
Package ‘statuser’
February 9, 2026

Type Package

Title Statistical Tools Designed for End Users

Version 0.1.8

Description The statistical tools in this package do one of four things:
1) Enhance basic statistical functions with more
flexible inputs, smarter defaults, and richer, clearer, and ready-to-use
output (e.g., t.test2())
2) Produce publication-ready commonly needed figures with one line of code (e.g., plot_cdf())
3) Implement novel analytical tools developed by the authors (e.g., twolines())
4) Deliver niche functions of high value to the authors that are not easily
available elsewhere (e.g., clear(), convert_to_sql(), resize_images()).

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

Imports mgcv, rsvg, magick, labelled, sandwich, lmtest, utils

Suggests testthat (>= 3.0.0), crayon, quantreg, estimatr,
marginaleffects, broom, modelsummary

Config/testthat/edition 3

NeedsCompilation no

Author Uri Simonsohn [aut, cre]

Maintainer Uri Simonsohn <urisohn@gmail.com>

Repository CRAN

Date/Publication 2026-02-09 13:10:08 UTC

Contents
clear . 2
convert_to_sql . 3
desc_var . 4
format_pvalue . 6
list2 . 6

1

2 clear

lm2 . 7
message2 . 11
plot_cdf . 12
plot_density . 13
plot_freq . 15
plot_gam . 16
predict.lm2 . 18
print.desc_var . 19
print.lm2 . 19
print.t.test2 . 20
print.table2 . 20
resize_images . 21
scatter.gam . 22
summary.lm2 . 24
t.test2 . 25
table2 . 26
text2 . 27
twolines . 28

Index 31

clear Clear All: Environment, Console, and Graphics

Description

Clear All: Environment, Console, and Graphics

Usage

clear(envir = parent.frame())

Arguments

envir The environment to clear. Defaults to the calling environment. The global envi-
ronment is not modified by this function.

Details

This function performs three cleanup operations:

• Environment: Removes all objects from the specified environment

• Console: Clears the console screen (only in interactive sessions)

• Graphics: Closes all open graphics devices (except the null device)

Warning: This function deletes all objects in the specified environment. Save anything that you
wish to keep before running.

convert_to_sql 3

Value

Invisibly returns NULL. Prints a colored confirmation message.

Examples

Clear a temporary environment (safe for examples)
tmp_env <- new.env()
tmp_env$x <- 1:10
tmp_env$y <- rnorm(10)
clear(tmp_env)

convert_to_sql Convert CSV file to SQL INSERT statements

Description

Reads a CSV file and generates SQL statements to insert all rows. Optionally can also generate a
CREATE TABLE statement. The function automatically infers column types (REAL for numeric,
DATE for date strings matching YYYY-MM-DD format, TEXT otherwise).

Usage

convert_to_sql(input, output, create_table = FALSE)

Arguments

input Character string. Path to the input CSV file.

output Character string. Path to the output SQL file where the statements will be writ-
ten.

create_table Logical. If TRUE, includes a CREATE TABLE statement before the INSERT
statements. Default is FALSE.

Details

The function performs the following steps:

1. Reads the CSV file using read.csv() with stringsAsFactors = FALSE

2. Infers SQL column types:

• Numeric columns become REAL

• Date columns (matching YYYY-MM-DD format) become DATE

• All other columns become TEXT

3. If create_table = TRUE, generates a CREATE TABLE statement using the base filename (with-
out extension) as the table name

4. Generates INSERT INTO statements for each row

4 desc_var

5. Writes all SQL statements to the output file

Single quotes in text values are escaped by doubling them (SQL standard). Numeric values are
inserted without quotes, while text and date values are wrapped in single quotes.

Value

Invisibly returns NULL. The function writes SQL statements to the specified output file.

Examples

Convert a CSV file to SQL (INSERT statements only)
tmp_csv <- tempfile(fileext = ".csv")
tmp_sql <- tempfile(fileext = ".sql")
write.csv(

data.frame(id = 1:2, value = c("a", "b"), date = c("2024-01-01", "2024-02-02")),
tmp_csv,
row.names = FALSE

)
convert_to_sql(tmp_csv, tmp_sql)

Convert a CSV file to SQL with CREATE TABLE statement
convert_to_sql(tmp_csv, tmp_sql, create_table = TRUE)

desc_var Describe a variable, optionally by groups

Description

Returns a dataframe with one row per group

Usage

desc_var(y, group = NULL, data = NULL, digits = 3)

Arguments

y A numeric vector of values, a column name (character string or unquoted) if
data is provided, or a formula of the form y ~ x or y ~ x1 + x2 (for multiple
grouping variables).

group Optional grouping variable, if not provided computed for the full data. Ignored
if y is a formula.

data Optional data frame containing the variable(s).

digits Number of decimal places to round to. Default is 3.

desc_var 5

Value

A data frame with one row per group (or one row if no group is specified) containing:

• group: Group identifier

• mean: Mean

• sd: Standard deviation

• se: Standard error

• median: Median

• min: Minimum

• max: Maximum

• mode: Most frequent value

• freq_mode: Frequency of mode

• mode2: 2nd most frequent value

• freq_mode2: Frequency of 2nd mode

• n.total: Number of observations

• n.missing: Number of observations with missing (NA) values

• n.unique: Number of unique values

Examples

With grouping
df <- data.frame(y = rnorm(100), group = rep(c("A", "B"), 50))
desc_var(y, group, data = df)

