
Package ‘rbmiUtils’
February 16, 2026

Title Utility Functions to Support and Extend the 'rbmi' Package

Version 0.3.0

Date 2026-02-14

Maintainer Mark Baillie <bailliem@gmail.com>

Description Provides utility functions that extend the capabilities of the
reference-based multiple imputation package 'rbmi'. It supports clinical
trial analysis workflows with functions for managing imputed datasets,
applying analysis methods across imputations, and tidying results for
reporting.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Suggests cards, ggplot2, gt, knitr, patchwork, readr, rmarkdown,
rstan, spelling, testthat (>= 3.0.0), tibble

Config/testthat/edition 3

Language en-US

Imports assertthat, beeca, cli (>= 3.6.0), dplyr, lifecycle (>=
1.0.4), purrr, rbmi (>= 1.4), rlang, tidyr

VignetteBuilder knitr

Depends R (>= 4.1)

LazyData true

URL https://github.com/openpharma/rbmiUtils

BugReports https://github.com/openpharma/rbmiUtils/issues

NeedsCompilation no

Author Mark Baillie [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-5618-0667>),

Tobias Muetze [aut] (ORCID: <https://orcid.org/0000-0002-4111-1941>),
Jack Talboys [aut],
Lukas A. Widmer [ctb] (ORCID: <https://orcid.org/0000-0003-1471-3493>)

Repository CRAN

Date/Publication 2026-02-16 21:40:02 UTC

1

https://github.com/openpharma/rbmiUtils
https://github.com/openpharma/rbmiUtils/issues
https://orcid.org/0000-0002-5618-0667
https://orcid.org/0000-0002-4111-1941
https://orcid.org/0000-0003-1471-3493

2 ADEFF

Contents
ADEFF . 2
ADMI . 3
analyse_mi_data . 4
combine_results . 6
create_impid . 7
describe_draws . 8
describe_imputation . 10
efficacy_table . 11
expand_imputed_data . 14
extract_lsm . 15
extract_trt_effects . 16
format_estimate . 17
format_pvalue . 18
format_results . 19
format_results_table . 20
gcomp_binary . 21
gcomp_responder . 23
gcomp_responder_multi . 24
get_imputed_data . 26
plot_forest . 27
pool_to_ard . 29
prepare_data_ice . 31
print.analysis . 33
print.describe_draws . 34
print.describe_imputation . 34
print.pool . 35
reduce_imputed_data . 36
summarise_missingness . 38
summary.analysis . 39
summary.pool . 40
tidy_pool_obj . 41
validate_data . 43

Index 46

ADEFF Example efficacy trial dataset

Description

A simplified example of a simulated trial dataset, with missing data.

Usage

ADEFF

ADMI 3

Format

ADEFF A data frame with 1,000 rows and 10 columns:

USUBJID Unique subject identifier

AVAL Primary outcome variable

TRT01P Planned treatment

STRATA Stratification at randomisation

REGION Stratification by region

REGIONC Stratification by region, numeric code

BASE Baseline value of primary outcome variable

CHG Change from baseline

AVISIT Visit number

PARAM Analysis parameter name

ADMI Example multiple imputation trial dataset

Description

A simplified example of a simulated trial ADMI dataset

Usage

ADMI

Format

ADMI A data frame with 100,000 rows and 12 columns:

USUBJID Unique patient identifier

STRATA Stratification at randomisation

REGION Stratification by region

REGIONC Stratification by region, numeric code

TRT Planned treatment

BASE Baseline value of primary outcome variable

CHG Change from baseline

AVISIT Visit number

IMPID Imputation number identifier

CRIT1FLN Responder criteria (binary)

CRIT1FL Responder criteria (categorical)

CRIT Responder criteria (definition)

4 analyse_mi_data

analyse_mi_data Apply Analysis Function to Multiple Imputed Datasets

Description

This function applies an analysis function (e.g., ANCOVA) to imputed datasets and stores the results
for later pooling. It is designed to work with multiple imputed datasets and apply a given analysis
function to each imputation iteration.

Usage

analyse_mi_data(
data = NULL,
vars = NULL,
method = NULL,
fun = rbmi::ancova,
delta = NULL,
...

)

Arguments

data A data frame containing the imputed datasets. The data frame should include
a variable (e.g., IMPID) that identifies distinct imputation iterations. Typically
obtained from get_imputed_data() or expand_imputed_data().

vars A list specifying key variables used in the analysis (e.g., subjid, visit, group,
outcome). Created using rbmi::set_vars(). Required.

method A method object specifying the imputation method used (e.g., Bayesian imputa-
tion). Created using rbmi::method_bayes(), rbmi::method_approxbayes(),
or rbmi::method_condmean(). Required.

fun A function that will be applied to each imputed dataset. Defaults to rbmi::ancova.
Other options include gcomp_responder_multi() for binary outcomes. Must
be a valid analysis function.

delta A data.frame used for delta adjustments, or NULL if no delta adjustments are
needed. Defaults to NULL. Must contain columns matching vars$subjid, vars$visit,
vars$group, and a delta column.

... Additional arguments passed to the analysis function fun.

Details

The function loops through distinct imputation datasets (identified by IMPID), applies the provided
analysis function fun, and stores the results for later pooling. If a delta dataset is provided, it will
be merged with the imputed data to apply the specified delta adjustment before analysis.

Workflow:

1. Prepare imputed data using get_imputed_data() or expand_imputed_data()

analyse_mi_data 5

2. Define variables using rbmi::set_vars()

3. Call analyse_mi_data() to apply analysis to each imputation

4. Pool results using rbmi::pool()

5. Tidy results using tidy_pool_obj()

Value

An object of class analysis containing the results from applying the analysis function to each
imputed dataset. Pass this to rbmi::pool() to obtain pooled estimates.

See Also

• rbmi::analyse() which this function wraps

• rbmi::pool() for pooling the analysis results

• The rbmi quickstart vignette

• tidy_pool_obj() to format pooled results for publication

• get_imputed_data() to extract imputed datasets from rbmi objects

• expand_imputed_data() to reconstruct full imputed data from reduced form

• gcomp_responder_multi() for binary outcome analysis

• validate_data() to check data before imputation

Examples

Example usage with an ANCOVA function
library(dplyr)
library(rbmi)
library(rbmiUtils)
set.seed(123)
data("ADMI")

Convert key columns to factors
ADMI$TRT <- factor(ADMI$TRT, levels = c("Placebo", "Drug A"))
ADMI$USUBJID <- factor(ADMI$USUBJID)
ADMI$AVISIT <- factor(ADMI$AVISIT)

Define key variables for ANCOVA analysis
vars <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CHG",
covariates = c("BASE", "STRATA", "REGION") # Covariates for adjustment
)

Specify the imputation method (Bayesian) - need for pool step
method <- rbmi::method_bayes(
n_samples = 20,
control = rbmi::control_bayes(

https://CRAN.R-project.org/package=rbmi/vignettes/quickstart.html

6 combine_results

warmup = 20,
thin = 1
)

)

Perform ANCOVA Analysis on Each Imputed Dataset
ana_obj_ancova <- analyse_mi_data(

data = ADMI,
vars = vars,
method = method,
fun = ancova, # Apply ANCOVA
delta = NULL # No sensitivity analysis adjustment

)

combine_results Combine Results Across Multiple Analyses

Description

Combines tidy result tibbles from multiple analyses (e.g., different endpoints or subgroups) into a
single table with an identifying column.

Usage

combine_results(..., results_list = NULL, id_col = "analysis")

Arguments

... Named arguments where each is a tidy result tibble from tidy_pool_obj().

results_list Alternative to ...: a named list of tidy result tibbles.

id_col Character string specifying the name of the identifier column. Default is "anal-
ysis".

