data("dataMaleGammarusSingle")
# work only when replicate have the same length !!!
data_MGS <- dataMaleGammarusSingle[dataMaleGammarusSingle$replicate == 1,]
modelData_MGS <- dataPBK(
object = data_MGS,
col_time = "time",
col_replicate = "replicate",
col_exposure = "expw",
col_compartment = "conc",
time_accumulation = 4,
nested_model = NA)
fitPBK_MGS <- fitPBK(modelData_MGS)
#>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 5e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.5 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.476 seconds (Warm-up)
#> Chain 1: 0.298 seconds (Sampling)
#> Chain 1: 0.774 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 6.1e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.61 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 1.283 seconds (Warm-up)
#> Chain 2: 0.528 seconds (Sampling)
#> Chain 2: 1.811 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 3).
#> Chain 3:
#> Chain 3: Gradient evaluation took 4.4e-05 seconds
#> Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.44 seconds.
#> Chain 3: Adjust your expectations accordingly!
#> Chain 3:
#> Chain 3:
#> Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 3:
#> Chain 3: Elapsed Time: 0.521 seconds (Warm-up)
#> Chain 3: 0.517 seconds (Sampling)
#> Chain 3: 1.038 seconds (Total)
#> Chain 3:
#>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 4).
#> Chain 4:
#> Chain 4: Gradient evaluation took 4.5e-05 seconds
#> Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.45 seconds.
#> Chain 4: Adjust your expectations accordingly!
#> Chain 4:
#> Chain 4:
#> Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
#> Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
#> Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
#> Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
#> Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
#> Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
#> Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
#> Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
#> Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
#> Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
#> Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
#> Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
#> Chain 4:
#> Chain 4: Elapsed Time: 0.696 seconds (Warm-up)
#> Chain 4: 0.245 seconds (Sampling)
#> Chain 4: 0.941 seconds (Total)
#> Chain 4:
#> Warning: There were 2610 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
library(loo)
#> This is loo version 2.8.0
#> - Online documentation and vignettes at mc-stan.org/loo
#> - As of v2.0.0 loo defaults to 1 core but we recommend using as many as possible. Use the 'cores' argument or set options(mc.cores = NUM_CORES) for an entire session.
log_lik_MGS <- loo::extract_log_lik(fitPBK_MGS$stanfit, merge_chains = FALSE)
WAIC_MGS <- waic(log_lik_MGS)
#> Warning:
#> 1 (12.5%) p_waic estimates greater than 0.4. We recommend trying loo instead.
modelData_C4 <- dataPBK(
object = data_C4,
col_time = "temps",
col_replicate = "replicat",
col_exposure = "condition",
col_compartment = c("intestin", "reste", "caecum", "cephalon"),
time_accumulation = 7)
You can have a look at the assumption on the interaction
nested_model(modelData_C4)
#> $ku_nest
#> uptake intestin uptake reste uptake caecum uptake cephalon
#> 1 1 1 1
#>
#> $ke_nest
#> excretion intestin excretion reste excretion caecum excretion cephalon
#> 1 1 1 1
#>
#> $k_nest
#> intestin reste caecum cephalon
#> intestin 0 1 1 1
#> reste 1 0 1 1
#> caecum 1 1 0 1
#> cephalon 1 1 1 0
fitPBK_C4 <- fitPBK(modelData_C4, chains = 1, iter = 1000)
#>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000511 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 5.11 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 1: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 1: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 1: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 1: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 1: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 1: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 1: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 1: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 1: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 1: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 1: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 13.579 seconds (Warm-up)
#> Chain 1: 20.322 seconds (Sampling)
#> Chain 1: 33.901 seconds (Total)
#> Chain 1:
#> Warning: There were 500 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is NA, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
Compute WAIC with loo
library:
library(loo)
log_lik_C4 <- loo::extract_log_lik(fitPBK_C4$stanfit, merge_chains = FALSE)
WAIC_C4 <- waic(log_lik_C4)
#> Warning:
#> 7 (8.3%) p_waic estimates greater than 0.4. We recommend trying loo instead.
print(WAIC_C4)
#>
#> Computed from 500 by 84 log-likelihood matrix.
#>
#> Estimate SE
#> elpd_waic -239.0 18.6
#> p_waic 9.2 1.8
#> waic 477.9 37.1
#>
#> 7 (8.3%) p_waic estimates greater than 0.4. We recommend trying loo instead.
Compute LOO:
r_eff_C4 <- relative_eff(exp(log_lik_C4))
LOO_C4 <- loo(log_lik_C4, r_eff = r_eff_C4, cores = 2)
print(LOO_C4)
#>
#> Computed from 500 by 84 log-likelihood matrix.