Without grouping (full dataset)
desc_var(y, data = df)

Direct vectors
y <- rnorm(100)
group <- rep(c("A", "B"), 50)
desc_var(y, group)

With custom decimal places
desc_var(y, group, data = df, digits = 2)

Using formula syntax: y ~ x
desc_var(y ~ group, data = df)

Using formula syntax with multiple grouping variables: y ~ x1 + x2
df2 <- data.frame(y = rnorm(200), x1 = rep(c("A", "B"), 100), x2 = rep(c("X", "Y"), each = 100))
desc_var(y ~ x1 + x2, data = df2)

6 list2

format_pvalue Format P-Values for Display

Description

Formats p-values for clean display in figures and tables. e.g., p = .0231, p<.0001

Usage

format_pvalue(p, digits = 4, include_p = FALSE)

Arguments

p A numeric vector of p-values to format.

digits Number of decimal places to round to. Default is 4.

include_p Logical. If TRUE, includes "p" prefix before the formatted value (e.g., "p =
.05"). Default is FALSE.

Value

A character vector of formatted p-values.

Examples

Basic usage
format_pvalue(0.05)
format_pvalue(0.0001)

More rounding
format_pvalue(0.0001,digits=2)

Vector input
format_pvalue(c(0.05, 0.001, 0.00001, 0.99))

With p prefix
format_pvalue(0.05, include_p = TRUE)

list2 Enhanced alternative to list()

Description

List with objects that are automatically named.

lm2 7

Usage

list2(...)

Arguments

... Objects to include in the list. Objects are automatically named based on their
variable names unless explicit names are provided.

Details

list2(x , y) is equivalent to list(x = x , y = y)

list2(x , y2 = y) is equivalent to list(x = x , y2 = y)

Based on: https://stackoverflow.com/questions/16951080/can-lists-be-created-that-name-themselves-based-on-input-object-names

Value

A named list. Each element is named after the variable passed to the function (or the explicit name
if provided). The structure is identical to a standard R list created with list.

Examples

x <- 1:5
y <- letters[1:3]
z <- matrix(1:4, nrow = 2)

Create named list from objects
my_list <- list2(x, y, z)
names(my_list) # "x" "y" "z"

Works with explicit names too
my_list2 <- list2(a = x, b = y)
names(my_list2) # "a" "b"

lm2 Enhanced alternative to lm()

Description

Runs a linear regression with better defaults (robust SE), and richer & better formatted output than
lm. For robust and clustered errors it relies on lm_robust. The output reports classical and robust
errors, number of missing observations per variable, an effect size column (standardized regression
coefficient), and a red.flag column per variable flagging the need to conduct specific diagnostics. It
relies by default on HC3 for standard errors; lm_robust relies on HC2 (and Stata’s ’reg y x, robust’
on HC1), which can have inflated false-positive rates in smaller samples (Long & Ervin, 2000).

https://stackoverflow.com/questions/16951080/can-lists-be-created-that-name-themselves-based-on-input-object-names

8 lm2

Arguments

se_type The type of standard error to use. Default is "HC3". Without clusters: "HC0",
"HC1", "HC2", or "HC3". When clusters is specified, se_type is automatically
set to "CR2".

notes Logical. If TRUE (default), print explanatory notes below the table when the
result is printed.

clusters An optional variable indicating clusters for cluster-robust standard errors. When
specified, se_type is automatically set to "CR2" (bias-reduced cluster-robust
estimator). Passed to lm_robust.

fixed_effects An optional right-sided formula containing the fixed effects to be projected out
(absorbed) before estimation. Useful for models with many fixed effect groups
(e.g., ~ firm_id or ~ firm_id + year). Passed to lm_robust.

... Additional arguments passed to lm_robust.

Details

Robust standard errors and clustered standard errors are computed using lm_robust; see the docu-
mentation of that function for details (using by default CR2 errors) The output shows both standard
errors and when clustering errors it reports all three. The red.flag column is based on the difference
between robust and classical standard errors.

The red.flag column provides diagnostic warnings:

• !, !!, !!!: Robust and classical standard errors differ by more than 25%, 50%, or 100%,
respectively. Large differences may suggest model misspecification or outliers (but they may
also be benign). When encountering a red flag, authors should plot the distributions to look
for outliers or skewed data, and use scatter.gam to look for possible nonlinearities in the rel-
evant variables. King & Roberts (2015) propose a higher cutoff, at 100%, and a bootstrapped
significance test; statuser does not follow either recommendation. The former seems too
liberal, the latter too time consuming to include in every regression, plus the focus here is on
individual variables rather than joint tests.

• X: For interaction terms, the component variables are correlated (|r| > 0.3 or p < .05), which
means the interaction term is likely to be biased. See Simonsohn (2024) "Interacting with
curves" doi:10.1177/25152459231207787.

Value

An object of class c("lm2", "lm_robust", "lm"). This inherits from lm_robust and can be used
with packages like marginaleffects. The object contains all components of an lm_robust object
plus additional attributes:

statuser_table A data frame with columns: term, estimate, SE.robust, SE.classical, t, df,
p.value, B (standardized coefficient), and optionally SE.cluster when clustered standard
errors are used.

classical_fit The underlying lm object with classical standard errors.

na_counts Integer vector of missing value counts per variable.

n_missing Total number of observations excluded due to missing values.

https://doi.org/10.1177/25152459231207787

lm2 9

has_clusters Logical indicating whether clustered standard errors were used.