Value

A tibble with all results combined, with an additional column identifying the source analysis.

See Also

• tidy_pool_obj() to create tidy results from pooled objects

• format_results() to format combined results for reporting

create_impid 7

Examples

library(rbmi)
library(dplyr)

Assuming you have multiple pooled results
results_week24 <- tidy_pool_obj(pool_obj_week24)
results_week48 <- tidy_pool_obj(pool_obj_week48)

Combine them
combined <- combine_results(
"Week 24" = results_week24,
"Week 48" = results_week48
)

create_impid Create IMPID Column for Imputed Datasets

Description

Adds an IMPID column to a list of imputed datasets, converting them to a single stacked data.frame
suitable for use with analyse_mi_data().

Usage

create_impid(imputed_list, id_prefix = "")

Arguments

imputed_list A list of data.frames, where each element represents one imputed dataset.

id_prefix Optional character prefix for IMPID values. Default is empty string.

Details

This function is useful when you have imputed datasets from a source other than rbmi (e.g., from
mice or another MI package) and want to use them with rbmiUtils analysis functions.

Value

A single data.frame with all imputed datasets stacked, with an IMPID column identifying the source
imputation.

See Also

• get_imputed_data() to extract imputed data from rbmi objects

• analyse_mi_data() to analyse stacked imputed data

8 describe_draws

Examples

Create example imputed datasets
imp1 <- data.frame(USUBJID = c("S1", "S2"), CHG = c(1.5, 2.5))
imp2 <- data.frame(USUBJID = c("S1", "S2"), CHG = c(1.8, 2.2))
imp3 <- data.frame(USUBJID = c("S1", "S2"), CHG = c(1.6, 2.4))

Stack with IMPID
stacked <- create_impid(list(imp1, imp2, imp3))
print(stacked)

describe_draws Describe an rbmi Draws Object

Description

Extracts structured metadata from an rbmi draws object, including method, formula, sample count,
failures, covariance structure, and (for Bayesian methods) MCMC convergence diagnostics. Re-
turns an S3 object with an informative print() method.

Usage

describe_draws(draws_obj)

Arguments

draws_obj A draws object returned by rbmi::draws().

Details

For conditional mean methods, the sample count is displayed as "1 + N" matching the rbmi con-
vention where the first sample is the primary (full-data) fit and the remaining N are jackknife or
bootstrap resamples.

For Bayesian methods, MCMC convergence diagnostics (ESS, Rhat) are extracted from the stanfit
object when rstan is available. The converged flag uses the Rhat < 1.1 threshold matching rbmi’s
own convention.

Value

An S3 object of class c("describe_draws", "list") containing:

method Human-readable method name (e.g., "Bayesian (MCMC via Stan)")

method_class Raw class name: "bayes", "approxbayes", or "condmean"

n_samples Total number of samples

n_failures Number of failed samples

formula Deparsed model formula string

describe_draws 9

covariance Covariance structure (e.g., "us")
same_cov Logical; whether same covariance is used across groups
condmean_type (condmean only) "jackknife" or "bootstrap"
n_primary (condmean only) Always 1
n_resampled (condmean only) Number of resampled draws
bayes_control (bayes only) List with warmup, thin, chains, seed
mcmc (bayes with stanfit only) List with rhat, ess, max_rhat, min_ess, n_params, converged

See Also

• rbmi::draws() to create draws objects
• rbmi::method_condmean(), rbmi::method_bayes(), rbmi::method_approxbayes() for

method specification

Examples

Not run:
library(rbmi)
library(dplyr)
data("ADEFF", package = "rbmiUtils")

Prepare ADEFF data for rbmi pipeline
ADEFF <- ADEFF |>

mutate(
TRT = factor(TRT01P, levels = c("Placebo", "Drug A")),
USUBJID = factor(USUBJID),
AVISIT = factor(AVISIT, levels = c("Week 24", "Week 48"))

)

vars <- set_vars(
subjid = "USUBJID", visit = "AVISIT", group = "TRT",
outcome = "CHG", covariates = c("BASE", "STRATA", "REGION")

)
dat <- ADEFF |> select(USUBJID, STRATA, REGION, TRT, BASE, CHG, AVISIT)
draws_obj <- draws(

data = dat, vars = vars,
method = method_bayes(n_samples = 100)

)

Inspect the draws object
desc <- describe_draws(draws_obj)
print(desc)

Programmatic access to metadata
desc$method
desc$n_samples
desc$formula

End(Not run)

10 describe_imputation

describe_imputation Describe an rbmi Imputation Object

Description

Extracts structured metadata from an rbmi imputation object, including method, number of im-
putations (M), reference arm mappings, subject count, and a missingness breakdown by visit and
treatment arm. Returns an S3 object with an informative print() method.

Usage

describe_imputation(impute_obj)

Arguments

impute_obj An imputation object returned by rbmi::impute().

Details

The missingness table is built by cross-tabulating impute_obj$data$is_missing by visit and
treatment group. Each row shows the total number of subjects in that group, how many had missing
data at that visit, and the percentage missing.

Value

An S3 object of class c("describe_imputation", "list") containing:

method Human-readable method name (e.g., "Bayesian (MCMC via Stan)")

method_class Raw class name: "bayes", "approxbayes", or "condmean"

n_imputations Number of imputations (M)

references Named character vector of reference arm mappings, or NULL

n_subjects Total number of unique subjects

visits Character vector of visit names

missingness A data.frame with columns: visit, group, n_total, n_miss, pct_miss

See Also

• rbmi::impute() to create imputation objects

• describe_draws() for inspecting draws objects

efficacy_table 11

Examples

Not run:
library(rbmi)
library(dplyr)
data("ADEFF", package = "rbmiUtils")

ADEFF <- ADEFF |>
mutate(
TRT = factor(TRT01P, levels = c("Placebo", "Drug A")),
USUBJID = factor(USUBJID),
AVISIT = factor(AVISIT, levels = c("Week 24", "Week 48"))

)

vars <- set_vars(
subjid = "USUBJID", visit = "AVISIT", group = "TRT",
outcome = "CHG", covariates = c("BASE", "STRATA", "REGION")

)
dat <- ADEFF |> select(USUBJID, STRATA, REGION, TRT, BASE, CHG, AVISIT)
draws_obj <- draws(

data = dat, vars = vars,
method = method_bayes(n_samples = 100)

)
impute_obj <- impute(

draws_obj,
references = c("Placebo" = "Placebo", "Drug A" = "Placebo")

)

Inspect the imputation
desc <- describe_imputation(impute_obj)
print(desc)

Programmatic access
desc$n_imputations
desc$missingness
desc$references

End(Not run)

efficacy_table Create Regulatory-Style Efficacy Summary Table

Description

Takes an rbmi pool object and produces a publication-ready gt table in the style of CDISC/ICH
Table 14.2.x. The table displays least squares means by treatment arm, treatment differences, con-
fidence intervals, and p-values, organized by visit row groups.

12 efficacy_table

Usage

efficacy_table(
pool_obj,
title = NULL,
subtitle = NULL,
digits = 2,
ci_level = NULL,
arm_labels = NULL,
pval_digits = 3,
pval_threshold = 0.001,
font_family = NULL,
font_size = NULL,
row_padding = NULL,
...

