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anova_stats Effect size statistics for anova

Description

Returns the (partial) eta-squared, (partial) omega-squared, epsilon-squared statistic or Cohen’s F
for all terms in an anovas. anova_stats() returns a tidy summary, including all these statistics and
power for each term.

Usage

anova_stats(model, digits = 3)
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Arguments

model A fitted anova-model of class aov or anova. Other models are coerced to anova.

digits Amount of digits for returned values.

Value

A data frame with all statistics is returned (excluding confidence intervals).

References

Levine TR, Hullett CR (2002): Eta Squared, Partial Eta Squared, and Misreporting of Effect Size
in Communication Research.

Tippey K, Longnecker MT (2016): An Ad Hoc Method for Computing Pseudo-Effect Size for
Mixed Model.

Examples

# load sample data
data(efc)

# fit linear model
fit <- aov(

c12hour ~ as.factor(e42dep) + as.factor(c172code) + c160age,
data = efc

)
anova_stats(car::Anova(fit, type = 2))

auto_prior Create default priors for brms-models

Description

This function creates default priors for brms-regression models, based on the same automatic prior-
scale adjustment as in rstanarm.

Usage

auto_prior(formula, data, gaussian, locations = NULL)

Arguments

formula A formula describing the model, which just needs to contain the model terms,
but no notation of interaction, splines etc. Usually, you want only those pre-
dictors in the formula, for which automatic priors should be generated. Add
informative priors afterwards to the returned brmsprior-object.
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data The data that will be used to fit the model.

gaussian Logical, if the outcome is gaussian or not.

locations A numeric vector with location values for the priors. If locations = NULL, 0 is
used as location parameter.

Details

auto_prior() is a small, convenient function to create some default priors for brms-models with
automatically adjusted prior scales, in a similar way like rstanarm does. The default scale for
the intercept is 10, for coefficients 2.5. If the outcome is gaussian, both scales are multiplied with
sd(y). Then, for categorical variables, nothing more is changed. For numeric variables, the scales
are divided by the standard deviation of the related variable.

All prior distributions are normal distributions. auto_prior() is intended to quickly create de-
fault priors with feasible scales. If more precise definitions of priors is necessary, this needs to be
done directly with brms-functions like set_prior().

Value

A brmsprior-object.

Note

As auto_prior() also sets priors on the intercept, the model formula used in brms::brm() must
be rewritten to something like y ~ 0 + intercept ..., see set_prior.

Examples

data(efc)
efc$c172code <- as.factor(efc$c172code)
efc$c161sex <- as.factor(efc$c161sex)

mf <- formula(neg_c_7 ~ c161sex + c160age + c172code)
auto_prior(mf, efc, TRUE)

## compare to
# m <- rstanarm::stan_glm(mf, data = efc, chains = 2, iter = 200)
# ps <- prior_summary(m)
# ps$prior_intercept$adjusted_scale
# ps$prior$adjusted_scale

## usage
# ap <- auto_prior(mf, efc, TRUE)
# brm(mf, data = efc, prior = ap)

# add informative priors
mf <- formula(neg_c_7 ~ c161sex + c172code)

auto_prior(mf, efc, TRUE) +
brms::prior(normal(.1554, 40), class = "b", coef = "c160age")
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# example with binary response
efc$neg_c_7d <- ifelse(efc$neg_c_7 < median(efc$neg_c_7, na.rm = TRUE), 0, 1)
mf <- formula(neg_c_7d ~ c161sex + c160age + c172code + e17age)
auto_prior(mf, efc, FALSE)

bootstrap Generate nonparametric bootstrap replications

Description

Generates n bootstrap samples of data and returns the bootstrapped data frames as list-variable.

Usage

bootstrap(data, n, size)

Arguments

data A data frame.

n Number of bootstraps to be generated.

size Optional, size of the bootstrap samples. May either be a number between 1 and
nrow(data) or a value between 0 and 1 to sample a proportion of observations
from data (see ’Examples’).

Details

By default, each bootstrap sample has the same number of observations as data. To generate
bootstrap samples without resampling same observations (i.e. sampling without replacement), use
size to get bootstrapped data with a specific number of observations. However, specifying the
size-argument is much less memory-efficient than the bootstrap with replacement. Hence, it is
recommended to ignore the size-argument, if it is not really needed.

Value

A data frame with one column: a list-variable strap, which contains resample-objects of class
sj_resample. These resample-objects are lists with three elements:

1. the original data frame, data

2. the rownmumbers id, i.e. rownumbers of data, indicating the resampled rows with replace-
ment

3. the resample.id, indicating the index of the resample (i.e. the position of the sj_resample-
object in the list strap)
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Note

This function applies nonparametric bootstrapping, i.e. the function draws samples with replace-
ment.

There is an as.data.frame- and a print-method to get or print the resampled data frames. See
’Examples’. The as.data.frame- method automatically applies whenever coercion is done be-
cause a data frame is required as input. See ’Examples’ in boot_ci.

See Also

boot_ci to calculate confidence intervals from bootstrap samples.

Examples

data(efc)
bs <- bootstrap(efc, 5)

# now run models for each bootstrapped sample
lapply(bs$strap, function(x) lm(neg_c_7 ~ e42dep + c161sex, data = x))

# generate bootstrap samples with 600 observations for each sample
bs <- bootstrap(efc, 5, 600)

# generate bootstrap samples with 70% observations of the original sample size
bs <- bootstrap(efc, 5, .7)

# compute standard error for a simple vector from bootstraps
# use the `as.data.frame()`-method to get the resampled
# data frame
bs <- bootstrap(efc, 100)
bs$c12hour <- unlist(lapply(bs$strap, function(x) {

mean(as.data.frame(x)$c12hour, na.rm = TRUE)
}))

# bootstrapped standard error
boot_se(bs, "c12hour")

# bootstrapped CI
boot_ci(bs, "c12hour")

boot_ci Standard error and confidence intervals for bootstrapped estimates

Description

Compute nonparametric bootstrap estimate, standard error, confidence intervals and p-value for a
vector of bootstrap replicate estimates.
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Usage

boot_ci(data, select = NULL, method = c("dist", "quantile"), ci.lvl = 0.95)

boot_se(data, select = NULL)

boot_p(data, select = NULL)

boot_est(data, select = NULL)

Arguments

data A data frame that containts the vector with bootstrapped estimates, or directly
the vector (see ’Examples’).

select Optional, unquoted names of variables (as character vector) with bootstrapped
estimates. Required, if either data is a data frame (and no vector), and only
selected variables from data should be processed.

method Character vector, indicating if confidence intervals should be based on boot-
strap standard error, multiplied by the value of the quantile function of the t-
distribution (default), or on sample quantiles of the bootstrapped values. See
’Details’ in boot_ci(). May be abbreviated.

ci.lvl Numeric, the level of the confidence intervals.

Details

The methods require one or more vectors of bootstrap replicate estimates as input.

• boot_est(): returns the bootstrapped estimate, simply by computing the mean value of all
bootstrap estimates.

• boot_se(): computes the nonparametric bootstrap standard error by calculating the standard
deviation of the input vector.

• The mean value of the input vector and its standard error is used by boot_ci() to calculate the
lower and upper confidence interval, assuming a t-distribution of bootstrap estimate replicates
(for method = "dist", the default, which is mean(x) +/- qt(.975, df = length(x) - 1) * sd(x));
for method = "quantile", 95\ confidence intervals (quantile(x, probs = c(0.025, 0.975))).
Use ci.lvl to change the level for the confidence interval.

• P-values from boot_p() are also based on t-statistics, assuming normal distribution.

Value

A data frame with either bootstrap estimate, standard error, the lower and upper confidence intervals
or the p-value for all bootstrapped estimates.

References

Carpenter J, Bithell J. Bootstrap confdence intervals: when, which, what? A practical guide for
medical statisticians. Statist. Med. 2000; 19:1141-1164
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See Also

[]bootstrap()] to generate nonparametric bootstrap samples.