When printed, displays a formatted regression table with robust and classical standard errors, effect
sizes, and diagnostic red flags.

References

King, G., & Roberts, M. E. (2015). How robust standard errors expose methodological problems
they do not fix, and what to do about it. Political Analysis, 23(2), 159-179.

Long, J. S., & Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear
regression model. The American Statistician, 54(3), 217-224.

Simonsohn, U. (2024). Interacting with curves: How to validly test and probe interactions in the
real (nonlinear) world. Advances in Methods and Practices in Psychological Science, 7(1), 1-22.
doi:10.1177/25152459231207787

See Also

lm_robust, scatter.gam

Examples

Basic usage with data argument
lm2(mpg ~ wt + hp, data = mtcars)

Without data argument (variables from environment)
y <- mtcars$mpg
x1 <- mtcars$wt
x2 <- mtcars$hp
lm2(y ~ x1 + x2)

RED FLAG EXAMPLES

Example 1: red flag catches a nonlinearity
True model is quadratic: y = x^2
set.seed(123)
x <- runif(200, -3, 3)
y <- x^2 + rnorm(200, sd = 2)

lm2() shows red flag due to misspecification
lm2(y ~ x)

Follow up with scatter.gam() to diagnose it
scatter.gam(x, y)

Example 2: red flag catches an outlier in y
True model is y = x, but one observation has a very large y value
set.seed(123)
x <- sort(rnorm(200))
y <- round(x + rnorm(200, sd = 2), 1)
y[200] <- 100 # Outlier

https://doi.org/10.1177/25152459231207787

10 lm2

lm2() flags x
lm2(y ~ x)

Look at distribution of y to spot the outlier
plot_freq(y)

Example 3: red flag catches an outlier in one predictor
True model is y = x1 + x2, but x2 has an extreme value
set.seed(123)
x1 <- round(rnorm(200),.1)
x2 <- round(rnorm(200),.1)
y <- x1 + x2 + rnorm(200, sd = 0.5)
x2[200] <- 50 # Outlier in x2

lm2() flags x2 (but not x1)
lm2(y ~ x1 + x2)

Look at distribution of x2 to spot the outlier
plot_freq(x2)

CLUSTERED STANDARD ERRORS
When observations are grouped (e.g., students within schools),
use clusters to account for within-group correlation
set.seed(123)
n_clusters <- 20
n_per_cluster <- 15
cluster_id <- rep(1:n_clusters, each = n_per_cluster)
cluster_effect <- rnorm(n_clusters, sd = 2)[cluster_id]
x <- rnorm(n_clusters * n_per_cluster)
y <- 1 + 0.5 * x + cluster_effect + rnorm(n_clusters * n_per_cluster)
mydata <- data.frame(y = y, x = x, cluster_id = cluster_id)

Clustered SE (CR2) - note the SE.cluster column in output
lm2(y ~ x, data = mydata, clusters = cluster_id)

FIXED EFFECTS
Use fixed_effects to absorb group-level variation (e.g., firm or year effects)
This is useful for panel data or when you have many fixed effect levels
set.seed(456)
n_firms <- 30
n_years <- 5
firm_id <- rep(1:n_firms, each = n_years)
year <- rep(2018:2022, times = n_firms)
firm_effect <- rnorm(n_firms, sd = 3)[firm_id]
x <- rnorm(n_firms * n_years)
y <- 2 + 0.8 * x + firm_effect + rnorm(n_firms * n_years)
panel <- data.frame(y = y, x = x, firm_id = factor(firm_id), year = factor(year))

Absorb firm fixed effects (coefficient on x is estimated, firm dummies are not shown)
lm2(y ~ x, data = panel, fixed_effects = ~ firm_id)

Two-way fixed effects (firm and year)
lm2(y ~ x, data = panel, fixed_effects = ~ firm_id + year)

message2 11

message2 Enhanced alternative to message()

Description

Add options to set color and to end execution of code (to be used as error message)

Usage

message2(..., col = "cyan", font = 1, stop = FALSE)

Arguments

... Message content to be printed. Multiple arguments are pasted together.

col text color. Default is "cyan".

font Integer. 1 for plain text (default), 2 for bold text.

stop Logical. If TRUE, stops execution (like stop()) but without printing "Error:".

Details

This function prints colored messages to the console. If ANSI color codes are supported by the
terminal, the message will be colored. Otherwise, it will be printed as plain text. If stop = TRUE,
execution will be halted after printing the message.

Value

No return value, called for side effects. Prints a colored message to the console. If stop = TRUE,
execution is halted after printing the message.

Examples

message2("This is a plain cyan message", col = "cyan", font = 1)
message2("This is a bold cyan message", col = "cyan", font = 2)
message2("This is a bold red message", col = "red", font = 2)

cat("this will be shown")
try(message2("This stops execution", stop = TRUE), silent = TRUE)
cat("this will be shown after the try")

12 plot_cdf

plot_cdf Plot Empirical Cumulative Distribution Functions by Group

Description

Plots empirical cumulative distribution functions (ECDFs) separately for each unique value of a
grouping variable, with support for vectorized plotting parameters. If no grouping variable is pro-
vided, plots a single ECDF.