)

Arguments

pool_obj A pooled analysis object of class "pool", typically obtained from rbmi::pool()
after calling analyse_mi_data().

title Optional character string for the table title.
subtitle Optional character string for the table subtitle.
digits Integer. Number of decimal places for estimates and standard errors. Default is

2.
ci_level Numeric. Confidence level for CI column labeling. If NULL (the default), ex-

tracted from pool_obj$conf.level. Falls back to 0.95 if neither is available.
arm_labels Named character vector with elements "ref" and "alt" providing custom la-

bels for the reference and treatment arms. If NULL (the default), uses "Reference"
and "Treatment".

pval_digits Integer. Number of decimal places for p-values. Default is 3.
pval_threshold Numeric. P-values below this threshold are displayed as "< threshold". Default

is 0.001.
font_family Optional character string specifying the font family for the table. When NULL

(default), uses gt’s default font. Applied via gt::opt_table_font().
font_size Optional numeric value specifying the table font size in pixels. When NULL

(default), uses gt’s default size. Applied via gt::tab_options().
row_padding Optional numeric value specifying the vertical padding for data rows in pixels.

When NULL (default), uses gt’s default padding. Smaller values (e.g., 2-3) create
compact regulatory-style tables.

... Additional arguments passed to gt::gt().

Details

This function assumes a single-parameter-per-visit pool object (the standard output from an rbmi
ANCOVA or MMRM pipeline). It internally calls tidy_pool_obj() to parse the pool object, then
constructs the gt table.

efficacy_table 13

Arm labels: Use the arm_labels parameter to customize arm names in the table. For example,
arm_labels = c(ref = "Placebo", alt = "Drug A") will display "LS Mean (Placebo)" and "LS
Mean (Drug A)" instead of the defaults.

Customization: The returned gt object can be further customized using standard gt piping, e.g.,
efficacy_table(pool_obj) |> gt::tab_options(...).

Example output:

Value

A gt table object of class gt_tbl.

See Also

• tidy_pool_obj() for the underlying data transformation

• format_pvalue() for p-value formatting rules

• rbmi::pool() to create pool objects

Examples

if (requireNamespace("gt", quietly = TRUE)) {
library(rbmi)
data("ADMI", package = "rbmiUtils")
ADMI$TRT <- factor(ADMI$TRT, levels = c("Placebo", "Drug A"))
ADMI$USUBJID <- factor(ADMI$USUBJID)
ADMI$AVISIT <- factor(ADMI$AVISIT)

vars <- set_vars(
subjid = "USUBJID", visit = "AVISIT", group = "TRT",
outcome = "CHG", covariates = c("BASE", "STRATA", "REGION")

)
method <- method_bayes(

n_samples = 20,
control = control_bayes(warmup = 20, thin = 1)

)

ana_obj <- analyse_mi_data(ADMI, vars, method, fun = ancova)
pool_obj <- pool(ana_obj)

Basic table
tbl <- efficacy_table(pool_obj)

Publication-styled table
efficacy_table(

pool_obj,
title = "Table 14.2.1: ANCOVA of Change from Baseline",
subtitle = "Mixed Model for Repeated Measures",
arm_labels = c(ref = "Placebo", alt = "Drug A"),
font_size = 12,
row_padding = 4

)
}

14 expand_imputed_data

expand_imputed_data Expand Reduced Imputed Data to Full Dataset

Description

Reconstructs the full imputed dataset from a reduced form by merging imputed values back with
the original observed data. This is the inverse operation of reduce_imputed_data().

Usage

expand_imputed_data(reduced_data, original_data, vars)

Arguments

reduced_data A data.frame containing only the imputed values, as returned by reduce_imputed_data().

original_data A data.frame containing the original dataset before imputation, with missing
values in the outcome column.

vars A vars object as created by rbmi::set_vars().

Details

For each imputation (identified by IMPID), this function:

1. Starts with the original data (observed values)

2. Replaces missing outcome values with the corresponding imputed values

3. Stacks all imputations together

Value

A data.frame containing the full imputed dataset with one complete dataset per IMPID value. The
structure matches the output of get_imputed_data().

See Also

• rbmi::impute() which creates the imputed datasets this function operates on

• reduce_imputed_data() to create the reduced dataset

• get_imputed_data() to extract imputed data from an rbmi imputation object

extract_lsm 15

Examples

library(rbmi)
library(dplyr)

Example with package data
data("ADMI", package = "rbmiUtils")
data("ADEFF", package = "rbmiUtils")

Prepare original data to match ADMI structure
original <- ADEFF |>

mutate(
TRT = TRT01P,
USUBJID = as.character(USUBJID)

)

vars <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CHG"

)

Reduce and then expand
reduced <- reduce_imputed_data(ADMI, original, vars)
expanded <- expand_imputed_data(reduced, original, vars)

Verify expansion
cat("Original ADMI rows:", nrow(ADMI), "\n")
cat("Expanded rows:", nrow(expanded), "\n")

extract_lsm Extract Least Squares Means

Description

Convenience function to extract only least squares mean estimates from tidy results.

Usage

extract_lsm(results, visit = NULL, arm = NULL)

Arguments

results A tibble from tidy_pool_obj().

visit Optional character vector of visits to filter. If NULL (default), returns results for
all visits.

arm Optional character: "ref" for reference arm, "alt" for alternative arm, or NULL
(default) for both.

16 extract_trt_effects

Value

A tibble containing only LSM rows.

See Also

• tidy_pool_obj() to create tidy results

• extract_trt_effects() to extract treatment effects

Examples

library(rbmi)

Assuming you have a tidy result
tidy_result <- tidy_pool_obj(pool_obj)
all_lsm <- extract_lsm(tidy_result)
ref_lsm <- extract_lsm(tidy_result, arm = "ref")

extract_trt_effects Extract Treatment Effect Estimates

Description

Convenience function to extract only treatment comparison estimates from tidy results, filtering out
least squares means.

Usage

extract_trt_effects(results, visit = NULL)

Arguments

results A tibble from tidy_pool_obj().

visit Optional character vector of visits to filter. If NULL (default), returns results for
all visits.

Value

A tibble containing only treatment effect rows.

See Also

• tidy_pool_obj() to create tidy results

• extract_lsm() to extract least squares means

format_estimate 17

Examples

library(rbmi)

Assuming you have a tidy result
tidy_result <- tidy_pool_obj(pool_obj)
trt_effects <- extract_trt_effects(tidy_result)
trt_week24 <- extract_trt_effects(tidy_result, visit = "Week 24")

format_estimate Format Estimate with Confidence Interval

Description

Formats a point estimate with its confidence interval in standard publication format: "estimate
(lower, upper)".

Usage

format_estimate(estimate, lower, upper, digits = 2, sep = ", ")

Arguments

estimate Numeric vector of point estimates.

lower Numeric vector of lower confidence interval bounds.

upper Numeric vector of upper confidence interval bounds.

digits Integer. Number of decimal places for rounding. Default is 2.

sep Character. Separator between lower and upper bounds. Default is ", ".

Details

The function formats estimates as "X.XX (X.XX, X.XX)" by default. All three input vectors must
have the same length. NA values in any position result in NA_character_ for that element.

Value

A character vector of formatted estimates with confidence intervals.

Examples

Single estimate
format_estimate(1.5, 0.8, 2.2)
#> "1.50 (0.80, 2.20)"

Multiple estimates
format_estimate(

18 format_pvalue

estimate = c(-2.5, -1.8),
lower = c(-4.0, -3.2),
upper = c(-1.0, -0.4)

)
#> "-2.50 (-4.00, -1.00)" "-1.80 (-3.20, -0.40)"

More decimal places
format_estimate(0.234, 0.123, 0.345, digits = 3)
#> "0.234 (0.123, 0.345)"

Different separator
format_estimate(1.5, 0.8, 2.2, sep = " to ")
#> "1.50 (0.80 to 2.20)"

format_pvalue Format P-values for Publication

Description

Formats p-values according to common publication standards, with configurable thresholds and
decimal places.