Examples

data(efc)
bs <- bootstrap(efc, 100)

# now run models for each bootstrapped sample
bs$models <- lapply(

bs$strap,
function(.x) lm(neg_c_7 ~ e42dep + c161sex, data = .x)

)

# extract coefficient "dependency" and "gender" from each model
bs$dependency <- vapply(bs$models, function(x) coef(x)[2], numeric(1))
bs$gender <- vapply(bs$models, function(x) coef(x)[3], numeric(1))

# get bootstrapped confidence intervals
boot_ci(bs$dependency)

# compare with model fit
fit <- lm(neg_c_7 ~ e42dep + c161sex, data = efc)
confint(fit)[2, ]

# alternative function calls.
boot_ci(bs$dependency)
boot_ci(bs, "dependency")
boot_ci(bs, c("dependency", "gender"))
boot_ci(bs, c("dependency", "gender"), method = "q")

# compare coefficients
mean(bs$dependency)
boot_est(bs$dependency)
coef(fit)[2]

chisq_gof Compute model quality

Description

For logistic regression models, performs a Chi-squared goodness-of-fit-test.

Usage

chisq_gof(x, prob = NULL, weights = NULL)
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Arguments

x A numeric vector or a glm-object.

prob Vector of probabilities (indicating the population probabilities) of the same length
as x’s amount of categories / factor levels. Use nrow(table(x)) to determine
the amount of necessary values for prob. Only used, when x is a vector, and not
a glm-object.

weights Vector with weights, used to weight x.

Details

For vectors, this function is a convenient function for the chisq.test(), performing goodness-of-
fit test. For glm-objects, this function performs a goodness-of-fit test. A well-fitting model shows
no significant difference between the model and the observed data, i.e. the reported p-values should
be greater than 0.05.

Value

For vectors, returns the object of the computed chisq.test. For glm-objects, an object of class
chisq_gof with following values: p.value, the p-value for the goodness-of-fit test; z.score, the
standardized z-score for the goodness-of-fit test; rss, the residual sums of squares term and chisq,
the pearson chi-squared statistic.

References

Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression. Hoboken, NJ, USA: John
Wiley & Sons, Inc.

Examples

data(efc)
efc$neg_c_7d <- ifelse(efc$neg_c_7 < median(efc$neg_c_7, na.rm = TRUE), 0, 1)
m <- glm(

neg_c_7d ~ c161sex + barthtot + c172code,
data = efc,
family = binomial(link = "logit")

)

# goodness-of-fit test for logistic regression
chisq_gof(m)

# goodness-of-fit test for vectors against probabilities
# differing from population
chisq_gof(efc$e42dep, c(0.3,0.2,0.22,0.28))

# equal to population
chisq_gof(efc$e42dep, prop.table(table(efc$e42dep)))
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chi_squared_test Chi-Squared test

Description

This function performs a χ2 test for contingency tables or tests for given probabilities. The returned
effects sizes are Cramer’s V for tables with more than two rows or columns, Phi (ϕ) for 2x2 tables,
and Fei (Fei) for tests against given probabilities (see Ben-Shachar et al. 2023).

Usage

chi_squared_test(
data,
select = NULL,
by = NULL,
probabilities = NULL,
weights = NULL,
paired = FALSE,
...

)

Arguments

data A data frame.

select Name(s) of the continuous variable(s) (as character vector) to be used as samples
for the test. select can be one of the following:

• select can be used in combination with by, in which case select is the
name of the continous variable (and by indicates a grouping factor).

• select can also be a character vector of length two or more (more than
two names only apply to kruskal_wallis_test()), in which case the two
continuous variables are treated as samples to be compared. by must be
NULL in this case.

• If select select is of length two and paired = TRUE, the two samples are
considered as dependent and a paired test is carried out.

• If select specifies one variable and by = NULL, a one-sample test is carried
out (only applicable for t_test() and wilcoxon_test())

• For chi_squared_test(), if select specifies one variable and both by
and probabilities are NULL, a one-sample test against given probabili-
ties is automatically conducted, with equal probabilities for each level of
select.

by Name of the variable indicating the groups. Required if select specifies only
one variable that contains all samples to be compared in the test. If by is not a
factor, it will be coerced to a factor. For chi_squared_test(), if probabilities
is provided, by must be NULL.
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probabilities A numeric vector of probabilities for each cell in the contingency table. The
length of the vector must match the number of cells in the table, i.e. the num-
ber of unique levels of the variable specified in select. If probabilities is
provided, a chi-squared test for given probabilities is conducted. Furthermore,
if probabilities is given, by must be NULL. The probabilities must sum to 1.

weights Name of an (optional) weighting variable to be used for the test.

paired Logical, if TRUE, a McNemar test is conducted for 2x2 tables. Note that paired
only works for 2x2 tables.

... Additional arguments passed down to chisq.test().

Details

The function is a wrapper around chisq.test() and fisher.test() (for small expected values)
for contingency tables, and chisq.test() for given probabilities. When probabilities are pro-
vided, these are rescaled to sum to 1 (i.e. rescale.p = TRUE). When fisher.test() is called,
simulated p-values are returned (i.e. simulate.p.value = TRUE, see ?fisher.test). If paired =
TRUE and a 2x2 table is provided, a McNemar test (see mcnemar.test()) is conducted.

The weighted version of the chi-squared test is based on the a weighted table, using xtabs() as
input for chisq.test().

Interpretation of effect sizes are based on rules described in effectsize::interpret_phi(),
effectsize::interpret_cramers_v(), and effectsize::interpret_fei(). Use these func-
tion directly to get other interpretations, by providing the returned effect size as argument, e.g.
interpret_phi(0.35, rules = "gignac2016").

Value

A data frame with test results. The returned effects sizes are Cramer’s V for tables with more than
two rows or columns, Phi (ϕ) for 2x2 tables, and Fei (Fei) for tests against given probabilities.

Which test to use

The following table provides an overview of which test to use for different types of data. The choice
of test depends on the scale of the outcome variable and the number of samples to compare.

Samples Scale of Outcome Significance Test
1 binary / nominal chi_squared_test()
1 continuous, not normal wilcoxon_test()
1 continuous, normal t_test()
2, independent binary / nominal chi_squared_test()
2, independent continuous, not normal mann_whitney_test()
2, independent continuous, normal t_test()
2, dependent binary (only 2x2) chi_squared_test(paired=TRUE)
2, dependent continuous, not normal wilcoxon_test()
2, dependent continuous, normal t_test(paired=TRUE)
>2, independent continuous, not normal kruskal_wallis_test()
>2, independent continuous, normal datawizard::means_by_group()
>2, dependent continuous, not normal not yet implemented (1)
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>2, dependent continuous, normal not yet implemented (2)

(1) More than two dependent samples are considered as repeated measurements. For ordinal or not-
normally distributed outcomes, these samples are usually tested using a friedman.test(), which
requires the samples in one variable, the groups to compare in another variable, and a third variable
indicating the repeated measurements (subject IDs).

(2) More than two dependent samples are considered as repeated measurements. For normally
distributed outcomes, these samples are usually tested using a ANOVA for repeated measurements.
A more sophisticated approach would be using a linear mixed model.

References

• Ben-Shachar, M.S., Patil, I., Thériault, R., Wiernik, B.M., Lüdecke, D. (2023). Phi, Fei, Fo,
Fum: Effect Sizes for Categorical Data That Use the Chi-Squared Statistic. Mathematics, 11,
1982. doi:10.3390/math11091982

• Bender, R., Lange, S., Ziegler, A. Wichtige Signifikanztests. Dtsch Med Wochenschr 2007;
132: e24–e25

• du Prel, J.B., Röhrig, B., Hommel, G., Blettner, M. Auswahl statistischer Testverfahren. Dtsch
Arztebl Int 2010; 107(19): 343–8

See Also

• t_test() for parametric t-tests of dependent and independent samples.

• mann_whitney_test() for non-parametric tests of unpaired (independent) samples.

• wilcoxon_test() for Wilcoxon rank sum tests for non-parametric tests of paired (dependent)
samples.

• kruskal_wallis_test() for non-parametric tests with more than two independent samples.

• chi_squared_test() for chi-squared tests (two categorical variables, dependent and inde-
pendent).

Examples

data(efc)
efc$weight <- abs(rnorm(nrow(efc), 1, 0.3))

# Chi-squared test
chi_squared_test(efc, "c161sex", by = "e16sex")

# weighted Chi-squared test
chi_squared_test(efc, "c161sex", by = "e16sex", weights = "weight")

# Chi-squared test for given probabilities
chi_squared_test(efc, "c161sex", probabilities = c(0.3, 0.7))

https://doi.org/10.3390/math11091982
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cramers_v Measures of association for contingency tables

Description

This function calculates various measure of association for contingency tables and returns the statis-
tic and p-value. Supported measures are Cramer’s V, Phi, Spearman’s rho, Kendall’s tau and Pear-
son’s r.