Usage

plot_cdf(formula, data = NULL, show.ks = TRUE, show.quantiles = TRUE, ...)

Arguments

formula A formula of the form y ~ group where y is the response variable and group is
the grouping variable. Alternatively, can be just y (without a grouping variable)
to plot a single ECDF.

data An optional data frame containing the variables in the formula. If data is not
provided, variables are evaluated from the calling environment.

show.ks Logical. If TRUE (default), shows Kolmogorov-Smirnov test results when there
are exactly 2 groups. If FALSE, KS test results are not displayed.

show.quantiles Logical. If TRUE (default), shows horizontal lines and results at 25th, 50th, and
75th percentiles when there are exactly 2 groups. If FALSE, quantile lines and
results are not displayed.

... Additional arguments passed to plotting functions. Can be single values (ap-
plied to all groups) or vectors (applied element-wise to each group). Common
parameters include col, lwd, lty, pch, type, etc.

Value

Invisibly returns a list containing:

• ecdfs: A list of ECDF function objects, one per group. Each can be called as a function to
compute cumulative probabilities (e.g., result$ecdfs[[1]](5) returns P(X <= 5) for group
1).

• ks_test: (Only when exactly 2 groups) The Kolmogorov-Smirnov test result comparing the
two distributions. Access p-value with resultks_testp.value.

• quantile_regression_25: (Only when exactly 2 groups) Quantile regression model for the
25th percentile.

• quantile_regression_50: (Only when exactly 2 groups) Quantile regression model for the
50th percentile (median).

• quantile_regression_75: (Only when exactly 2 groups) Quantile regression model for the
75th percentile.

• warnings: Any warnings captured during execution (if any).

plot_density 13

Examples

Basic usage with single variable (no grouping)
y <- rnorm(100)
plot_cdf(y)

Basic usage with formula syntax and grouping
group <- rep(c("A", "B", "C"), c(30, 40, 30))
plot_cdf(y ~ group)

With custom colors (scalar - same for all)
plot_cdf(y ~ group, col = "blue")

With custom colors (vector - different for each group)
plot_cdf(y ~ group, col = c("red", "green", "blue"))

Multiple parameters
plot_cdf(y ~ group, col = c("red", "green", "blue"), lwd = c(1, 2, 3))

With line type and point character
plot_cdf(y ~ group, col = c("red", "green", "blue"), lty = c(1, 2, 3), lwd = 2)

Using data frame
df <- data.frame(value = rnorm(100), group = rep(c("A", "B"), 50))
plot_cdf(value ~ group, data = df)
plot_cdf(value ~ group, data = df, col = c("red", "blue"))

Formula syntax without data (variables evaluated from environment)
widgetness <- rnorm(100)
gender <- rep(c("M", "F"), 50)
plot_cdf(widgetness ~ gender)

Using the returned object
df <- data.frame(value = c(rnorm(50, 0), rnorm(50, 1)), group = rep(c("A", "B"), each = 50))
result <- plot_cdf(value ~ group, data = df)

Use ECDF to find P(X <= 0.5) for group A
result$ecdfs[[1]](0.5)

Access KS test p-value
resultks_testp.value

Summarize median quantile regression
summary(result$quantile_regression_50)

plot_density Plot density of a variable, optionally by another variable

Description

Plots the distribution of a variable by group, simply: plot_density(y ~ x)

14 plot_density

Usage

plot_density(formula, data = NULL, show_means = TRUE, ...)

Arguments

formula Either the single variable name y or a formula like y ~ x.

data An optional data frame containing the variables in the formula.

show_means Logical. If TRUE (default), shows points at means.

... Additional arguments passed to plotting functions.

Details

Plot parameters like col, lwd, lty, and pch can be specified as:

• A single value: applied to all groups

• A vector: applied to groups in order of unique group values

Value

Invisibly returns a list with the following element:

densities A named list of density objects (class "density"), one for each group. Each density
object contains x (evaluation points), y (density estimates), bw (bandwidth), and other compo-
nents as returned by density. If no grouping variable is provided, the list contains a single
element named "all".

The function is primarily called for its side effect of creating a plot.

Examples

Basic usage with formula syntax (no grouping)
y <- rnorm(100)
plot_density(y)

With grouping variable
group <- rep(c("A", "B", "C"), c(30, 40, 30))
plot_density(y ~ group)

With custom colors (scalar - same for all)
plot_density(y ~ group, col = "blue")

With custom colors (vector - different for each group)
plot_density(y ~ group, col = c("red", "green", "blue"))

Multiple parameters
plot_density(y ~ group, col = c("red", "green", "blue"), lwd = c(1, 2, 3))

With line type
plot_density(y ~ group, col = c("red", "green", "blue"), lty = c(1, 2, 3), lwd = 2)

plot_freq 15

Using data frame
df <- data.frame(value = rnorm(100), group = rep(c("A", "B"), 50))
plot_density(value ~ group, data = df)
plot_density(value ~ group, data = df, col = c("red", "blue"))

plot_freq Plot frequencies of a variable, optionally by group (histogram without
binning)

Description

Creates a frequency plot showing the frequency of every observed value, displaying the full range
from minimum to maximum value.