Usage

format_pvalue(x, digits = 3, threshold = 0.001, html = FALSE)

Arguments

x A numeric vector of p-values.

digits Integer. Number of decimal places for rounding. Default is 3.

threshold Numeric. P-values below this threshold are displayed as "< threshold". Default
is 0.001.

html Logical. If TRUE, uses HTML formatting for the less-than symbol. Default is
FALSE.

Details

The function applies the following rules:

• P-values below threshold are formatted as "< 0.001" (or HTML equivalent)

• P-values >= threshold are rounded to digits decimal places

• NA values are preserved as NA_character_

• Values > 1 or < 0 return NA_character_ with a warning

Value

A character vector of formatted p-values.

format_results 19

Examples

Basic usage
format_pvalue(0.0234)
#> "0.023"

format_pvalue(0.00005)
#> "< 0.001"

Vector input
pvals <- c(0.5, 0.05, 0.001, 0.0001, NA)
format_pvalue(pvals)
#> "0.500" "0.050" "0.001" "< 0.001" NA

Custom threshold
format_pvalue(0.005, threshold = 0.01)
#> "< 0.01"

HTML output
format_pvalue(0.0001, html = TRUE)
#> "< 0.001"

format_results Format Results for Reporting

Description

Formats a tidy results tibble for publication-ready reporting, with options for rounding, confidence
interval formatting, and column selection.

Usage

format_results(
results,
digits = 2,
ci_format = c("parens", "brackets", "dash"),
pval_digits = 3,
include_se = FALSE

)

Arguments

results A tibble from tidy_pool_obj() or combine_results().

digits Integer specifying the number of decimal places for estimates. Default is 2.

ci_format Character string specifying CI format. Options are: "parens" for "(LCI, UCI)",
"brackets" for "\[LCI, UCI\]", or "dash" for "LCI - UCI". Default is "parens".

pval_digits Integer specifying decimal places for p-values. Default is 3.

include_se Logical indicating whether to include standard error column. Default is FALSE.

20 format_results_table

Value

A tibble with formatted columns suitable for reporting.

See Also

• tidy_pool_obj() to create tidy results

• combine_results() to combine multiple analyses

Examples

library(rbmi)

Assuming you have a tidy result
tidy_result <- tidy_pool_obj(pool_obj)
formatted <- format_results(tidy_result, digits = 3, ci_format = "brackets")

format_results_table Format Results Table for Publication

Description

Adds formatted columns to a tidy results table, creating publication-ready output with properly
formatted estimates, confidence intervals, and p-values.

Usage

format_results_table(
data,
est_col = "est",
lci_col = "lci",
uci_col = "uci",
pval_col = "pval",
est_digits = 2,
pval_digits = 3,
pval_threshold = 0.001,
ci_sep = ", "

)

Arguments

data A data.frame or tibble, typically output from tidy_pool_obj().

est_col Character. Name of the estimate column. Default is "est".

lci_col Character. Name of the lower CI column. Default is "lci".

uci_col Character. Name of the upper CI column. Default is "uci".

gcomp_binary 21

pval_col Character. Name of the p-value column. Default is "pval".

est_digits Integer. Decimal places for estimates. Default is 2.

pval_digits Integer. Decimal places for p-values. Default is 3.

pval_threshold Numeric. Threshold for p-value formatting. Default is 0.001.

ci_sep Character. Separator for CI bounds. Default is ", ".

Details

This function is designed to work with output from tidy_pool_obj() but can be used with any
data.frame containing estimate, CI, and p-value columns. The original columns are preserved; new
formatted columns are added.

Value

A tibble with additional formatted columns:

est_ci Formatted estimate with confidence interval

pval_fmt Formatted p-value

Examples

library(dplyr)

Create example results
results <- tibble::tibble(

parameter = c("trt_Week24", "lsm_ref_Week24", "lsm_alt_Week24"),
description = c("Treatment Effect", "LS Mean (Reference)", "LS Mean (Treatment)"),
est = c(-2.45, 5.20, 2.75),
se = c(0.89, 0.65, 0.71),
lci = c(-4.20, 3.93, 1.36),
uci = c(-0.70, 6.47, 4.14),
pval = c(0.006, NA, NA)

)

Format for publication
formatted <- format_results_table(results)
print(formatted[, c("description", "est_ci", "pval_fmt")])

gcomp_binary Utility function for Generalized G-computation for Binary Outcomes

Description

Wrapper function for targeting a marginal treatment effect using g-computation using the beeca
package. Intended for binary endpoints.

22 gcomp_binary

Usage

gcomp_binary(
data,
outcome = "CRIT1FLN",
treatment = "TRT",
covariates = c("BASE", "STRATA", "REGION"),
reference = "Placebo",
contrast = "diff",
method = "Ge",
type = "HC0",
...

)

Arguments

data A data.frame containing the analysis dataset.

outcome Name of the binary outcome variable (as string).

treatment Name of the treatment variable (as string).

covariates Character vector of covariate names to adjust for.

reference Reference level for the treatment variable (default: "Placebo").

contrast Type of contrast to compute (default: "diff").

method Marginal estimation method for variance (default: "Ge").

type Variance estimator type (default: "HC0").

... Additional arguments passed to beeca::get_marginal_effect().

Value

A named list with treatment effect estimate, standard error, and degrees of freedom (if applicable).

Examples

Load required packages
library(rbmiUtils)
library(beeca) # for get_marginal_effect()
library(dplyr)
Load example data
data("ADMI")
Ensure correct factor levels
ADMI <- ADMI |>

mutate(
TRT = factor(TRT, levels = c("Placebo", "Drug A")),
STRATA = factor(STRATA),
REGION = factor(REGION)

)
Apply g-computation for binary responder
result <- gcomp_binary(

data = ADMI,
outcome = "CRIT1FLN",

gcomp_responder 23

treatment = "TRT",
covariates = c("BASE", "STRATA", "REGION"),
reference = "Placebo",
contrast = "diff",
method = "Ge", # from beeca: GEE robust sandwich estimator
type = "HC0" # from beeca: heteroskedasticity-consistent SE

)

Print results
print(result)

gcomp_responder G-computation Analysis for a Single Visit

Description

Performs logistic regression and estimates marginal effects for binary outcomes.

Usage

gcomp_responder(
data,
vars,
reference_levels = NULL,
var_method = "Ge",
type = "HC0",
contrast = "diff"

)

Arguments

data A data.frame with one visit of data.

vars A list containing group, outcome, covariates, and visit.

reference_levels

Optional vector specifying reference level(s) of the treatment factor.

var_method Marginal variance estimation method (default: "Ge").

type Type of robust variance estimator (default: "HC0").

contrast Type of contrast to compute (default: "diff").

Value

A named list containing estimates and standard errors for treatment comparisons and within-arm
means.

24 gcomp_responder_multi

Examples

library(dplyr)
library(rbmi)
library(rbmiUtils)

data("ADMI")

Prepare data for a single visit
ADMI <- ADMI |>

mutate(
TRT = factor(TRT, levels = c("Placebo", "Drug A")),
STRATA = factor(STRATA),
REGION = factor(REGION)

)

dat_single <- ADMI |>
filter(AVISIT == "Week 24")

vars <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CRIT1FLN",
covariates = c("BASE", "STRATA", "REGION")

)

result <- gcomp_responder(
data = dat_single,
vars = vars,
reference_levels = "Placebo"

)

print(result)

gcomp_responder_multi G-computation for a Binary Outcome at Multiple Visits

Description

Applies gcomp_responder() separately for each unique visit in the data.

Usage

gcomp_responder_multi(data, vars, reference_levels = NULL, ...)

Arguments

data A data.frame containing multiple visits.

gcomp_responder_multi 25

vars A list specifying analysis variables.
reference_levels

Optional reference level for the treatment variable.

... Additional arguments passed to gcomp_responder().

