

S4 method for signature 'WeightedStudySpecification'
weights(object, ...)

Arguments

object a WeightedStudySpecification object

... Ignored

Value

A numeric vector of the weights

Index

∗ datasets
schooldata, 27

∗ dataset
GV_data, 18
lsoSynth, 23
michigan_school_pairs, 24
schooldata, 27
simdata, 30
STARplus, 33

*,WeightedStudySpecification,numeric-method
(+,WeightedStudySpecification,numeric-method),
3

*,numeric,WeightedStudySpecification-method
(+,WeightedStudySpecification,numeric-method),
3

+,WeightedStudySpecification,numeric-method,
3

+,numeric,WeightedStudySpecification-method
(+,WeightedStudySpecification,numeric-method),
3

-,WeightedStudySpecification,numeric-method
(+,WeightedStudySpecification,numeric-method),
3

-,numeric,WeightedStudySpecification-method
(+,WeightedStudySpecification,numeric-method),
3

/,WeightedStudySpecification,numeric-method
(+,WeightedStudySpecification,numeric-method),
3

/,numeric,WeightedStudySpecification-method
(+,WeightedStudySpecification,numeric-method),
3

[,PreSandwichLayer-method
(subset,PreSandwichLayer-method),
35

[,WeightedStudySpecification-method
(subset,WeightedStudySpecification-method),
36

a. (assigned), 6

adopters (assigned), 6
as.lmitt, 4
as.SandwichLayer, 5
as.teeMod (as.lmitt), 4
as_obs_spec (as_rct_spec), 7
as_rct_spec, 7
as_rd_spec (as_rct_spec), 7
assigned, 6
assigned(), 5, 6, 21
atc (ett), 15
atc(), 21
ate (ett), 15
ate(), 9, 21, 26
ato (ett), 15
ato(), 21
att (ett), 15
att(), 21

block (unit_of_assignment), 41
block(), 26
blocks (treatment), 38
blocks,StudySpecification-method

(treatment), 38
blocks<- (treatment), 38
blocks<-,StudySpecification-method

(treatment), 38
bread.glmrob (estfun.glmrob), 12
bread.lmrob (estfun.lmrob), 13
bread.teeMod, 8

c(), 9
c,WeightedStudySpecification-method, 9
cluster (unit_of_assignment), 41
cluster(), 21
clusters (treatment), 38
clusters,StudySpecification-method

(treatment), 38
clusters<- (treatment), 38
clusters<-,StudySpecification-method

(treatment), 38

45

46 INDEX

Comparison, 16
confint.teeMod, 10
cov_adj, 11
cov_adj(), 4, 5, 21

estfun.glmrob, 12
estfun.lmrob, 13
estfun.teeMod, 14
etc (ett), 15
ett, 15
ett(), 9, 26

forcing (unit_of_assignment), 41
forcing(), 21, 26
forcings (treatment), 38
forcings,StudySpecification-method

(treatment), 38
forcings<- (treatment), 38
forcings<-,StudySpecification-method

(treatment), 38

get_structure, 17
GV_data, 18

has_binary_treatment, 19
has_blocks (treatment), 38

identical_StudySpecifications, 19
identify_small_blocks, 20

lm(), 4, 6, 16, 21
lmitt, 20
lmitt(), 5, 6, 16, 21, 22, 29
Logic, 16
lsoSynth, 23

match(), 16
michigan_school_pairs, 24

obs_spec (rct_spec), 25
obs_spec(), 21, 25, 28, 37
obs_specification (rct_spec), 25
obsstudy_spec (rct_spec), 25
obsstudy_specification (rct_spec), 25
olw (ett), 15
owt (ett), 15

print.summary.StudySpecification
(summary.StudySpecification),
36

print.summary.teeMod (summary.teeMod),
37

pwt (ett), 15

rct_spec, 25
rct_spec(), 21, 25, 28, 37
rct_specification (rct_spec), 25
rd_spec (rct_spec), 25
rd_spec(), 21, 25, 28, 37
rd_specification (rct_spec), 25

schooldata, 27
show,PreSandwichLayer-method, 28
show,StudySpecification-method, 28
show,StudySpecificationStructure-method

(get_structure), 17
show,teeMod-method, 29
show,WeightedStudySpecification-method,

29
simdata, 30
specification_data_concordance, 30
specification_data_concordance(), 31
specification_table, 31
stable (specification_table), 31
STARplus, 33
studentdata (schooldata), 27
subset,PreSandwichLayer-method, 35
subset,WeightedStudySpecification-method,

36
summary(), 36, 37
summary.StudySpecification, 36
summary.StudySpecification(), 37
summary.teeMod, 37

table(), 32
treatment, 38
treatment(), 7, 40
treatment,StudySpecification-method

(treatment), 38
treatment<- (treatment), 38
treatment<-,StudySpecification-method

(treatment), 38

unit_of_assignment, 41
unit_of_assignment(), 21, 26
unitid (unit_of_assignment), 41
unitids (treatment), 38
unitids,StudySpecification-method

(treatment), 38

INDEX 47

unitids<- (treatment), 38
unitids<-,StudySpecification-method

(treatment), 38
units_of_assignment (treatment), 38
units_of_assignment,StudySpecification-method

(treatment), 38
units_of_assignment<- (treatment), 38
units_of_assignment<-,StudySpecification-method

(treatment), 38
uoa (unit_of_assignment), 41
uoa(), 21

var_names (var_table), 42
var_table, 42
vcov.teeMod, 43
vcov_tee(), 37

weights,WeightedStudySpecification-method,
44

z. (assigned), 6

	+,WeightedStudySpecification,numeric-method
	as.lmitt
	as.SandwichLayer
	assigned
	as_rct_spec
	bread.teeMod
	c,WeightedStudySpecification-method
	confint.teeMod
	cov_adj
	estfun.glmrob
	estfun.lmrob
	estfun.teeMod
	ett
	get_structure
	GV_data
	has_binary_treatment
	identical_StudySpecifications
	identify_small_blocks
	lmitt
	lsoSynth
	michigan_school_pairs
	rct_spec
	schooldata
	show,PreSandwichLayer-method
	show,StudySpecification-method
	show,teeMod-method
	show,WeightedStudySpecification-method
	simdata
	specification_data_concordance
	specification_table
	STARplus
	subset,PreSandwichLayer-method
	subset,WeightedStudySpecification-method
	summary.StudySpecification
	summary.teeMod
	treatment
	unit_of_assignment
	var_table
	vcov.teeMod
	weights,WeightedStudySpecification-method
	Index