Usage

plot_freq(
formula,
data = NULL,
freq = TRUE,
col = "dodgerblue",
lwd = 9,
width = NULL,
value.labels = TRUE,
add = FALSE,
show.legend = TRUE,
legend.title = NULL,
col.text = NULL,
...

)

Arguments

formula A formula of the form x ~ group where x is the variable to plot frequencies for
and group is an optional grouping variable (with 2 or 3 unique values). For
single variable (no grouping), use x ~ 1.

data An optional data frame containing the variables in the formula. If data is not
provided, variables are evaluated from the calling environment.

freq Logical. If TRUE (default), displays frequencies. If FALSE, displays percent-
ages.

col Color for the bars.

lwd Line width for the frequency bars. Default is 9.

width Numeric. Width of the frequency bars. If NULL (default), width is automati-
cally calculated based on the spacing between values.

value.labels Logical. If TRUE, displays frequencies on top of each line.

16 plot_gam

add Logical. If TRUE, adds to an existing plot instead of creating a new one.

show.legend Logical. If TRUE (default), displays a legend when group is specified. If
FALSE, no legend is shown.

legend.title Character string. Title for the legend when group is specified. If NULL (de-
fault), no title is shown.

col.text Color for the value labels. If not specified, uses col for non-grouped plots or
group colors for grouped plots.

... Pass on any argument accepted by plot() e.g., xlab='x-axis' , main='Distribution
of X'

Details

This function creates a frequency plot where each observed value is shown with its frequency. Un-
like a standard histogram, there is no binning, unlike a barplot, non-observed values of the variable
are shown with 0 frequency instead of skipped.

Value

Invisibly returns a data frame with values and their frequencies.

Examples

Simple example
x <- c(1, 1, 2, 2, 2, 5, 5)
plot_freq(x)

Pass on some common \code{plot()} arguments
plot_freq(x, col = "steelblue", xlab = "Value", ylab = "Frequency",ylim=c(0,7))

Add to an existing plot
plot_freq(x, col = "dodgerblue")
plot_freq(x + 1, col = "red", add = TRUE)

Using a data frame
df <- data.frame(value = c(1, 1, 2, 2, 2, 5, 5), group = c("A", "A", "A", "B", "B", "A", "B"))
plot_freq(value ~ 1, data = df) # single variable
plot_freq(value ~ group, data = df) # with grouping

plot_gam Plot GAM Model

Description

Plots fitted GAM values for focal predictor, keeping any other predictors in the model at a specified
quantile (default: median)

plot_gam 17

Usage

plot_gam(
model,
predictor,
quantile.others = 50,
col = "blue4",
bg = adjustcolor("dodgerblue", 0.2),
plot2 = "auto",
col2 = NULL,
bg2 = "gray90",
...

)

Arguments

model A GAM model object fitted using mgcv::gam().

predictor Character string specifying the name of the predictor variable to plot on the x-
axis.

quantile.others

Number between 1 and 99 for quantile at which all other predictors are held
constant. Default is 50 (median).

col Color for the prediction line. Default is "blue4".

bg Background color for the confidence band. Default is adjustcolor('dodgerblue',
.2).

plot2 How to plot the distribution in the lower plot. Options: 'auto' (default, auto-
select based on number of unique values), 'freq' (always plot frequencies),
'density' (always plot the density) or 'none' (neither). When 'auto', plots
frequencies with predictor has less than 30 unique values, density otherwise.

col2 Color for the lines/bars in the bottom distribution plot. Default is "dodgerblue"

bg2 Background color for the bottom distribution plot. Default is "gray90".

... Additional arguments passed to plot() and lines().

Value

Invisibly returns a list containing:

• predictor_values: The sequence of predictor values used

• predicted: The predicted values

• se: The standard errors

• lower: Lower confidence bound (predicted - 2*se)

• upper: Upper confidence bound (predicted + 2*se)

18 predict.lm2

Examples

library(mgcv)
Fit a GAM model
data(mtcars)
mtcars$cyl <- factor(mtcars$cyl) # Convert to factor before fitting GAM
model <- gam(mpg ~ s(hp) + s(wt) + cyl, data = mtcars)

Plot effect of hp (with other variables at median)
plot_gam(model, "hp")

Plot effect of hp (with other variables at 25th percentile)
plot_gam(model, "hp", quantile.others = 25)

Customize plot
plot_gam(model, "hp", main = "Effect of Horsepower", col = "blue", lwd = 2)

predict.lm2 Predict method for lm2 objects

Description

Predict method for lm2 objects

Usage

S3 method for class 'lm2'
predict(object, newdata, ...)

Arguments

object An object of class lm2

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the original model data is used.

... Additional arguments passed to predict.lm_robust, including se.fit and
interval.

Value

A vector of predicted values (or a list with fit and se.fit if se.fit = TRUE, or a matrix with fit,
lwr, upr if interval is specified)

print.desc_var 19

print.desc_var Print method for desc_var objects

Description

Print method for desc_var objects

Usage

S3 method for class 'desc_var'
print(x, ...)

Arguments

x An object of class desc_var

... Additional arguments passed to print.data.frame

Value

Invisibly returns the original object

print.lm2 Print method for lm2 objects

Description

Print method for lm2 objects

Usage

S3 method for class 'lm2'
print(x, notes = NULL, ...)