Value

A named list of estimates for each visit and treatment group.

Examples

library(dplyr)
library(rbmi)
library(rbmiUtils)

data("ADMI")

ADMI <- ADMI |>
mutate(
TRT = factor(TRT, levels = c("Placebo", "Drug A")),
STRATA = factor(STRATA),
REGION = factor(REGION)

)

Note: method must match the original used for imputation
method <- method_bayes(

n_samples = 100,
control = control_bayes(warmup = 20, thin = 2)

)

vars_binary <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CRIT1FLN",
covariates = c("BASE", "STRATA", "REGION")

)

ana_obj_prop <- analyse_mi_data(
data = ADMI,
vars = vars_binary,
method = method,
fun = gcomp_responder_multi,
reference_levels = "Placebo",
contrast = "diff",
var_method = "Ge",
type = "HC0"

)

pool(ana_obj_prop)

26 get_imputed_data

get_imputed_data Get Imputed Data Sets as a data frame

Description

This function takes an imputed dataset and a mapping variable to return a dataset with the original
IDs mapped back and renamed appropriately.

Usage

get_imputed_data(impute_obj)

Arguments

impute_obj The imputation object from which the imputed datasets are extracted.

Value

A data frame with the original subject IDs mapped and renamed.

Examples

library(dplyr)
library(rbmi)
library(rbmiUtils)

set.seed(1974)
Load example dataset
data("ADEFF")

Prepare data
ADEFF <- ADEFF |>

mutate(
TRT = factor(TRT01P, levels = c("Placebo", "Drug A")),
USUBJID = factor(USUBJID),
AVISIT = factor(AVISIT)

)

Define variables for imputation
vars <- set_vars(

subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CHG",
covariates = c("BASE", "STRATA", "REGION")

)

Define Bayesian imputation method
method <- method_bayes(

n_samples = 100,

plot_forest 27

control = control_bayes(warmup = 200, thin = 2)
)

Generate draws and perform imputation
draws_obj <- draws(data = ADEFF, vars = vars, method = method)
impute_obj <- impute(draws_obj,

references = c("Placebo" = "Placebo", "Drug A" = "Placebo"))

Extract imputed data with original subject IDs
admi <- get_imputed_data(impute_obj)
head(admi)

plot_forest Create a Forest Plot from an rbmi Pool Object

Description

Takes an rbmi pool object and produces a publication-quality, three-panel forest plot using ggplot2
and patchwork. The plot displays treatment effect point estimates with confidence interval whiskers,
an aligned table panel showing formatted estimates, and a p-value panel.

Usage

plot_forest(
pool_obj,
display = c("trt", "lsm"),
ref_value = NULL,
ci_level = NULL,
arm_labels = NULL,
title = NULL,
text_size = 3.5,
point_size = 3.5,
show_pvalues = TRUE,
font_family = NULL,
panel_widths = NULL

)

Arguments

pool_obj A pooled analysis object of class "pool", typically obtained from rbmi::pool()
after calling analyse_mi_data().

display Character string specifying the display mode. "trt" (the default) shows treat-
ment differences across visits. "lsm" shows LS mean estimates by treatment
arm with color-coded points.

ref_value Numeric. The reference value for the vertical reference line. Default is 0 for
display = "trt" and NULL (no line) for display = "lsm". Set explicitly to
override.

28 plot_forest

ci_level Numeric. Confidence level for CI labeling. If NULL (the default), extracted from
pool_obj$conf.level. Falls back to 0.95 if neither is available.

arm_labels Named character vector with elements "ref" and "alt" providing custom la-
bels for the reference and treatment arms when display = "lsm". If NULL (the
default), uses "Reference" and "Treatment".

title Optional character string for the plot title.

text_size Numeric. Text size for the table and p-value panels. Default is 3.5.

point_size Numeric. Point size for the forest plot. Default is 3.5.

show_pvalues Logical. Whether to display the p-value panel on the right side of the plot.
Default is TRUE. Set to FALSE for a cleaner two-panel layout without p-values.

font_family Optional character string specifying the font family for all text in the plot. When
NULL (default), uses ggplot2’s default font (typically sans-serif). Applied to all
geom_text layers and the forest panel theme.

panel_widths Optional numeric vector controlling the relative widths of the plot panels. When
show_pvalues = TRUE, must be length 3 (table, forest, p-value panels). When
show_pvalues = FALSE, must be length 2 (table, forest panels). When NULL
(default), uses c(3, 4, 1.5) for 3-panel and c(3, 5) for 2-panel layouts.

Details

The function calls tidy_pool_obj() internally to parse the pool object, then constructs a three-
panel composition:

• Left panel: Visit labels and formatted estimate with CI text

• Middle panel: Forest plot with point estimates and CI whiskers

• Right panel: Formatted p-values

Display modes:

• "trt" – Treatment differences with a reference line at zero (or custom ref_value). Signifi-
cant results (CI excludes reference) are shown as filled circles; non-significant as open circles.

• "lsm" – LS mean estimates by treatment arm, color-coded using the Okabe-Ito colorblind-
friendly palette (blue for reference, vermilion for treatment). Points are dodged vertically
within each visit.

Customization: The returned patchwork object supports & theme() for applying theme changes to
all panels. For example: plot_forest(pool_obj) & theme(text = element_text(size = 14)).

Suggested dimensions for regulatory documents: For A4 or US Letter page sizes, width = 10, height = 3 + 0.4 * n_visits
(in inches) provides good results when saving with ggplot2::ggsave(). For example, a 5-visit plot
works well at 10 x 5 inches.

Example output (treatment difference mode):

Value

A patchwork/ggplot object that can be further customized using & theme() to modify all panels
simultaneously.

pool_to_ard 29

See Also

• rbmi::pool() for creating pool objects

• tidy_pool_obj() for the underlying data transformation

• efficacy_table() for tabular presentation of the same data

• format_pvalue() for p-value formatting rules

• format_estimate() for estimate with CI formatting

Examples

if (requireNamespace("ggplot2", quietly = TRUE) &&
requireNamespace("patchwork", quietly = TRUE)) {

library(rbmi)
data("ADMI", package = "rbmiUtils")
ADMI$TRT <- factor(ADMI$TRT, levels = c("Placebo", "Drug A"))
ADMI$USUBJID <- factor(ADMI$USUBJID)
ADMI$AVISIT <- factor(ADMI$AVISIT)

vars <- set_vars(
subjid = "USUBJID", visit = "AVISIT", group = "TRT",
outcome = "CHG", covariates = c("BASE", "STRATA", "REGION")

)
method <- method_bayes(

n_samples = 20,
control = control_bayes(warmup = 20, thin = 1)

)

ana_obj <- analyse_mi_data(ADMI, vars, method, fun = ancova)
pool_obj <- pool(ana_obj)

Treatment difference forest plot
plot_forest(pool_obj, arm_labels = c(ref = "Placebo", alt = "Drug A"))

LSM display with custom panel widths
plot_forest(

pool_obj,
display = "lsm",
arm_labels = c(ref = "Placebo", alt = "Drug A"),
title = "LS Mean Estimates by Visit",
panel_widths = c(3, 5, 1.5)

)
}

pool_to_ard Convert Pool Object to ARD Format

30 pool_to_ard

Description

Converts an rbmi pool object to the pharmaverse Analysis Results Dataset (ARD) standard using
the cards package. The ARD format is a long-format data frame where each row represents a single
statistic for a given parameter, with grouping columns for visit, parameter type, and least-squares-
mean type.