Usage

cramers_v(tab, ...)

cramer(tab, ...)

## S3 method for class 'formula'
cramers_v(
formula,
data,
ci.lvl = NULL,
n = 1000,
method = c("dist", "quantile"),
...

)

phi(tab, ...)

crosstable_statistics(
data,
x1 = NULL,
x2 = NULL,
statistics = c("auto", "cramer", "phi", "spearman", "kendall", "pearson", "fisher"),
weights = NULL,
...

)

xtab_statistics(
data,
x1 = NULL,
x2 = NULL,
statistics = c("auto", "cramer", "phi", "spearman", "kendall", "pearson", "fisher"),
weights = NULL,
...

)
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Arguments

tab A table() or ftable(). Tables of class xtabs() and other will be coerced to
ftable objects.

... Other arguments, passed down to the statistic functions chisq.test(), fisher.test()
or cor.test().

formula A formula of the form lhs ~ rhs where lhs is a numeric variable giving the data
values and rhs a factor giving the corresponding groups.

data A data frame or a table object. If a table object, x1 and x2 will be ignored. For
Kendall’s tau, Spearman’s rho or Pearson’s product moment correlation coeffi-
cient, data needs to be a data frame. If x1 and x2 are not specified, the first two
columns of the data frames are used as variables to compute the crosstab.

ci.lvl Scalar between 0 and 1. If not NULL, returns a data frame including lower and
upper confidence intervals.

n Number of bootstraps to be generated.

method Character vector, indicating if confidence intervals should be based on boot-
strap standard error, multiplied by the value of the quantile function of the t-
distribution (default), or on sample quantiles of the bootstrapped values. See
’Details’ in boot_ci(). May be abbreviated.

x1 Name of first variable that should be used to compute the contingency table. If
data is a table object, this argument will be irgnored.

x2 Name of second variable that should be used to compute the contingency table.
If data is a table object, this argument will be irgnored.

statistics Name of measure of association that should be computed. May be one of
"auto", "cramer", "phi", "spearman", "kendall", "pearson" or "fisher".
See ’Details’.

weights Name of variable in x that indicated the vector of weights that will be applied to
weight all observations. Default is NULL, so no weights are used.

Details

The p-value for Cramer’s V and the Phi coefficient are based on chisq.test(). If any expected
value of a table cell is smaller than 5, or smaller than 10 and the df is 1, then fisher.test() is used
to compute the p-value, unless statistics = "fisher"; in this case, the use of fisher.test() is
forced to compute the p-value. The test statistic is calculated with cramers_v() resp. phi().

Both test statistic and p-value for Spearman’s rho, Kendall’s tau and Pearson’s r are calculated with
cor.test().

When statistics = "auto", only Cramer’s V or Phi are calculated, based on the dimension of the
table (i.e. if the table has more than two rows or columns, Cramer’s V is calculated, else Phi).

Value

For phi(), the table’s Phi value. For [cramers_v()], the table’s Cramer’s V.

For crosstable_statistics(), a list with following components:

• estimate: the value of the estimated measure of association.
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• p.value: the p-value for the test.
• statistic: the value of the test statistic.
• stat.name: the name of the test statistic.
• stat.html: if applicable, the name of the test statistic, in HTML-format.
• df: the degrees of freedom for the contingency table.
• method: character string indicating the name of the measure of association.
• method.html: if applicable, the name of the measure of association, in HTML-format.
• method.short: the short form of association measure, equals the statistics-argument.
• fisher: logical, if Fisher’s exact test was used to calculate the p-value.

References

Ben-Shachar, M.S., Patil, I., Thériault, R., Wiernik, B.M., Lüdecke, D. (2023). Phi, Fei, Fo, Fum:
Effect Sizes for Categorical Data That Use the Chi-Squared Statistic. Mathematics, 11, 1982.
doi:10.3390/math11091982

Examples

# Phi coefficient for 2x2 tables
tab <- table(sample(1:2, 30, TRUE), sample(1:2, 30, TRUE))
phi(tab)

# Cramer's V for nominal variables with more than 2 categories
tab <- table(sample(1:2, 30, TRUE), sample(1:3, 30, TRUE))
cramer(tab)

# formula notation
data(efc)
cramer(e16sex ~ c161sex, data = efc)

# bootstrapped confidence intervals
cramer(e16sex ~ c161sex, data = efc, ci.lvl = .95, n = 100)

# 2x2 table, compute Phi automatically
crosstable_statistics(efc, e16sex, c161sex)

# more dimensions than 2x2, compute Cramer's V automatically
crosstable_statistics(efc, c172code, c161sex)

# ordinal data, use Kendall's tau
crosstable_statistics(efc, e42dep, quol_5, statistics = "kendall")

# calcilate Spearman's rho, with continuity correction
crosstable_statistics(efc,

e42dep,
quol_5,
statistics = "spearman",
exact = FALSE,
continuity = TRUE

)

https://doi.org/10.3390/math11091982
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cv Compute model quality

Description

Compute the coefficient of variation.

Usage

cv(x, ...)

Arguments

x Fitted linear model of class lm, merMod (lme4) or lme (nlme).

... More fitted model objects, to compute multiple coefficients of variation at once.

Details

The advantage of the cv is that it is unitless. This allows coefficient of variation to be compared
to each other in ways that other measures, like standard deviations or root mean squared residuals,
cannot be.

Value

Numeric, the coefficient of variation.

Examples

data(efc)
fit <- lm(barthtot ~ c160age + c12hour, data = efc)
cv(fit)

cv_error Test and training error from model cross-validation

Description

cv_error() computes the root mean squared error from a model fitted to kfold cross-validated test-
training-data. cv_compare() does the same, for multiple formulas at once (by calling cv_error()
for each formula).

Usage

cv_error(data, formula, k = 5)

cv_compare(data, formulas, k = 5)
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Arguments

data A data frame.

formula The formula to fit the linear model for the test and training data.

k The number of folds for the kfold-crossvalidation.

formulas A list of formulas, to fit linear models for the test and training data.

Details

cv_error() first generates cross-validated test-training pairs, using crossv_kfold and then fits a
linear model, which is described in formula, to the training data. Then, predictions for the test data
are computed, based on the trained models. The training error is the mean value of the rmse for all
trained models; the test error is the rmse based on all residuals from the test data.

Value

A data frame with the root mean squared errors for the training and test data.

Examples

data(efc)
cv_error(efc, neg_c_7 ~ barthtot + c161sex)

cv_compare(efc, formulas = list(
neg_c_7 ~ barthtot + c161sex,
neg_c_7 ~ barthtot + c161sex + e42dep,
neg_c_7 ~ barthtot + c12hour

))

design_effect Design effects for two-level mixed models

Description

Compute the design effect (also called Variance Inflation Factor) for mixed models with two-level
design.

Usage

design_effect(n, icc = 0.05)

Arguments

n Average number of observations per grouping cluster (i.e. level-2 unit).

icc Assumed intraclass correlation coefficient for multilevel-model.
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Details

The formula for the design effect is simply (1 + (n - 1) * icc).

Value

The design effect (Variance Inflation Factor) for the two-level model.

References

Bland JM. 2000. Sample size in guidelines trials. Fam Pract. (17), 17-20.

Hsieh FY, Lavori PW, Cohen HJ, Feussner JR. 2003. An Overview of Variance Inflation Fac-
tors for Sample-Size Calculation. Evaluation and the Health Professions 26: 239-257. doi:10.1177/
0163278703255230

Snijders TAB. 2005. Power and Sample Size in Multilevel Linear Models. In: Everitt BS, Howell
DC (Hrsg.). Encyclopedia of Statistics in Behavioral Science. Chichester, UK: John Wiley and
Sons, Ltd. doi:10.1002/0470013192.bsa492

Thompson DM, Fernald DH, Mold JW. 2012. Intraclass Correlation Coefficients Typical of Cluster-
Randomized Studies: Estimates From the Robert Wood Johnson Prescription for Health Projects.
The Annals of Family Medicine;10(3):235-40. doi:10.1370/afm.1347

Examples

# Design effect for two-level model with 30 observations per
# cluster group (level-2 unit) and an assumed intraclass
# correlation coefficient of 0.05.
design_effect(n = 30)

# Design effect for two-level model with 24 observation per cluster
# group and an assumed intraclass correlation coefficient of 0.2.
design_effect(n = 24, icc = 0.2)

efc Sample dataset from the EUROFAMCARE project

Description

German data set from the European study on family care of older people.