Arguments

x An object of class lm2

notes Logical. If TRUE (default), print explanatory notes below the table. If not
specified, uses the value set when lm2() was called.

... Additional arguments (ignored)

Value

Invisibly returns the original object

20 print.table2

print.t.test2 Print method for t.test2 output

Description

Print method for t.test2 output

Usage

S3 method for class 't.test2'
print(x, ...)

Arguments

x An object of class t.test2

... Additional arguments passed to print

Value

Invisibly returns the input object x. Called for its side effect of printing a formatted t-test summary
to the console, including means, confidence intervals, test statistics, p-values, sample sizes, and
APA-formatted results.

print.table2 Print method for table2 output with centered column variable name

Description

Print method for table2 output with centered column variable name

Print method for table2 objects

Usage

S3 method for class 'table2'
print(x, ...)

S3 method for class 'table2'
print(x, ...)

Arguments

x An object of class table2

... Additional arguments (ignored)

resize_images 21

Value

Invisibly returns the input object x. Called for its side effect of printing a formatted cross-tabulation
table to the console. The output includes frequencies, optional relative frequencies (row, column,
or overall proportions), and chi-squared test results when applicable.

Invisibly returns the original object

resize_images Resize Images

Description

Saves images to PNG with a specified width. As input it accepts (SVG, PDF, EPS, JPG, JPEG, TIF,
TIFF, BMP, PNG) Saves to subdirectory ’/resized’ within input folder (or same directory as file if
input is a single file)

Usage

resize_images(path, width)

Arguments

path Character string. Path to a folder containing image files, or path to a single
image file.

width Numeric vector. Target width(s) in pixels for the output PNG files. Can be
a single value (recycled for all files) or a vector matching the number of files
found.

Details

This function:

• Searches for image files with extensions: svg, pdf, eps, jpg, jpeg, tif, tiff, bmp, png

• Creates a "resized" subfolder in the target directory if it doesn’t exist

• Converts each file to PNG format at the specified width(s)

• Saves output files as: originalname_width.png in the resized subfolder

Supported input formats:

• Vector graphics: SVG, PDF, EPS (rasterized using rsvg/magick)

• Raster images: JPG, JPEG, TIF, TIFF, BMP, PNG

Value

Invisibly returns TRUE on success.

22 scatter.gam

Note

Dependencies required: rsvg, magick, and tools (base R). SVG files are rasterized using rsvg::rsvg(),
while PDF/EPS and other formats are handled by magick::image_read().

Examples

Create a temporary PNG file and resize it
tmp_png <- tempfile(fileext = ".png")
grDevices::png(tmp_png, width = 400, height = 300)
old_par <- graphics::par(no.readonly = TRUE)
graphics::par(mar = c(2, 2, 1, 1))
graphics::plot(1:2, 1:2, type = "n")
grDevices::dev.off()
graphics::par(old_par)
resize_images(tmp_png, width = 80)

scatter.gam Scatter Plot with GAM Smooth Line

Description

Creates a scatter plot with a GAM (Generalized Additive Model) smooth line. Supports both
scatter.gam(x, y) and scatter.gam(y ~ x).

Usage

scatter.gam(
x,
y,
data.dots = TRUE,
three.dots = FALSE,
data = NULL,
k = NULL,
plot.dist = NULL,
dot.pch = 16,
dot.col = adjustcolor("gray", 0.7),
jitter = FALSE,
...

)

Arguments

x A numeric vector of x values, or a formula of the form y ~ x.

y A numeric vector of y values. Not used if x is a formula.

data.dots Logical. If TRUE, displays data on scatterplot

scatter.gam 23

three.dots Logical. If TRUE, divides x into tertiles and puts markers on the average x & y
for each

data An optional data frame containing the variables x and y.

k Optional integer specifying the basis dimension for the smooth term in the GAM
model (passed to s(x, k=k)). If NULL (default), uses the default basis dimen-
sion.

plot.dist Character string specifying how to plot the distribution of x underneath the scat-
ter plot. Options: NULL (default, auto-select based on number of unique val-
ues), "none" (no distribution plot), "plot_freq" (always use plot_freq()),
or "hist" (always use hist()). When NULL, uses plot_freq() if there are 25
or fewer unique values, otherwise uses hist().

dot.pch Plotting character for data points when data.dots = TRUE. Default is 16 (filled
circle).

dot.col Color for data points when data.dots = TRUE. Default is adjustcolor('gray',
0.7) (semi-transparent gray).

jitter Logical. If TRUE, applies a small amount of jitter to data points to reduce
overplotting. Default is FALSE.

... Additional arguments passed to plot() and gam(). Common plot arguments
include:

• main: Custom title for the plot (e.g., main = "My Title")
• col: Color of the GAM smooth line (e.g., col = "red")
• lwd: Line width of the GAM smooth line (e.g., lwd = 2)
• xlim, ylim: Axis limits (e.g., xlim = c(0, 10))
• xlab, ylab: Axis labels (e.g., xlab = "Age")

Details

This function fits a GAM model with a smooth term for x and plots the fitted smooth line. The
function uses the mgcv package’s gam() function.