Usage

pool_to_ard(pool_obj, analysis_obj = NULL, conf.level = NULL)

Arguments

pool_obj A pooled analysis object of class "pool", typically obtained from rbmi::pool()
after calling analyse_mi_data().

analysis_obj An optional analysis object (output of analyse_mi_data()), used to compute
MI diagnostic statistics. When provided and the pooling method is Rubin’s
rules, the ARD includes additional stat rows for FMI, lambda, RIV, Barnard-
Rubin adjusted df, complete-data df, relative efficiency, and the number of im-
putations per parameter. When NULL (the default), only the base ARD is re-
turned.

conf.level Confidence level used for CI labels (e.g., 0.95 produces "95% CI Lower"). If
NULL (the default), the value is taken from pool_obj$conf.level. If that is
also NULL, defaults to 0.95.

Details

The function works by:

1. Tidying the pool object via tidy_pool_obj()

2. Reshaping each parameter into long-format ARD rows (one row per statistic)

3. Adding grouping columns (visit, parameter_type, lsm_type)

4. Optionally enriching with MI diagnostic statistics when analysis_obj is provided

5. Applying cards::as_card() and cards::tidy_ard_column_order() for standard ARD
structure

When analysis_obj is provided:

• For Rubin’s rules pooling: diagnostic statistics (FMI, lambda, RIV, Barnard-Rubin adjusted
df, relative efficiency) are computed per parameter using the per-imputation estimates, stan-
dard errors, and degrees of freedom.

• For non-Rubin pooling methods: an informative message is emitted and the base ARD is
returned without diagnostic rows.

The resulting ARD passes cards::check_ard_structure() validation and is suitable for down-
stream use with gtsummary.

prepare_data_ice 31

Value

A data frame of class "card" (ARD format) with grouping columns for visit (group1), parame-
ter_type (group2), and lsm_type (group3). Each parameter produces rows for five statistics: es-
timate, std.error, conf.low, conf.high, and p.value, plus a method row. When analysis_obj is
provided and the pooling method is Rubin’s rules, additional diagnostic stat rows are included: fmi,
lambda, riv, df.adjusted, df.complete, re, and m.imputations.

See Also

• rbmi::pool() for creating pool objects

• analyse_mi_data() for creating analysis objects

• tidy_pool_obj() for the underlying data transformation

• cards::as_card() and cards::check_ard_structure() for ARD validation

Examples

if (requireNamespace("cards", quietly = TRUE)) {
library(rbmi)
data("ADMI", package = "rbmiUtils")
ADMI$TRT <- factor(ADMI$TRT, levels = c("Placebo", "Drug A"))
ADMI$USUBJID <- factor(ADMI$USUBJID)
ADMI$AVISIT <- factor(ADMI$AVISIT)

vars <- set_vars(
subjid = "USUBJID", visit = "AVISIT", group = "TRT",
outcome = "CHG", covariates = c("BASE", "STRATA", "REGION")

)
method <- method_bayes(

n_samples = 20,
control = control_bayes(warmup = 20, thin = 1)

)

ana_obj <- analyse_mi_data(ADMI, vars, method, fun = ancova)
pool_obj <- pool(ana_obj)

Base ARD
ard <- pool_to_ard(pool_obj)

Enriched ARD with MI diagnostics (FMI, lambda, RIV, df)
ard_diag <- pool_to_ard(pool_obj, analysis_obj = ana_obj)

}

prepare_data_ice Prepare Intercurrent Event Data

32 prepare_data_ice

Description

Builds a data_ice data.frame from a column in the dataset that flags intercurrent events. For each
subject, the first visit (by factor level order) where the flag is TRUE is used as the ICE visit.

Usage

prepare_data_ice(data, vars, ice_col, strategy)

Arguments

data A data.frame containing the analysis dataset.

vars A vars object as created by rbmi::set_vars().

ice_col Character string naming the column in data that indicates ICE occurrence. Ac-
cepted values are logical (TRUE/FALSE), character ("Y"/"N"), or numeric (1/0).

strategy Character string specifying the imputation strategy to assign. Must be one of
"MAR", "CR", "JR", "CIR", or "LMCF".

Value

A data.frame with columns corresponding to vars$subjid, vars$visit, and vars$strategy,
suitable for passing to rbmi::draws().

See Also

• rbmi::draws() which accepts the data_ice output from this function

• validate_data() to check data before imputation

• summarise_missingness() to understand missing data patterns

Examples

library(rbmi)

dat <- data.frame(
USUBJID = factor(rep(c("S1", "S2", "S3"), each = 3)),
AVISIT = factor(rep(c("Week 4", "Week 8", "Week 12"), 3),

levels = c("Week 4", "Week 8", "Week 12")),
TRT = factor(rep(c("Placebo", "Drug A", "Drug A"), each = 3)),
CHG = rnorm(9),
DISCFL = c("N","N","N", "N","Y","Y", "N","N","Y")

)

vars <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CHG"

)

ice <- prepare_data_ice(dat, vars, ice_col = "DISCFL", strategy = "JR")

print.analysis 33

print(ice)

print.analysis Print Method for Analysis Objects

Description

Prints a summary of an analysis object from analyse_mi_data().

Usage

S3 method for class 'analysis'
print(x, ...)

Arguments

x An object of class analysis.

... Additional arguments (currently unused).

Value

Invisibly returns the input object.

Examples

library(rbmi)
library(rbmiUtils)
data("ADMI")

Create analysis object
vars <- set_vars(

subjid = "USUBJID", visit = "AVISIT", group = "TRT",
outcome = "CHG", covariates = c("BASE", "STRATA")

)
method <- method_bayes(n_samples = 10, control = control_bayes(warmup = 10))

ana_obj <- analyse_mi_data(ADMI, vars, method, fun = function(d, v, ...) 1)
print(ana_obj)

34 print.describe_imputation

print.describe_draws Print Method for describe_draws Objects

Description

Displays a formatted summary of a draws description using cli formatting.

Usage

S3 method for class 'describe_draws'
print(x, ...)

Arguments

x A describe_draws object from describe_draws().

... Additional arguments (currently unused).

Value

Invisibly returns x (for pipe chaining).

Examples

Not run:
After creating draws_obj via the rbmi pipeline (see describe_draws):
desc <- describe_draws(draws_obj)
print(desc) # Formatted cli output with method, formula, samples, convergence

End(Not run)

print.describe_imputation

Print Method for describe_imputation Objects

Description

Displays a formatted summary of an imputation description using cli formatting, including method,
number of imputations, reference arm mappings, and a missingness breakdown by visit and treat-
ment arm.

Usage

S3 method for class 'describe_imputation'
print(x, ...)

print.pool 35

Arguments

x A describe_imputation object from describe_imputation().
... Additional arguments (currently unused).

Value

Invisibly returns x (for pipe chaining).

Examples

Not run:
After creating impute_obj via the rbmi pipeline (see describe_imputation):
desc <- describe_imputation(impute_obj)
print(desc) # Formatted cli output with method, M, subjects, references, missingness

End(Not run)

print.pool Print Method for Pool Objects

Description

Displays a formatted summary of a pooled analysis object from rbmi::pool(). Uses cli formatting
to show rounded estimates, confidence intervals, parameter labels, method information, number of
imputations, and confidence level.

Usage

S3 method for class 'pool'
print(x, digits = 2, ...)

Arguments

x An object of class pool, typically obtained from rbmi::pool().
digits Integer. Number of decimal places for rounding estimates, standard errors, and

confidence interval bounds. Default is 2.
... Additional arguments (currently unused).

Details

This method overrides rbmi::print.pool() to provide enhanced, formatted console output using
the cli package. The override produces a "Registered S3 method overwritten" message at package
load time, which is expected and harmless (same pattern as print.analysis()).

The output includes:

• A header with parameter and visit counts
• Metadata: pooling method, number of imputations, confidence level
• A compact results table with key columns: parameter, visit, est, lci, uci, pval

36 reduce_imputed_data

Value

Invisibly returns the original pool object x (for pipe chaining).