#>
#> Estimate SE
#> elpd_loo -239.1 18.5
#> p_loo 9.3 1.8
#> looic 478.1 37.1
#> ------
#> MCSE of elpd_loo is 0.7.
#> MCSE and ESS estimates assume MCMC draws (r_eff in [0.0, 0.4]).
#>
#> All Pareto k estimates are good (k < 0.63).
#> See help('pareto-k-diagnostic') for details.
You can have a look at the assumption on the interaction
We want to change the interaction between organs. For now, all organs interact with each other but not with themselve, the the interaction matrix look like:
nm_C4$k_nest
#> intestin reste caecum cephalon
#> intestin 0 1 1 1
#> reste 1 0 1 1
#> caecum 1 1 0 1
#> cephalon 1 1 1 0
which can be written like:
matrix(c(
c(0,1,1,1),
c(1,0,1,1),
c(1,1,0,0),
c(1,1,1,0)),
ncol=4,nrow=4,byrow=TRUE)
#> [,1] [,2] [,3] [,4]
#> [1,] 0 1 1 1
#> [2,] 1 0 1 1
#> [3,] 1 1 0 0
#> [4,] 1 1 1 0
Let assume interaction are only one way, so a triangular matrix:
matrix(c(
c(0,1,1,1),
c(0,0,1,1),
c(0,0,0,0),
c(0,0,0,0)),
ncol=4,nrow=4,byrow=TRUE)
#> [,1] [,2] [,3] [,4]
#> [1,] 0 1 1 1
#> [2,] 0 0 1 1
#> [3,] 0 0 0 0
#> [4,] 0 0 0 0
modelData_C42 <- dataPBK(
object = data_C4,
col_time = "temps",
col_replicate = "replicat",
col_exposure = "condition",
col_compartment = c("intestin", "reste", "caecum", "cephalon"),
time_accumulation = 7,
ku_nest = c(1,1,1,1), # No Change here
ke_nest = c(1,1,1,1), # No Change here
k_nest = matrix(c(
c(0,1,1,1),
c(0,0,1,1),
c(0,0,0,0),
c(0,0,0,0)),
ncol=4,nrow=4,byrow=TRUE) # Remove
)
nested_model(modelData_C42)
#> $ku_nest
#> uptake intestin uptake reste uptake caecum uptake cephalon
#> 1 1 1 1
#>
#> $ke_nest
#> excretion intestin excretion reste excretion caecum excretion cephalon
#> 1 1 1 1
#>
#> $k_nest
#> intestin reste caecum cephalon
#> intestin 0 1 1 1
#> reste 0 0 1 1
#> caecum 0 0 0 0
#> cephalon 0 0 0 0
fitPBK_C42 <- fitPBK(modelData_C42, chains = 1, iter = 1000)
#>
#> SAMPLING FOR MODEL 'PBK_AD' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000605 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 6.05 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 1: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 1: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 1: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 1: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 1: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 1: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 1: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 1: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 1: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 1: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 1: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 6.324 seconds (Warm-up)
#> Chain 1: 2.804 seconds (Sampling)
#> Chain 1: 9.128 seconds (Total)
#> Chain 1:
#> Warning: There were 482 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: There were 1 chains where the estimated Bayesian Fraction of Missing Information was low. See
#> https://mc-stan.org/misc/warnings.html#bfmi-low
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is NA, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
log_lik_C42 <- loo::extract_log_lik(fitPBK_C42$stanfit, merge_chains = FALSE)
WAIC_C42 <- waic(log_lik_C42)
#> Warning:
#> 16 (19.0%) p_waic estimates greater than 0.4. We recommend trying loo instead.
print(WAIC_C42)
#>
#> Computed from 500 by 84 log-likelihood matrix.
#>
#> Estimate SE
#> elpd_waic -262.4 14.4
#> p_waic 17.2 1.9
#> waic 524.8 28.7
#>
#> 16 (19.0%) p_waic estimates greater than 0.4. We recommend trying loo instead.
Compare WAIC with previous model
comp_C4_C42 <- loo_compare(WAIC_C4, WAIC_C42)
print(comp_C4_C42)
#> elpd_diff se_diff
#> model1 0.0 0.0
#> model2 -23.4 6.3
The first column shows the difference in ELPD relative to the model with the largest ELPD. In this case, the difference in elpd and its scale relative to the approximate standard error of the difference) indicates a preference for the second model (model2).