When three.dots = TRUE, the x variable is divided into three equal-sized groups (tertiles), and the
mean x and y values for each group are plotted as points. This provides a simple summary of the
relationship across the range of x.

Value

Invisibly returns the fitted GAM model object.

See Also

scatter.smooth for a simpler loess-based scatter plot smoother.

Examples

Generate sample data for examples
x <- rnorm(100)
y <- 2*x + rnorm(100)

24 summary.lm2

Plot GAM smooth line only
scatter.gam(x, y)

Equivalent call using formula syntax (y ~ x)
scatter.gam(y ~ x)

Include scatter plot with underlying data points behind the GAM line
scatter.gam(x, y, data.dots = TRUE)

Include summary points showing mean x and y for each tertile bin
scatter.gam(x, y, three.dots = TRUE)

Customize the plot with a custom title, line color, and line width
scatter.gam(x, y, data.dots = TRUE, col = "red", lwd = 2, main = "GAM Fit")

Control smoothness of the GAM line by specifying the basis dimension
scatter.gam(x, y, k = 10)

summary.lm2 Summary method for lm2 objects

Description

Summary method for lm2 objects

Usage

S3 method for class 'lm2'
summary(object, ...)

Arguments

object An object of class lm2

... Additional arguments passed to print.lm2

Value

Invisibly returns the original object

t.test2 25

t.test2 Enhanced alternative to t.test()

Description

The basic t-test function in R, t.test, does not report the observed difference of means, does not
stipulate which mean is subtracted from which (i.e., whether it computed A-B or B-A), and presents
the test results on the console in a verbose unorganized paragraph of text. t.test2 improves on all
those counts, and in addition, it reports the number of observations per group and if any observations
are missing it issues a warning. It returns a dataframe instead of a list.

Arguments

... Arguments passed to t.test

Value

A data frame with class c("t.test2", "data.frame") containing a single row with the following
columns:

mean columns One or two columns containing group means, named after the input variables (e.g.,
men, women) or Group 1, Group 2 for long names.

diff column For two-sample tests, the difference between means (e.g., men-women).

ci The confidence level as a string (e.g., "95 percent").

ci.L, ci.H Lower and upper bounds of the confidence interval.

t The t-statistic.

df Degrees of freedom.

p.value The p-value.

N columns Sample sizes, named N(group1), N(group2) or N1, N2. For paired tests, a single N
column.

correlation For paired tests only, the correlation between pairs.

Attributes store additional information including missing value counts and test type (one-sample,
two-sample, paired, Welch vs. Student).

Examples

Two-sample t-test
men <- rnorm(100, mean = 5, sd = 1)
women <- rnorm(100, mean = 4.8, sd = 1)
t.test2(men, women)

Paired t-test
x <- rnorm(50, mean = 5, sd = 1)
y <- rnorm(50, mean = 5.2, sd = 1)
t.test2(x, y, paired = TRUE)

26 table2

One-sample t-test
data <- rnorm(100, mean = 5, sd = 1)
t.test2(data, mu = 0)

Formula syntax
data <- data.frame(y = rnorm(100), group = rep(c("A", "B"), 50))
t.test2(y ~ group, data = data)

table2 Enhanced alternative to table()

Description

The function table does not show variable names when tabulating from a dataframe, requires run-
ning another function, prop.table, to tabulate proportions and yet another function, chisq.test
to test difference of proportions. table2 does what those three functions do, producing easier to
read output, and always shows variable names.

Arguments

... same arguments as table, plus the arguments shown below

prop report a table with:

• prop="all": Proportions for full table (each cell / total)
• prop="row": Proportions by row (’rows’ also accepted)
• prop="col": Proportions by columns (’cols’, ’column’, ’columns’ also ac-

cepted)

digits Number of decimal values to show for proportions

chi Logical. If TRUE, performs a chi-square test on frequency table, reports results
in APA format

correct Logical. If TRUE, applies Yates’ continuity correction for 2x2 tables in the chi-
square test. Default is FALSE (no correction).

Value

A list (object of class "table2") with the following components:

• freq: frequency table

• prop: proportions table

• chisq: chi-square test

text2 27

Examples

Create example data
df <- data.frame(

group = c("A", "A", "B", "B", "A"),
status = c("X", "Y", "X", "Y", "X")

)

Enhanced table with variable names (2 variables)
table2(df$group, df$status)

Enhanced table with variable names (3 variables)
df3 <- data.frame(

x = c("A", "A", "B", "B"),
y = c("X", "Y", "X", "Y"),
z = c("high", "low", "high", "low")

)
table2(df3$x, df3$y, df3$z)

Table with proportions
table2(df$group, df$status, prop = 'all') # Overall proportions
table2(df$group, df$status, prop = 'row') # Row proportions
table2(df$group, df$status, prop = 'col') # Column proportions

Table with chi-square test
table2(df$group, df$status, chi = TRUE,prop='all')

text2 Enhanced alternative to text()

Description

Adds to text() optional background color and verbal alignment (align=’center’)

Arguments

x, y coordinates for text placement

labels text to display

align alignment in relation to x coordinate (’left’,’center’,’right’)

bg background color

cex character expansion factor

pad left/right padding in percentage (e.g., .03)

pad_v top/bottom padding in percentage (e.g., .25)

... Additional arguments passed to text.