See Also

• tidy_pool_obj() for full tidy tibble output

• summary.pool() for visit-level breakdown with significance flags

• rbmi::pool() to create pool objects

Examples

library(rbmi)
library(rbmiUtils)
data("ADMI")

ADMI$TRT <- factor(ADMI$TRT, levels = c("Placebo", "Drug A"))
ADMI$USUBJID <- factor(ADMI$USUBJID)
ADMI$AVISIT <- factor(ADMI$AVISIT)

vars <- set_vars(
subjid = "USUBJID", visit = "AVISIT", group = "TRT",
outcome = "CHG", covariates = c("BASE", "STRATA", "REGION")

)
method <- method_bayes(n_samples = 20, control = control_bayes(warmup = 20))

ana_obj <- analyse_mi_data(ADMI, vars, method, fun = ancova)
pool_obj <- pool(ana_obj)
print(pool_obj)

reduce_imputed_data Reduce Imputed Data for Efficient Storage

Description

Extracts only the imputed records (those that were originally missing) from a full imputed dataset.
This significantly reduces storage requirements when working with many imputations, as observed
values are identical across all imputations and only need to be stored once in the original data.

Usage

reduce_imputed_data(imputed_data, original_data, vars)

reduce_imputed_data 37

Arguments

imputed_data A data.frame containing the full imputed dataset with an IMPID column identi-
fying each imputation. Typically the output from get_imputed_data().

original_data A data.frame containing the original dataset before imputation, with missing
values in the outcome column.

vars A vars object as created by rbmi::set_vars().

Details

Storage savings depend on the proportion of missing data. For example:

• Original: 1000 rows, 44 missing values

• Full imputed (1000 imputations): 1,000,000 rows

• Reduced (1000 imputations): 44,000 rows (4.4\

Use expand_imputed_data() to reconstruct the full imputed dataset when needed for analysis.

Value

A data.frame containing only the rows from imputed_data that correspond to originally missing
outcome values. All columns from imputed_data are preserved.

See Also

• rbmi::impute() which creates the imputed datasets this function operates on

• expand_imputed_data() to reconstruct the full dataset

• get_imputed_data() to extract imputed data from an rbmi imputation object

Examples

library(rbmi)
library(dplyr)

Example with package data
data("ADMI", package = "rbmiUtils")
data("ADEFF", package = "rbmiUtils")

Prepare original data to match ADMI structure
original <- ADEFF |>

mutate(
TRT = TRT01P,
USUBJID = as.character(USUBJID)

)

vars <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CHG"

38 summarise_missingness

)

Reduce to only imputed values
reduced <- reduce_imputed_data(ADMI, original, vars)

Compare sizes
cat("Full imputed rows:", nrow(ADMI), "\n")
cat("Reduced rows:", nrow(reduced), "\n")
cat("Compression:", round(100 * nrow(reduced) / nrow(ADMI), 1), "%\n")

summarise_missingness Summarise Missing Data Patterns

Description

Tabulates missing outcome data by visit and treatment group, and classifies each subject’s missing
data pattern as complete, monotone, or intermittent.

Usage

summarise_missingness(data, vars)

Arguments

data A data.frame containing the analysis dataset with one row per subject-visit com-
bination.

vars A vars object as created by rbmi::set_vars().

Value

A list with three components:

by_visit A tibble with columns: visit, group, n, n_miss, pct_miss

patterns A tibble with columns: subjid, group, pattern ("complete", "monotone", or "intermit-
tent"), dropout_visit (NA if not monotone)

summary A tibble with columns: group, n_subjects, n_complete, n_monotone, n_intermittent

See Also

• rbmi::draws() for imputation after reviewing missingness patterns

• validate_data() to check data before imputation

• prepare_data_ice() to create intercurrent event data from flags

summary.analysis 39

Examples

library(rbmi)

dat <- data.frame(
USUBJID = factor(rep(c("S1", "S2", "S3", "S4"), each = 3)),
AVISIT = factor(rep(c("Week 4", "Week 8", "Week 12"), 4),

levels = c("Week 4", "Week 8", "Week 12")),
TRT = factor(rep(c("Placebo", "Drug A"), each = 6)),
CHG = c(1, 2, 3, 1, NA, NA, 1, 2, NA, 1, NA, 2)

)

vars <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CHG"

)

result <- summarise_missingness(dat, vars)
print(result$by_visit)
print(result$patterns)
print(result$summary)

summary.analysis Summary Method for Analysis Objects

Description

Provides a detailed summary of an analysis object from analyse_mi_data().

Usage

S3 method for class 'analysis'
summary(object, n_preview = 5, ...)

Arguments

object An object of class analysis.

n_preview Maximum number of parameters to show in the preview table. Defaults to 5.

... Additional arguments (currently unused).

Value

A list containing summary information (invisibly).

40 summary.pool

Examples

library(rbmi)
library(rbmiUtils)
data("ADMI")

Create analysis object
vars <- set_vars(

subjid = "USUBJID", visit = "AVISIT", group = "TRT",
outcome = "CHG", covariates = c("BASE", "STRATA")

)
method <- method_bayes(n_samples = 10, control = control_bayes(warmup = 10))

ana_obj <- analyse_mi_data(ADMI, vars, method, fun = function(d, v, ...) 1)
summary(ana_obj)

summary.pool Summary Method for Pool Objects

Description

Provides a detailed visit-level breakdown of pooled analysis results with significance flags. Shows
treatment comparisons and least squares means grouped by visit.

Usage

S3 method for class 'pool'
summary(object, alpha = 0.05, ...)

Arguments

object An object of class pool, typically obtained from rbmi::pool().

alpha Numeric. Significance threshold for flagging p-values. Default is 0.05. Flags
are: * for p < alpha, ** for p < 0.01, *** for p < 0.001.

... Additional arguments (currently unused).

Details

The summary output groups results by visit, showing treatment comparisons with significance flags
and least squares means. This provides a quick overview of which visits have statistically significant
treatment effects.

Significance flags:

• * p < alpha (default 0.05)
• ** p < 0.01
• *** p < 0.001

tidy_pool_obj 41

Value

Invisibly returns a list with:

n_parameters Number of parameters in the pool object

visits Character vector of unique visit names

method Pooling method used

n_imputations Number of imputations combined

conf.level Confidence level

tidy_df The full tidy tibble from tidy_pool_obj()

See Also

• print.pool() for compact tabular output

• tidy_pool_obj() for full tidy tibble output

• rbmi::pool() to create pool objects

Examples

library(rbmi)
library(rbmiUtils)
data("ADMI")

ADMI$TRT <- factor(ADMI$TRT, levels = c("Placebo", "Drug A"))
ADMI$USUBJID <- factor(ADMI$USUBJID)
ADMI$AVISIT <- factor(ADMI$AVISIT)

vars <- set_vars(
subjid = "USUBJID", visit = "AVISIT", group = "TRT",
outcome = "CHG", covariates = c("BASE", "STRATA", "REGION")

)
method <- method_bayes(n_samples = 20, control = control_bayes(warmup = 20))

ana_obj <- analyse_mi_data(ADMI, vars, method, fun = ancova)
pool_obj <- pool(ana_obj)
summary(pool_obj)

tidy_pool_obj Tidy and Annotate a Pooled Object for Publication

Description

This function processes a pooled analysis object of class pool into a tidy tibble format. It adds
contextual information, such as whether a parameter is a treatment comparison or a least squares
mean, dynamically identifies visit names from the parameter column, and provides additional
columns for parameter type, least squares mean type, and visit.