References

Lamura G, Döhner H, Kofahl C, editors. Family carers of older people in Europe: a six-country
comparative study. Münster: LIT, 2008.

https://doi.org/10.1177/0163278703255230
https://doi.org/10.1177/0163278703255230
https://doi.org/10.1002/0470013192.bsa492
https://doi.org/10.1370/afm.1347
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find_beta Determining distribution parameters

Description

find_beta(), find_normal() and find_cauchy() find the shape, mean and standard deviation
resp. the location and scale parameters to describe the beta, normal or cauchy distribution, based
on two percentiles. find_beta2() finds the shape parameters for a Beta distribution, based on a
probability value and its standard error or confidence intervals.

Usage

find_beta(x1, p1, x2, p2)

find_beta2(x, se, ci, n)

find_cauchy(x1, p1, x2, p2)

find_normal(x1, p1, x2, p2)

Arguments

x1 Value for the first percentile.

p1 Probability of the first percentile.

x2 Value for the second percentile.

p2 Probability of the second percentile.

x Numeric, a probability value between 0 and 1. Typically indicates a prevalence
rate of an outcome of interest; Or an integer value with the number of observed
events. In this case, specify n to indicate the toral number of observations.

se The standard error of x. Either se or ci must be specified.

ci The upper limit of the confidence interval of x. Either se or ci must be specified.

n Numeric, number of total observations. Needs to be specified, if x is an integer
(number of observed events), and no probability. See ’Examples’.

Details

These functions can be used to find parameter for various distributions, to define prior probabilities
for Bayesian analyses. x1, p1, x2 and p2 are parameters that describe two quantiles. Given this
knowledge, the distribution parameters are returned.

Use find_beta2(), if the known parameters are, e.g. a prevalence rate or similar probability, and
its standard deviation or confidence interval. In this case. x should be a probability, for example
a prevalence rate of a certain event. se then needs to be the standard error for this probability.
Alternatively, ci can be specified, which should indicate the upper limit of the confidence interval
od the probability (prevalence rate) x. If the number of events out of a total number of trials is
known (e.g. 12 heads out of 30 coin tosses), x can also be the number of observed events, while n
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indicates the total amount of trials (in the above example, the function call would be: find_beta2(x
= 12, n = 30)).

Value

A list of length two, with the two distribution parameters than can be used to define the distribution,
which (best) describes the shape for the given input parameters.

References

Cook JD. Determining distribution parameters from quantiles. 2010: Department of Biostatistics,
Texas (PDF)

Examples

# example from blogpost:
# https://www.johndcook.com/blog/2010/01/31/parameters-from-percentiles/
# 10% of patients respond within 30 days of treatment
# and 80% respond within 90 days of treatment
find_normal(x1 = 30, p1 = .1, x2 = 90, p2 = .8)
find_cauchy(x1 = 30, p1 = .1, x2 = 90, p2 = .8)

parms <- find_normal(x1 = 30, p1 = .1, x2 = 90, p2 = .8)
curve(

dnorm(x, mean = parms$mean, sd = parms$sd),
from = 0, to = 200

)

parms <- find_cauchy(x1 = 30, p1 = .1, x2 = 90, p2 = .8)
curve(

dcauchy(x, location = parms$location, scale = parms$scale),
from = 0, to = 200

)

find_beta2(x = .25, ci = .5)

shapes <- find_beta2(x = .25, ci = .5)
curve(dbeta(x, shapes[[1]], shapes[[2]]))

# find Beta distribution for 3 events out of 20 observations
find_beta2(x = 3, n = 20)

shapes <- find_beta2(x = 3, n = 20)
curve(dbeta(x, shapes[[1]], shapes[[2]]))

https://www.johndcook.com/quantiles_parameters.pdf
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gmd Gini’s Mean Difference

Description

gmd() computes Gini’s mean difference for a numeric vector or for all numeric vectors in a data
frame.

Usage

gmd(x, select = NULL)

Arguments

x A vector or data frame.

select Optional, names of variables as character vector that should be selected for fur-
ther processing. Required, if x is a data frame (and no vector) and only selected
variables from x should be processed.

Value

For numeric vectors, Gini’s mean difference. For non-numeric vectors or vectors of length < 2,
returns NA.

Note

Gini’s mean difference is defined as the mean absolute difference between any two distinct elements
of a vector. Missing values from x are silently removed.

References

David HA. Gini’s mean difference rediscovered. Biometrika 1968(55): 573-575

Examples

data(efc)
gmd(efc$e17age)
gmd(efc, c("e17age", "c160age", "c12hour"))
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inequ_trend Compute trends in status inequalities

Description

This method computes the proportional change of absolute (rate differences) and relative (rate ra-
tios) inequalities of prevalence rates for two different status groups, as proposed by Mackenbach et
al. (2015).

Usage

inequ_trend(data, prev.low, prev.hi)

Arguments

data A data frame that contains the variables with prevalence rates for both low and
high status groups (see ’Examples’).

prev.low The name of the variable with the prevalence rates for the low status groups.

prev.hi The name of the variable with the prevalence rates for the hi status groups.

Details

Given the time trend of prevalence rates of an outcome for two status groups (e.g. the mortality rates
for people with lower and higher socioeconomic status over 40 years), this function computes the
proportional change of absolute and relative inequalities, expressed in changes in rate differences
and rate ratios. The function implements the algorithm proposed by Mackenbach et al. 2015.

Value

A data frame with the prevalence rates as well as the values for the proportional change in absolute
(rd) and relative (rr) ineqqualities.

References

Mackenbach JP, Martikainen P, Menvielle G, de Gelder R. 2015. The Arithmetic of Reducing
Relative and Absolute Inequalities in Health: A Theoretical Analysis Illustrated with European
Mortality Data. Journal of Epidemiology and Community Health 70(7): 730-36. doi:10.1136/jech-
2015207018

Examples

# This example reproduces Fig. 1 of Mackenbach et al. 2015, p.5

# 40 simulated time points, with an initial rate ratio of 2 and
# a rate difference of 100 (i.e. low status group starts with a
# prevalence rate of 200, the high status group with 100)

# annual decline of prevalence is 1% for the low, and 3% for the

https://doi.org/10.1136/jech-2015-207018
https://doi.org/10.1136/jech-2015-207018
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# high status group

n <- 40
time <- seq(1, n, by = 1)
lo <- rep(200, times = n)
for (i in 2:n) lo[i] <- lo[i - 1] * .99

hi <- rep(100, times = n)
for (i in 2:n) hi[i] <- hi[i - 1] * .97

prev.data <- data.frame(lo, hi)

# print values
inequ_trend(prev.data, "lo", "hi")

# plot trends - here we see that the relative inequalities
# are increasing over time, while the absolute inequalities
# are first increasing as well, but later are decreasing
# (while rel. inequ. are still increasing)
plot(inequ_trend(prev.data, "lo", "hi"))

is_prime Find prime numbers

Description

This functions checks whether a number is, or numbers in a vector are prime numbers.

Usage

is_prime(x)

Arguments

x An integer, or a vector of integers.

Value

TRUE for each prime number in x, FALSE otherwise.

Examples

is_prime(89)
is_prime(15)
is_prime(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
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kruskal_wallis_test Kruskal-Wallis test

Description

This function performs a Kruskal-Wallis rank sum test, which is a non-parametric method to test
the null hypothesis that the population median of all of the groups are equal. The alternative is that
they differ in at least one. Unlike the underlying base R function kruskal.test(), this function
allows for weighted tests.

Usage

kruskal_wallis_test(data, select = NULL, by = NULL, weights = NULL)

Arguments

data A data frame.

select Name(s) of the continuous variable(s) (as character vector) to be used as samples
for the test. select can be one of the following:

• select can be used in combination with by, in which case select is the
name of the continous variable (and by indicates a grouping factor).

• select can also be a character vector of length two or more (more than
two names only apply to kruskal_wallis_test()), in which case the two
continuous variables are treated as samples to be compared. by must be
NULL in this case.

• If select select is of length two and paired = TRUE, the two samples are
considered as dependent and a paired test is carried out.

• If select specifies one variable and by = NULL, a one-sample test is carried
out (only applicable for t_test() and wilcoxon_test())

• For chi_squared_test(), if select specifies one variable and both by
and probabilities are NULL, a one-sample test against given probabili-
ties is automatically conducted, with equal probabilities for each level of
select.

by Name of the variable indicating the groups. Required if select specifies only
one variable that contains all samples to be compared in the test. If by is not a
factor, it will be coerced to a factor. For chi_squared_test(), if probabilities
is provided, by must be NULL.

weights Name of an (optional) weighting variable to be used for the test.

