rinet: Clinical Reference Interval Estimation with Reference Interval
Network (RINet)
Predicts statistics of a reference distribution from a mixture of raw clinical measurements (healthy and pathological). Uses pretrained CNN models to estimate the mean, standard deviation, and reference fraction from 1D or 2D sample data. Methods are described in LeBien, Velev, and Roche-Lima (2026) "RINet: synthetic data training for indirect estimation of clinical reference distributions" <doi:10.1016/j.jbi.2026.104980>.
| Version: |
0.1.0 |
| Depends: |
R (≥ 3.5.0) |
| Imports: |
reticulate |
| Published: |
2026-01-29 |
| DOI: |
10.32614/CRAN.package.rinet (may not be active yet) |
| Author: |
Jack LeBien [aut, cre] |
| Maintainer: |
Jack LeBien <jackgl4124 at gmail.com> |
| License: |
MIT + file LICENSE |
| NeedsCompilation: |
no |
| SystemRequirements: |
Python (>= 3.8), TensorFlow (>= 2.16), Keras (>=
3.0), scikit-learn |
| CRAN checks: |
rinet results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=rinet
to link to this page.