42 tidy_pool_obj

Usage

tidy_pool_obj(pool_obj)

Arguments

pool_obj A pooled analysis object of class pool, typically obtained from rbmi::pool()
after calling analyse_mi_data().

Details

The function dynamically processes the parameter column by separating it into components (e.g.,
type of estimate, reference vs. alternative arm, and visit), and provides informative descriptions in
the output.

Workflow:

1. Prepare data and run imputation with rbmi

2. Analyse with analyse_mi_data()

3. Pool with rbmi::pool()

4. Tidy with tidy_pool_obj() for publication-ready output

Value

A tibble containing the processed pooled analysis results with the following columns:

parameter Original parameter name from the pooled object

description Human-readable description of the parameter

visit Visit name extracted from parameter (if applicable)

parameter_type Either "trt" (treatment comparison) or "lsm" (least squares mean)

lsm_type For LSM parameters: "ref" (reference) or "alt" (alternative)

est Point estimate

se Standard error

lci Lower confidence interval

uci Upper confidence interval

pval P-value

See Also

• rbmi::pool() which creates the pool objects this function tidies

• analyse_mi_data() to analyse imputed datasets

• format_results() for additional formatting options

validate_data 43

Examples

Example usage:
library(dplyr)
library(rbmi)

data("ADMI")
N_IMPUTATIONS <- 100
BURN_IN <- 200
BURN_BETWEEN <- 5

Convert key columns to factors
ADMI$TRT <- factor(ADMI$TRT, levels = c("Placebo", "Drug A"))
ADMI$USUBJID <- factor(ADMI$USUBJID)
ADMI$AVISIT <- factor(ADMI$AVISIT)

Define key variables for ANCOVA analysis
vars <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CHG",
covariates = c("BASE", "STRATA", "REGION") # Covariates for adjustment
)

Specify the imputation method (Bayesian) - need for pool step
method <- rbmi::method_bayes(

n_samples = N_IMPUTATIONS,
control = rbmi::control_bayes(
warmup = BURN_IN,
thin = BURN_BETWEEN
)

)

Perform ANCOVA Analysis on Each Imputed Dataset
ana_obj_ancova <- analyse_mi_data(

data = ADMI,
vars = vars,
method = method,
fun = ancova, # Apply ANCOVA
delta = NULL # No sensitivity analysis adjustment

)

pool_obj_ancova <- pool(ana_obj_ancova)
tidy_df <- tidy_pool_obj(pool_obj_ancova)

Print tidy data frames
print(tidy_df)

validate_data Validate Data Before Imputation

44 validate_data

Description

Pre-flight validation of data, variable specification, and intercurrent event data before calling rbmi::draws().
Collects all issues and reports them together in a single error message.

Usage

validate_data(data, vars, data_ice = NULL)

Arguments

data A data.frame containing the analysis dataset.

vars A vars object as created by rbmi::set_vars().

data_ice An optional data.frame of intercurrent events. If provided, must contain columns
corresponding to vars$subjid, vars$visit, and vars$strategy. Can be cre-
ated using prepare_data_ice().

Details

The following checks are performed:

• data is a data.frame

• All columns named in vars exist in data

• subjid, visit, and group columns are factors

• outcome column is numeric

• Covariate columns have no missing values

• Data has one row per subject-visit combination

• If data_ice is provided: correct columns, valid subjects, valid visits, recognised strategies,
and at most one row per subject

Recommended Workflow:

1. Call validate_data() to check your data

2. Use prepare_data_ice() to create ICE data if needed

3. Review missingness with summarise_missingness()

4. Proceed with rbmi::draws() for imputation

Value

Invisibly returns TRUE if all checks pass. Throws an error with collected messages if any issues are
found.

See Also

• rbmi::draws() which requires validated input data

• prepare_data_ice() to create intercurrent event data from flags

• summarise_missingness() to understand missing data patterns

validate_data 45

Examples

library(rbmi)

dat <- data.frame(
USUBJID = factor(rep(c("S1", "S2", "S3"), each = 3)),
AVISIT = factor(rep(c("Week 4", "Week 8", "Week 12"), 3),

levels = c("Week 4", "Week 8", "Week 12")),
TRT = factor(rep(c("Placebo", "Drug A", "Drug A"), each = 3)),
CHG = c(1.1, 2.2, 3.3, 0.5, NA, NA, 1.0, 2.0, NA),
BASE = rep(c(10, 12, 11), each = 3),
STRATA = factor(rep(c("A", "B", "A"), each = 3))

)

vars <- set_vars(
subjid = "USUBJID",
visit = "AVISIT",
group = "TRT",
outcome = "CHG",
covariates = c("BASE", "STRATA")

)

validate_data(dat, vars)

Index

∗ datasets
ADEFF, 2
ADMI, 3

ADEFF, 2
ADMI, 3
analyse_mi_data, 4
analyse_mi_data(), 7, 12, 27, 30, 31, 33, 39,

42

cards::as_card(), 30, 31
cards::check_ard_structure(), 30, 31
cards::tidy_ard_column_order(), 30
combine_results, 6
combine_results(), 19, 20
create_impid, 7

describe_draws, 8
describe_draws(), 10, 34
describe_imputation, 10
describe_imputation(), 35

efficacy_table, 11
efficacy_table(), 29
expand_imputed_data, 14
expand_imputed_data(), 4, 5, 37
extract_lsm, 15
extract_lsm(), 16
extract_trt_effects, 16
extract_trt_effects(), 16

format_estimate, 17
format_estimate(), 29
format_pvalue, 18
format_pvalue(), 13, 29
format_results, 19
format_results(), 6, 42
format_results_table, 20

gcomp_binary, 21
gcomp_responder, 23

gcomp_responder_multi, 24
gcomp_responder_multi(), 4, 5
get_imputed_data, 26
get_imputed_data(), 4, 5, 7, 14, 37
gt::gt(), 12
gt::opt_table_font(), 12
gt::tab_options(), 12

plot_forest, 27
pool_to_ard, 29
prepare_data_ice, 31
prepare_data_ice(), 38, 44
print(), 8, 10
print.analysis, 33
print.analysis(), 35
print.describe_draws, 34
print.describe_imputation, 34
print.pool, 35
print.pool(), 41

rbmi::analyse(), 5
rbmi::ancova, 4
rbmi::draws(), 8, 9, 32, 38, 44
rbmi::impute(), 10, 14, 37
rbmi::method_approxbayes(), 4, 9
rbmi::method_bayes(), 4, 9
rbmi::method_condmean(), 4, 9
rbmi::pool(), 5, 12, 13, 27, 29–31, 35, 36,

40–42
rbmi::print.pool(), 35
rbmi::set_vars(), 4, 5, 14, 32, 37, 38, 44
reduce_imputed_data, 36
reduce_imputed_data(), 14

summarise_missingness, 38
summarise_missingness(), 32, 44
summary.analysis, 39
summary.pool, 40
summary.pool(), 36

tidy_pool_obj, 41

46

INDEX 47

tidy_pool_obj(), 5, 6, 12, 13, 15, 16, 19–21,
28–31, 36, 41

validate_data, 43
validate_data(), 5, 32, 38

	ADEFF
	ADMI
	analyse_mi_data
	combine_results
	create_impid
	describe_draws
	describe_imputation
	efficacy_table
	expand_imputed_data
	extract_lsm
	extract_trt_effects
	format_estimate
	format_pvalue
	format_results
	format_results_table
	gcomp_binary
	gcomp_responder
	gcomp_responder_multi
	get_imputed_data
	plot_forest
	pool_to_ard
	prepare_data_ice
	print.analysis
	print.describe_draws
	print.describe_imputation
	print.pool
	reduce_imputed_data
	summarise_missingness
	summary.analysis
	summary.pool
	tidy_pool_obj
	validate_data
	Index