Details

The function simply is a wrapper around kruskal.test(). The weighted version of the Kruskal-
Wallis test is based on the survey package, using survey::svyranktest().
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Value

A data frame with test results.

Which test to use

The following table provides an overview of which test to use for different types of data. The choice
of test depends on the scale of the outcome variable and the number of samples to compare.

Samples Scale of Outcome Significance Test
1 binary / nominal chi_squared_test()
1 continuous, not normal wilcoxon_test()
1 continuous, normal t_test()
2, independent binary / nominal chi_squared_test()
2, independent continuous, not normal mann_whitney_test()
2, independent continuous, normal t_test()
2, dependent binary (only 2x2) chi_squared_test(paired=TRUE)
2, dependent continuous, not normal wilcoxon_test()
2, dependent continuous, normal t_test(paired=TRUE)
>2, independent continuous, not normal kruskal_wallis_test()
>2, independent continuous, normal datawizard::means_by_group()
>2, dependent continuous, not normal not yet implemented (1)
>2, dependent continuous, normal not yet implemented (2)

(1) More than two dependent samples are considered as repeated measurements. For ordinal or not-
normally distributed outcomes, these samples are usually tested using a friedman.test(), which
requires the samples in one variable, the groups to compare in another variable, and a third variable
indicating the repeated measurements (subject IDs).

(2) More than two dependent samples are considered as repeated measurements. For normally
distributed outcomes, these samples are usually tested using a ANOVA for repeated measurements.
A more sophisticated approach would be using a linear mixed model.

References

• Bender, R., Lange, S., Ziegler, A. Wichtige Signifikanztests. Dtsch Med Wochenschr 2007;
132: e24–e25

• du Prel, J.B., Röhrig, B., Hommel, G., Blettner, M. Auswahl statistischer Testverfahren. Dtsch
Arztebl Int 2010; 107(19): 343–8

See Also

• t_test() for parametric t-tests of dependent and independent samples.
• mann_whitney_test() for non-parametric tests of unpaired (independent) samples.
• wilcoxon_test() for Wilcoxon rank sum tests for non-parametric tests of paired (dependent)

samples.
• kruskal_wallis_test() for non-parametric tests with more than two independent samples.
• chi_squared_test() for chi-squared tests (two categorical variables, dependent and inde-

pendent).
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Examples

data(efc)
# Kruskal-Wallis test for elder's age by education
kruskal_wallis_test(efc, "e17age", by = "c172code")

# when data is in wide-format, specify all relevant continuous
# variables in `select` and omit `by`
set.seed(123)
wide_data <- data.frame(

scale1 = runif(20),
scale2 = runif(20),
scale3 = runif(20)

)
kruskal_wallis_test(wide_data, select = c("scale1", "scale2", "scale3"))

# same as if we had data in long format, with grouping variable
long_data <- data.frame(

scales = c(wide_data$scale1, wide_data$scale2, wide_data$scale3),
groups = rep(c("A", "B", "C"), each = 20)

)
kruskal_wallis_test(long_data, select = "scales", by = "groups")
# base R equivalent
kruskal.test(scales ~ groups, data = long_data)

mann_whitney_test Mann-Whitney test

Description

This function performs a Mann-Whitney test (or Wilcoxon rank sum test for unpaired samples).
Unlike the underlying base R function wilcox.test(), this function allows for weighted tests
and automatically calculates effect sizes. For paired (dependent) samples, or for one-sample tests,
please use the wilcoxon_test() function.

A Mann-Whitney test is a non-parametric test for the null hypothesis that two independent samples
have identical continuous distributions. It can be used for ordinal scales or when the two continuous
variables are not normally distributed. For large samples, or approximately normally distributed
variables, the t_test() function can be used.

Usage

mann_whitney_test(
data,
select = NULL,
by = NULL,
weights = NULL,
mu = 0,
alternative = "two.sided",
...

)
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Arguments

data A data frame.

select Name(s) of the continuous variable(s) (as character vector) to be used as samples
for the test. select can be one of the following:

• select can be used in combination with by, in which case select is the
name of the continous variable (and by indicates a grouping factor).

• select can also be a character vector of length two or more (more than
two names only apply to kruskal_wallis_test()), in which case the two
continuous variables are treated as samples to be compared. by must be
NULL in this case.

• If select select is of length two and paired = TRUE, the two samples are
considered as dependent and a paired test is carried out.

• If select specifies one variable and by = NULL, a one-sample test is carried
out (only applicable for t_test() and wilcoxon_test())

• For chi_squared_test(), if select specifies one variable and both by
and probabilities are NULL, a one-sample test against given probabili-
ties is automatically conducted, with equal probabilities for each level of
select.

by Name of the variable indicating the groups. Required if select specifies only
one variable that contains all samples to be compared in the test. If by is not a
factor, it will be coerced to a factor. For chi_squared_test(), if probabilities
is provided, by must be NULL.

weights Name of an (optional) weighting variable to be used for the test.

mu The hypothesized difference in means (for t_test()) or location shift (for wilcoxon_test()
and mann_whitney_test()). The default is 0.

alternative A character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". See ?t.test and ?wilcox.test.

... Additional arguments passed to wilcox.test() (for unweighted tests, i.e. when
weights = NULL).

Details

This function is based on wilcox.test() and coin::wilcox_test() (the latter to extract effect
sizes). The weighted version of the test is based on survey::svyranktest().

Interpretation of the effect size r, as a rule-of-thumb:

• small effect >= 0.1

• medium effect >= 0.3

• large effect >= 0.5

r is calcuated as r = |Z|√
n1+n2

.

Value

A data frame with test results. The function returns p and Z-values as well as effect size r and
group-rank-means.
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Which test to use

The following table provides an overview of which test to use for different types of data. The choice
of test depends on the scale of the outcome variable and the number of samples to compare.

Samples Scale of Outcome Significance Test
1 binary / nominal chi_squared_test()
1 continuous, not normal wilcoxon_test()
1 continuous, normal t_test()
2, independent binary / nominal chi_squared_test()
2, independent continuous, not normal mann_whitney_test()
2, independent continuous, normal t_test()
2, dependent binary (only 2x2) chi_squared_test(paired=TRUE)
2, dependent continuous, not normal wilcoxon_test()
2, dependent continuous, normal t_test(paired=TRUE)
>2, independent continuous, not normal kruskal_wallis_test()
>2, independent continuous, normal datawizard::means_by_group()
>2, dependent continuous, not normal not yet implemented (1)
>2, dependent continuous, normal not yet implemented (2)

(1) More than two dependent samples are considered as repeated measurements. For ordinal or not-
normally distributed outcomes, these samples are usually tested using a friedman.test(), which
requires the samples in one variable, the groups to compare in another variable, and a third variable
indicating the repeated measurements (subject IDs).

(2) More than two dependent samples are considered as repeated measurements. For normally
distributed outcomes, these samples are usually tested using a ANOVA for repeated measurements.
A more sophisticated approach would be using a linear mixed model.

References

• Ben-Shachar, M.S., Patil, I., Thériault, R., Wiernik, B.M., Lüdecke, D. (2023). Phi, Fei, Fo,
Fum: Effect Sizes for Categorical Data That Use the Chi-Squared Statistic. Mathematics, 11,
1982. doi:10.3390/math11091982

• Bender, R., Lange, S., Ziegler, A. Wichtige Signifikanztests. Dtsch Med Wochenschr 2007;
132: e24–e25

• du Prel, J.B., Röhrig, B., Hommel, G., Blettner, M. Auswahl statistischer Testverfahren. Dtsch
Arztebl Int 2010; 107(19): 343–8

See Also

• t_test() for parametric t-tests of dependent and independent samples.
• mann_whitney_test() for non-parametric tests of unpaired (independent) samples.
• wilcoxon_test() for Wilcoxon rank sum tests for non-parametric tests of paired (dependent)

samples.
• kruskal_wallis_test() for non-parametric tests with more than two independent samples.
• chi_squared_test() for chi-squared tests (two categorical variables, dependent and inde-

pendent).

https://doi.org/10.3390/math11091982
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Examples

data(efc)
# Mann-Whitney-U tests for elder's age by elder's sex.
mann_whitney_test(efc, "e17age", by = "e16sex")
# base R equivalent
wilcox.test(e17age ~ e16sex, data = efc)

# when data is in wide-format, specify all relevant continuous
# variables in `select` and omit `by`
set.seed(123)
wide_data <- data.frame(scale1 = runif(20), scale2 = runif(20))
mann_whitney_test(wide_data, select = c("scale1", "scale2"))
# base R equivalent
wilcox.test(wide_data$scale1, wide_data$scale2)
# same as if we had data in long format, with grouping variable
long_data <- data.frame(

scales = c(wide_data$scale1, wide_data$scale2),
groups = as.factor(rep(c("A", "B"), each = 20))

)
mann_whitney_test(long_data, select = "scales", by = "groups")
# base R equivalent
wilcox.test(scales ~ groups, long_data)

nhanes_sample Sample dataset from the National Health and Nutrition Examination
Survey

Description

Selected variables from the National Health and Nutrition Examination Survey that are used in the
example from Lumley (2010), Appendix E. See svyglm.nb for examples.