28 twolines

Value

No return value, called for side effects. Adds text with an optional background rectangle to an
existing plot.

Examples

Create a simple plot
plot(1:10, 1:10, type = "n", main = "text2() - Alignment & Color")

Alignment respect to x=5
text2(5, 8, "align='left' from 5", align = "left", bg = "yellow1")
text2(5, 7, "align='right' from 5", align = "right", bg = "blue", col = "white")
text2(5, 6, "align='center' from 5", align = "center", bg = "black", col = "white")
abline(v = 5, lty = 2)

Multiple labels with different alignments
text2(c(2, 5, 8), c(5, 5, 5),

labels = c("Left", "Center", "Right"),
align = c("left", "center", "right"),
bg = c("pink", "lightblue", "lightgreen"))

Text with custom font color (passed through ...)
text2(5, 3, "Red Text", col = "red", bg = "white")

Padding examples
plot(1:10, 1:10, type = "n", main = "Padding Examples")

Default padding (pad=0.03, pad_v=0.25)
text2(5, 8, "Default padding", bg = "lightblue")

More horizontal padding
text2(5, 6, "Wide padding", pad = 0.2, bg = "lightgreen")

More vertical padding
text2(5, 4, "Tall padding", pad_v = 0.8, bg = "lightyellow")

Both padding increased
text2(5, 2, "Extra padding", pad = 0.15, pad_v = 0.6, bg = "pink")

twolines Two-Lines Test of U-Shapes

Description

Implements the two-lines test for U-shaped (or inverted U-shaped) relationships introduced by Si-
monsohn (2018).

twolines 29

Usage

twolines(
f,
graph = 1,
link = "gaussian",
data = NULL,
pngfile = "",
quiet = FALSE

)

Arguments

f A formula object specifying the model (e.g., y ~ x1 + x2 + x3). The first predic-
tor is the one tested for a u-shaped relationship.

graph Integer. If 1 (default), produces a plot. If 0, no plot is generated.

link Character string specifying the link function for the GAM model. Default is
"gaussian".

data An optional data frame containing the variables in the formula. If not provided,
variables are evaluated from the calling environment.

pngfile Optional character string. If provided, saves the plot to a PNG file with the
specified filename.

quiet Logical. If TRUE, suppresses the Robin Hood details messages. Default is
FALSE.

Details

Reference: Simonsohn, Uri (2018) "Two lines: A valid alternative to the invalid testing of U-shaped
relationships with quadratic regressions." AMPPS, 538-555. doi:10.1177/2515245918805755

The test beings fitting a GAM model, predicting y with a smooth of x, and optionally with covari-
ates. It identifies the interior most extreme value of fitted y, and adjusts from the matching x-value
to set the breakpoint relying on the Robin Hood procedure introduced also by Simonsohn (2018).
It then estimates the (once) interrupted regression using that breakpoint, and reports the slope and
significance of the average slopes at either side of it. A U-shape is significant if the slopes are of
opposite sign and are both individually significant.

Value

A list containing:

• All elements from reg2(): b1, b2, p1, p2, z1, z2, u.sig, xc, glm1, glm2, rob1, rob2, msg,
yhat.smooth

• yobs: Observed y values (adjusted for covariates if present)

• y.hat: Fitted values from GAM

• y.ub, y.lb: Upper and lower bounds for fitted values

• y.most: Most extreme fitted value

• x.most: x-value associated with most extreme fitted value

https://doi.org/10.1177/2515245918805755

30 twolines

• f: Formula as character string

• bx1, bx2: Linear and quadratic coefficients from preliminary quadratic regression

• minx: Minimum x value

• midflat: Median of flat region

• midz1, midz2: Z-statistics at midpoint

Examples

Simple example with simulated data
set.seed(123)
x <- rnorm(100)
y <- -x^2 + rnorm(100)
data <- data.frame(x = x, y = y)
result <- twolines(y ~ x, data = data)

With covariates
z <- rnorm(100)
y <- -x^2 + 0.5*z + rnorm(100)
data <- data.frame(x = x, y = y, z = z)
result <- twolines(y ~ x + z, data = data)

Without data argument (variables evaluated from environment)
x <- rnorm(100)
y <- -x^2 + rnorm(100)
result <- twolines(y ~ x)

Index

chisq.test, 26
clear, 2
convert_to_sql, 3

density, 14
desc_var, 4

format_pvalue, 6

list, 7
list2, 6
lm2, 7
lm_robust, 7–9

message2, 11

plot_cdf, 12
plot_density, 13
plot_freq, 15
plot_gam, 16
predict.lm2, 18
predict.lm_robust, 18
print.desc_var, 19
print.lm2, 19, 24
print.t.test2, 20
print.table2, 20
prop.table, 26

resize_images, 21

scatter.gam, 8, 9, 22
scatter.smooth, 23
summary.lm2, 24

t.test, 25
t.test2, 25
table, 26
table2, 26
text, 27
text2, 27
twolines, 28

31

	clear
	convert_to_sql
	desc_var
	format_pvalue
	list2
	lm2
	message2
	plot_cdf
	plot_density
	plot_freq
	plot_gam
	predict.lm2
	print.desc_var
	print.lm2
	print.t.test2
	print.table2
	resize_images
	scatter.gam
	summary.lm2
	t.test2
	table2
	text2
	twolines
	Index