References

Lumley T (2010). Complex Surveys: a guide to analysis using R. Wiley

prop Proportions of values in a vector

Description

prop() calculates the proportion of a value or category in a variable. props() does the same,
but allows for multiple logical conditions in one statement. It is similar to mean() with logical
predicates, however, both prop() and props() work with grouped data frames.
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Usage

prop(data, ..., weights = NULL, na.rm = TRUE, digits = 4)

props(data, ..., na.rm = TRUE, digits = 4)

Arguments

data A data frame. May also be a grouped data frame (see ’Examples’).

... One or more value pairs of comparisons (logical predicates). Put variable names
the left-hand-side and values to match on the right hand side. Expressions may
be quoted or unquoted. See ’Examples’.

weights Vector of weights that will be applied to weight all observations. Must be a
vector of same length as the input vector. Default is NULL, so no weights are
used.

na.rm Logical, whether to remove NA values from the vector when the proportion is
calculated. na.rm = FALSE gives you the raw percentage of a value in a vector,
na.rm = TRUE the valid percentage.

digits Amount of digits for returned values.

Details

prop() only allows one logical statement per comparison, while props() allows multiple logical
statements per comparison. However, prop() supports weighting of variables before calculating
proportions, and comparisons may also be quoted. Hence, prop() also processes comparisons,
which are passed as character vector (see ’Examples’).

Value

For one condition, a numeric value with the proportion of the values inside a vector. For more than
one condition, a data frame with one column of conditions and one column with proportions. For
grouped data frames, returns a data frame with one column per group with grouping categories,
followed by one column with proportions per condition.

Examples

data(efc)

# proportion of value 1 in e42dep
prop(efc, e42dep == 1)

# expression may also be completely quoted
prop(efc, "e42dep == 1")

# use "props()" for multiple logical statements
props(efc, e17age > 70 & e17age < 80)

# proportion of value 1 in e42dep, and all values greater
# than 2 in e42dep, including missing values. will return a data frame
prop(efc, e42dep == 1, e42dep > 2, na.rm = FALSE)
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# for factors or character vectors, use quoted or unquoted values
library(datawizard)
# convert numeric to factor, using labels as factor levels
efc$e16sex <- to_factor(efc$e16sex)
efc$n4pstu <- to_factor(efc$n4pstu)

# get proportion of female older persons
prop(efc, e16sex == female)

# get proportion of male older persons
prop(efc, e16sex == "male")

# "props()" needs quotes around non-numeric factor levels
props(efc,

e17age > 70 & e17age < 80,
n4pstu == 'Care Level 1' | n4pstu == 'Care Level 3'

)

r2 Deprecated functions

Description

A list of deprecated functions.

Usage

r2(x)

cohens_f(x, ...)

eta_sq(x, ...)

epsilon_sq(x, ...)

omega_sq(x, ...)

scale_weights(x, ...)

robust(x, ...)

icc(x)

p_value(x, ...)

se(x, ...)
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means_by_group(x, ...)

mean_n(x, ...)

Arguments

x An object.

... Currently not used.

Value

Nothing.

samplesize_mixed Sample size for linear mixed models

Description

Compute an approximated sample size for linear mixed models (two-level-designs), based on power-
calculation for standard design and adjusted for design effect for 2-level-designs.

Usage

samplesize_mixed(
eff.size,
df.n = NULL,
power = 0.8,
sig.level = 0.05,
k,
n,
icc = 0.05

)

smpsize_lmm(
eff.size,
df.n = NULL,
power = 0.8,
sig.level = 0.05,
k,
n,
icc = 0.05

)
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Arguments

eff.size Effect size.

df.n Optional argument for the degrees of freedom for numerator. See ’Details’.

power Power of test (1 minus Type II error probability).

sig.level Significance level (Type I error probability).

k Number of cluster groups (level-2-unit) in multilevel-design.

n Optional, number of observations per cluster groups (level-2-unit) in multilevel-
design.

icc Expected intraclass correlation coefficient for multilevel-model.

Details

The sample size calculation is based on a power-calculation for the standard design. If df.n
is not specified, a power-calculation for an unpaired two-sample t-test will be computed (using
pwr.t.test of the pwr-package). If df.n is given, a power-calculation for general linear mod-
els will be computed (using pwr.f2.test of the pwr-package). The sample size of the standard
design is then adjusted for the design effect of two-level-designs (see design_effect). Thus, the
sample size calculation is appropriate in particular for two-level-designs (see Snijders 2005 ). Mod-
els that additionally include repeated measures (three-level-designs) may work as well, however,
the computed sample size may be less accurate.

Value

A list with two values: The number of subjects per cluster, and the total sample size for the linear
mixed model.

References

Cohen J. 1988. Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,NJ:
Lawrence Erlbaum.

Hsieh FY, Lavori PW, Cohen HJ, Feussner JR. 2003. An Overview of Variance Inflation Factors for
Sample-Size Calculation. Evaluation and the Health Professions 26: 239-257.

Snijders TAB. 2005. Power and Sample Size in Multilevel Linear Models. In: Everitt BS, Howell
DC (Hrsg.). Encyclopedia of Statistics in Behavioral Science. Chichester, UK: John Wiley and
Sons, Ltd.

Examples

# Sample size for multilevel model with 30 cluster groups and a small to
# medium effect size (Cohen's d) of 0.3. 27 subjects per cluster and
# hence a total sample size of about 802 observations is needed.
samplesize_mixed(eff.size = .3, k = 30)

# Sample size for multilevel model with 20 cluster groups and a medium
# to large effect size for linear models of 0.2. Five subjects per cluster and
# hence a total sample size of about 107 observations is needed.

https://CRAN.R-project.org/package=pwr
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samplesize_mixed(eff.size = .2, df.n = 5, k = 20, power = .9)

se_ybar Standard error of sample mean for mixed models

Description

Compute the standard error for the sample mean for mixed models, regarding the extent to which
clustering affects the standard errors. May be used as part of the multilevel power calculation for
cluster sampling (see Gelman and Hill 2007, 447ff ).

Usage

se_ybar(fit)

Arguments

fit Fitted mixed effects model (merMod-class).

Value

The standard error of the sample mean of fit.

References

Gelman A, Hill J. 2007. Data analysis using regression and multilevel/hierarchical models. Cam-
bridge, New York: Cambridge University Press

Examples

fit <- lmer(Reaction ~ 1 + (1 | Subject), sleepstudy)
se_ybar(fit)

survey_median Weighted statistics for variables

Description

weighted_se() computes weighted standard errors of a variable or for all variables of a data frame.
survey_median() computes the median for a variable in a survey-design (see [survey::svydesign()]).
weighted_correlation() computes a weighted correlation for a two-sided alternative hypothesis.
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Usage

survey_median(x, design)

weighted_correlation(data, ...)

## Default S3 method:
weighted_correlation(data, x, y, weights, ci.lvl = 0.95, ...)

## S3 method for class 'formula'
weighted_correlation(formula, data, ci.lvl = 0.95, ...)

weighted_se(x, weights = NULL)

Arguments

x (Numeric) vector or a data frame. For survey_median() or weighted_ttest(),
the bare (unquoted) variable name, or a character vector with the variable name.

design An object of class svydesign, providing a specification of the survey design.

data A data frame.

... Currently not used.

y Optional, bare (unquoted) variable name, or a character vector with the variable
name.

weights Bare (unquoted) variable name, or a character vector with the variable name
of the numeric vector of weights. If weights = NULL, unweighted statistic is
reported.

ci.lvl Confidence level of the interval.

formula A formula of the form lhs ~ rhs1 + rhs2 where lhs is a numeric variable giv-
ing the data values and rhs1 a factor with two levels giving the corresponding
groups and rhs2 a variable with weights.

Value

The weighted (test) statistic.

Examples

data(efc)
weighted_se(efc$c12hour, abs(runif(n = nrow(efc))))

# survey_median ----
# median for variables from weighted survey designs
data(nhanes_sample)

des <- survey::svydesign(
id = ~SDMVPSU,
strat = ~SDMVSTRA,
weights = ~WTINT2YR,
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nest = TRUE,
data = nhanes_sample

)
survey_median(total, des)
survey_median("total", des)

svyglm.nb Survey-weighted negative binomial generalised linear model

Description

svyglm.nb() is an extension to the survey-package to fit survey-weighted negative binomial mod-
els. It uses svymle to fit sampling-weighted maximum likelihood estimates, based on starting values
provided by glm.nb, as proposed by Lumley (2010, pp249).

Usage

svyglm.nb(formula, design, ...)

Arguments

formula An object of class formula, i.e. a symbolic description of the model to be fitted.
See ’Details’ in glm.

design An object of class svydesign, providing a specification of the survey design.

... Other arguments passed down to glm.nb.

Details

For details on the computation method, see Lumley (2010), Appendix E (especially 254ff.)

sjstats implements following S3-methods for svyglm.nb-objects: family(), model.frame(), formula(),
print(), predict() and residuals(). However, these functions have some limitations:

• family() simply returns the family-object from the underlying glm.nb-model.

• The predict()-method just re-fits the svyglm.nb-model with glm.nb, overwrites the $coefficients
from this model-object with the coefficients from the returned svymle-object and finally calls
predict.glm to compute the predicted values.

• residuals() re-fits the svyglm.nb-model with glm.nb and then computes the Pearson-residuals
from the glm.nb-object.

Value

An object of class svymle and svyglm.nb, with some additional information about the model.

References

Lumley T (2010). Complex Surveys: a guide to analysis using R. Wiley

https://CRAN.R-project.org/package=survey
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Examples

# ------------------------------------------
# This example reproduces the results from
# Lumley 2010, figure E.7 (Appendix E, p256)
# ------------------------------------------
if (require("survey")) {

data(nhanes_sample)

# create survey design
des <- svydesign(
id = ~SDMVPSU,
strat = ~SDMVSTRA,
weights = ~WTINT2YR,
nest = TRUE,
data = nhanes_sample

)

# fit negative binomial regression
fit <- svyglm.nb(total ~ factor(RIAGENDR) * (log(age) + factor(RIDRETH1)), des)

# print coefficients and standard errors
fit

}

svyglm.zip Survey-weighted zero-inflated Poisson model

Description

svyglm.zip() is an extension to the survey-package to fit survey-weighted zero-inflated Poisson
models. It uses svymle to fit sampling-weighted maximum likelihood estimates, based on starting
values provided by zeroinfl.

Usage

svyglm.zip(formula, design, ...)

Arguments

formula An object of class formula, i.e. a symbolic description of the model to be fitted.
See ’Details’ in zeroinfl.

design An object of class svydesign, providing a specification of the survey design.

... Other arguments passed down to zeroinfl.

Details

Code modified from https://notstatschat.rbind.io/2015/05/26/zero-inflated-poisson-from-complex-
samples/.

https://CRAN.R-project.org/package=survey


38 table_values

Value

An object of class svymle and svyglm.zip, with some additional information about the model.

Examples

if (require("survey")) {
data(nhanes_sample)
set.seed(123)
nhanes_sample$malepartners <- rpois(nrow(nhanes_sample), 2)
nhanes_sample$malepartners[sample(1:2992, 400)] <- 0

# create survey design
des <- svydesign(
id = ~SDMVPSU,
strat = ~SDMVSTRA,
weights = ~WTINT2YR,
nest = TRUE,
data = nhanes_sample

)

# fit negative binomial regression
fit <- svyglm.zip(

malepartners ~ age + factor(RIDRETH1) | age + factor(RIDRETH1),
des

)

# print coefficients and standard errors
fit

}

table_values Expected and relative table values

Description

This function calculates a table’s cell, row and column percentages as well as expected values and
returns all results as lists of tables.

Usage

table_values(tab, digits = 2)

Arguments

tab Simple table or ftable of which cell, row and column percentages as well as
expected values are calculated. Tables of class xtabs and other will be coerced
to ftable objects.

digits Amount of digits for the table percentage values.
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Value

(Invisibly) returns a list with four tables:

1. cell a table with cell percentages of tab

2. row a table with row percentages of tab

3. col a table with column percentages of tab

4. expected a table with expected values of tab

Examples

tab <- table(sample(1:2, 30, TRUE), sample(1:3, 30, TRUE))
# show expected values
table_values(tab)$expected
# show cell percentages
table_values(tab)$cell

t_test Student’s t test

Description

This function performs a Student’s t test for two independent samples, for paired samples, or for
one sample. It’s a parametric test for the null hypothesis that the means of two independent samples
are equal, or that the mean of one sample is equal to a specified value. The hypothesis can be one-
or two-sided.

Unlike the underlying base R function t.test(), this function allows for weighted tests and auto-
matically calculates effect sizes. Cohen’s d is returned for larger samples (n > 20), while Hedges’ g
is returned for smaller samples.

Usage

t_test(
data,
select = NULL,
by = NULL,
weights = NULL,
paired = FALSE,
mu = 0,
alternative = "two.sided"

)
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Arguments

data A data frame.

select Name(s) of the continuous variable(s) (as character vector) to be used as samples
for the test. select can be one of the following:

• select can be used in combination with by, in which case select is the
name of the continous variable (and by indicates a grouping factor).

• select can also be a character vector of length two or more (more than
two names only apply to kruskal_wallis_test()), in which case the two
continuous variables are treated as samples to be compared. by must be
NULL in this case.

• If select select is of length two and paired = TRUE, the two samples are
considered as dependent and a paired test is carried out.

• If select specifies one variable and by = NULL, a one-sample test is carried
out (only applicable for t_test() and wilcoxon_test())

• For chi_squared_test(), if select specifies one variable and both by
and probabilities are NULL, a one-sample test against given probabili-
ties is automatically conducted, with equal probabilities for each level of
select.

by Name of the variable indicating the groups. Required if select specifies only
one variable that contains all samples to be compared in the test. If by is not a
factor, it will be coerced to a factor. For chi_squared_test(), if probabilities
is provided, by must be NULL.

weights Name of an (optional) weighting variable to be used for the test.

paired Logical, whether to compute a paired t-test for dependent samples.

mu The hypothesized difference in means (for t_test()) or location shift (for wilcoxon_test()
and mann_whitney_test()). The default is 0.

alternative A character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". See ?t.test and ?wilcox.test.

Details

Interpretation of effect sizes are based on rules described in effectsize::interpret_cohens_d()
and effectsize::interpret_hedges_g(). Use these function directly to get other interpreta-
tions, by providing the returned effect size (Cohen’s d or Hedges’s g in this case) as argument, e.g.
interpret_cohens_d(0.35, rules = "sawilowsky2009").

Value

A data frame with test results. Effectsize Cohen’s d is returned for larger samples (n > 20), while
Hedges’ g is returned for smaller samples.

Which test to use

The following table provides an overview of which test to use for different types of data. The choice
of test depends on the scale of the outcome variable and the number of samples to compare.
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Samples Scale of Outcome Significance Test
1 binary / nominal chi_squared_test()
1 continuous, not normal wilcoxon_test()
1 continuous, normal t_test()
2, independent binary / nominal chi_squared_test()
2, independent continuous, not normal mann_whitney_test()
2, independent continuous, normal t_test()
2, dependent binary (only 2x2) chi_squared_test(paired=TRUE)
2, dependent continuous, not normal wilcoxon_test()
2, dependent continuous, normal t_test(paired=TRUE)
>2, independent continuous, not normal kruskal_wallis_test()
>2, independent continuous, normal datawizard::means_by_group()
>2, dependent continuous, not normal not yet implemented (1)
>2, dependent continuous, normal not yet implemented (2)

(1) More than two dependent samples are considered as repeated measurements. For ordinal or not-
normally distributed outcomes, these samples are usually tested using a friedman.test(), which
requires the samples in one variable, the groups to compare in another variable, and a third variable
indicating the repeated measurements (subject IDs).

(2) More than two dependent samples are considered as repeated measurements. For normally
distributed outcomes, these samples are usually tested using a ANOVA for repeated measurements.
A more sophisticated approach would be using a linear mixed model.

References

• Bender, R., Lange, S., Ziegler, A. Wichtige Signifikanztests. Dtsch Med Wochenschr 2007;
132: e24–e25

• du Prel, J.B., Röhrig, B., Hommel, G., Blettner, M. Auswahl statistischer Testverfahren. Dtsch
Arztebl Int 2010; 107(19): 343–8

See Also

• t_test() for parametric t-tests of dependent and independent samples.

• mann_whitney_test() for non-parametric tests of unpaired (independent) samples.

• wilcoxon_test() for Wilcoxon rank sum tests for non-parametric tests of paired (dependent)
samples.

• kruskal_wallis_test() for non-parametric tests with more than two independent samples.

• chi_squared_test() for chi-squared tests (two categorical variables, dependent and inde-
pendent).

Examples

data(sleep)
# one-sample t-test
t_test(sleep, "extra")
# base R equivalent
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t.test(extra ~ 1, data = sleep)

# two-sample t-test, by group
t_test(mtcars, "mpg", by = "am")
# base R equivalent
t.test(mpg ~ am, data = mtcars)

# paired t-test
t_test(mtcars, c("mpg", "hp"), paired = TRUE)
# base R equivalent
t.test(mtcars$mpg, mtcars$hp, data = mtcars, paired = TRUE)

var_pop Calculate population variance and standard deviation

Description

Calculate the population variance or standard deviation of a vector.

Usage

var_pop(x)

sd_pop(x)

Arguments

x (Numeric) vector.

Details

Unlike var, which returns the sample variance, var_pop() returns the population variance. sd_pop()
returns the standard deviation based on the population variance.

Value

The population variance or standard deviation of x.

Examples

data(efc)

# sampling variance
var(efc$c12hour, na.rm = TRUE)
# population variance
var_pop(efc$c12hour)

# sampling sd
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sd(efc$c12hour, na.rm = TRUE)
# population sd
sd_pop(efc$c12hour)

weight Weight a variable

Description

These functions weight the variable x by a specific vector of weights.

Usage

weight(x, weights, digits = 0)

weight2(x, weights)

Arguments

x (Unweighted) variable.

weights Vector with same length as x, which contains weight factors. Each value of x
has a specific assigned weight in weights.

digits Numeric value indicating the number of decimal places to be used for rounding
the weighted values. By default, this value is 0, i.e. the returned values are
integer values.

Details

weight2() sums up all weights values of the associated categories of x, whereas weight() uses a
xtabs formula to weight cases. Thus, weight() may return a vector of different length than x.

Value

The weighted x.

Note

The values of the returned vector are in sorted order, whereas the values’ order of the original x may
be spread randomly. Hence, x can’t be used, for instance, for further cross tabulation. In case you
want to have weighted contingency tables or (grouped) box plots etc., use the weightBy argument
of most functions.
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Examples

v <- sample(1:4, 20, TRUE)
table(v)
w <- abs(rnorm(20))
table(weight(v, w))
table(weight2(v, w))

set.seed(1)
x <- sample(letters[1:5], size = 20, replace = TRUE)
w <- runif(n = 20)

table(x)
table(weight(x, w))

wilcoxon_test Wilcoxon rank sum test

Description

This function performs Wilcoxon rank sum tests for one sample or for two paired (dependent)
samples. For unpaired (independent) samples, please use the mann_whitney_test() function.

A Wilcoxon rank sum test is a non-parametric test for the null hypothesis that two samples have
identical continuous distributions. The implementation in wilcoxon_test() is only used for paired,
i.e. dependent samples. For independent (unpaired) samples, use mann_whitney_test().

wilcoxon_test() can be used for ordinal scales or when the continuous variables are not normally
distributed. For large samples, or approximately normally distributed variables, the t_test() func-
tion can be used (with paired = TRUE).

Usage

wilcoxon_test(
data,
select = NULL,
by = NULL,
weights = NULL,
mu = 0,
alternative = "two.sided",
...

)

Arguments

data A data frame.

select Name(s) of the continuous variable(s) (as character vector) to be used as samples
for the test. select can be one of the following:
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• select can be used in combination with by, in which case select is the
name of the continous variable (and by indicates a grouping factor).

• select can also be a character vector of length two or more (more than
two names only apply to kruskal_wallis_test()), in which case the two
continuous variables are treated as samples to be compared. by must be
NULL in this case.

• If select select is of length two and paired = TRUE, the two samples are
considered as dependent and a paired test is carried out.

• If select specifies one variable and by = NULL, a one-sample test is carried
out (only applicable for t_test() and wilcoxon_test())

• For chi_squared_test(), if select specifies one variable and both by
and probabilities are NULL, a one-sample test against given probabili-
ties is automatically conducted, with equal probabilities for each level of
select.

by Name of the variable indicating the groups. Required if select specifies only
one variable that contains all samples to be compared in the test. If by is not a
factor, it will be coerced to a factor. For chi_squared_test(), if probabilities
is provided, by must be NULL.

weights Name of an (optional) weighting variable to be used for the test.

mu The hypothesized difference in means (for t_test()) or location shift (for wilcoxon_test()
and mann_whitney_test()). The default is 0.

alternative A character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". See ?t.test and ?wilcox.test.

... Additional arguments passed to wilcox.test() (for unweighted tests, i.e. when
weights = NULL).

Value

A data frame with test results. The function returns p and Z-values as well as effect size r and
group-rank-means.

Which test to use

The following table provides an overview of which test to use for different types of data. The choice
of test depends on the scale of the outcome variable and the number of samples to compare.

Samples Scale of Outcome Significance Test
1 binary / nominal chi_squared_test()
1 continuous, not normal wilcoxon_test()
1 continuous, normal t_test()
2, independent binary / nominal chi_squared_test()
2, independent continuous, not normal mann_whitney_test()
2, independent continuous, normal t_test()
2, dependent binary (only 2x2) chi_squared_test(paired=TRUE)
2, dependent continuous, not normal wilcoxon_test()
2, dependent continuous, normal t_test(paired=TRUE)
>2, independent continuous, not normal kruskal_wallis_test()
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>2, independent continuous, normal datawizard::means_by_group()
>2, dependent continuous, not normal not yet implemented (1)
>2, dependent continuous, normal not yet implemented (2)

(1) More than two dependent samples are considered as repeated measurements. For ordinal or not-
normally distributed outcomes, these samples are usually tested using a friedman.test(), which
requires the samples in one variable, the groups to compare in another variable, and a third variable
indicating the repeated measurements (subject IDs).

(2) More than two dependent samples are considered as repeated measurements. For normally
distributed outcomes, these samples are usually tested using a ANOVA for repeated measurements.
A more sophisticated approach would be using a linear mixed model.

References

• Bender, R., Lange, S., Ziegler, A. Wichtige Signifikanztests. Dtsch Med Wochenschr 2007;
132: e24–e25

• du Prel, J.B., Röhrig, B., Hommel, G., Blettner, M. Auswahl statistischer Testverfahren. Dtsch
Arztebl Int 2010; 107(19): 343–8

See Also

• t_test() for parametric t-tests of dependent and independent samples.

• mann_whitney_test() for non-parametric tests of unpaired (independent) samples.

• wilcoxon_test() for Wilcoxon rank sum tests for non-parametric tests of paired (dependent)
samples.

• kruskal_wallis_test() for non-parametric tests with more than two independent samples.

• chi_squared_test() for chi-squared tests (two categorical variables, dependent and inde-
pendent).

Examples

data(mtcars)
# one-sample test
wilcoxon_test(mtcars, "mpg")
# base R equivalent, we set exact = FALSE to avoid a warning
wilcox.test(mtcars$mpg ~ 1, exact = FALSE)

# paired test
wilcoxon_test(mtcars, c("mpg", "hp"))
# base R equivalent, we set exact = FALSE to avoid a warning
wilcox.test(mtcars$mpg, mtcars$hp, paired = TRUE, exact = FALSE)

# when `by` is specified, each group must be of same length
data(iris)
d <- iris[iris$Species != "setosa", ]
wilcoxon_test(d, "Sepal.Width", by = "Species")
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